

FLORIDA DEPARTMENT OF Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, FL 32399-2400 Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Noah Valenstein Secretary

Memorandum

TO: Brad Hartshorn, Environmental Administrator, DEP NW District Office FROM: Jeff Newton, Professional Geologist II, Site Investigation Section SUBJECT: April 16, 2019 Ground Water and Surface Water Sampling Event, Rolling Hills C&D Facility DATE: April 30, 2019

On April 16, 2019 the DEP Site Investigation Section (SIS) returned to the Rolling Hills C&D Facility to resample the seven monitor wells (MW) and one recovery well (RW) previously sampled on March 1, 2019. In addition, SIS collected three surface water samples from an adjacent unnamed creek located east of the facility. These three surface water sampling locations were designated Control, Surface Water Site and Down Gradient. SIS used both peristaltic pumps and submersible pumps to purge and sample the wells while a peristaltic pump was used to collect the surface water samples. Ground water purging and sample collection from the monitor wells was performed in accordance with standard operating procedures presented in DEP-SOP-001/01 FS 2200 and FQ1000. Measured ground water parameters including temperature, specific conductivity, pH, dissolved oxygen, oxidation-reduction potential and turbidity were collected using calibrated YSI water quality sensors with flow cells during this sampling event. Ground water samples were collected, recorded on a chain of custody and placed on ice. Both surface water and ground water samples were then submitted to the DEP Central Laboratory for the analyses of mercury by EPA Method 1631E. This analysis provided for a lower detection limit than the EPA Method 7473 analyses used for the previous sampling event (0.1 ng/L versus 100 ng/L). **Table 1** provides the final ground water parameter readings recording from the ground water sampling logs for both sampling events while **Table 2** provides the April 16, 2019 analytical results compared to the appropriate Groundwater Cleanup Target Level (GCTL) or Freshwater Surface Water Cleanup Target Level (FWSWCTL) for mercury as provided in DEP Chapter 62-777.

A review of **Table 2** indicates that no exceedances of the Florida Primary Drinking Standard (FPDWS) for mercury of 2 µg/L (2,000 ng/L) were noted in any of the monitor or recovery wells. Mercury concentrations in the wells ranged from 0.51 to 16.2 ng/L. Additionally, none of the surface water samples exceeded the 12 ng/L FWSWCTL for mercury. Mercury concentrations in the surface water samples ranged from 0.88 to 2.2 ng/L. **Figure 1** provides the locations of all monitor and recovery wells along with the surface water sampling points.

Table 1: Summary of Ground Water Parameters and Ground Water ElevationsFormer Rolling Hills Construction and Demolition Debris FacilityEscambia County, Florida

Well ID	Sample Date	Gallons Purged	Temperature (°C)	Specific Cond. (µmhos/cm)	Dissolved Oxygen (%/ mg/L)	pH (Standard Units)	Turbidity (NTUs)	ORP (millivolts)
N/11/ 1 D	3/1/2019	21.6	24.6	26.3	95.8/7.98	4.77	22.7	358
	4/16/2019	7	24.6	24.3	100/8.36	5.23	0.86	244
NA1A/ 2	3/1/2019	9	19.6	294	1.5/0.13	6.35	1.8	-109
10100-2	4/16/2019	3.15	20	329.5	0/0	6.37	2.5	-129
N/1\A/_/	3/1/2019	15	26.3	493	2.71/0.22	5.7	6.5	-32
10100-4	4/16/2019	5.21	26.6	679	5.7/0.45	6.41	10.7	-84
N/I\A/_5D	3/1/2019	9.56	26.2	1596	2.6/0.21	6.54	12.0	-104.7
	4/16/2019	19.2	23.7	1756	1.6/0.13	7.24	14.6	-109
M/M/_6	3/1/2019	6.16	25.4	1263	2.7/0.22	6.10	5.49	-69.9
	4/16/2019	8.2	25.5	790	3.1/0.25	7.47	0.35	-73.5
N/IN/ 7D	3/1/2019	12	18.5	355	0/0	4.90	3.93	153
	4/16/2019	15.5	18.8	277	3.0/0.28	5.04	2.97	99.4
N/I\A/_Q	3/1/2019	16	21.7	181	5.7/0.50	4.99	5.04	189
	4/16/2019	16	21.7	165.9	0.4/0.03	4.89	2.24	184
D\A/ 2	3/1/2019	22.8	21.7	1432	0/0	6.52	29.0	-111
LAN-2	4/16/2019	23	23.3	1995	0/0	6.48	3.46	-98.3

Table 1: Summary of Ground Water Parameters and Ground Water ElevationsFormer Rolling Hills Construction and Demolition Debris FacilityEscambia County, Florida

Well ID	Sample Date	TOC Elevation (NGVD)	Depth to Water	Ground Water Elevations
	3/1/2019	110 12	35.00	75.12
	4/16/2019	110.12	35.94	74.18
NAVA/ 2	3/1/2019	60.22	5.98	63.35
10100-2	4/16/2019	09.55	8.95	60.38
	3/1/2019	104 71	35.25	69.46
10100-4	4/16/2019	104.71	35.37	69.34
	3/1/2019	80.22	22.79	66.43
	4/16/2019	09.22	23.32	65.9
M///_6	3/1/2019	Q1 Q <i>1</i>	12.38	69.56
	4/16/2019	01.94	12.85	69.09
M/M/ 7D	3/1/2019	71 92	10.28	61.55
	4/16/2019	/1.05	11.44	60.39
N/1\A/ Q	3/1/2019	77.24	17.42	54.92
	4/16/2019	72.54	18.15	54.19
D\\/ 2	3/1/2019	ΝΔ	12.61	
KVV-2	4/16/2019	NA	13.05	

Table 2: Summary of Ground Water and Surface Water ResultsFormer Rolling Hills Construction and Demolition Debris FacilityEscambia County, Florida

Sample ID	Sample Date	Mercury GCTL 2,000 ng/L	Mercury FWSWCTL 12 ng/L
MW-1R	4/16/2019	0.51	
MW-2	4/16/2019	3.04	
MW-4	4/16/2019	7.31	
MW-5R	4/16/2019	13.2	
MW-6	4/16/2019	6.2	
MW-7R	4/16/2019	1.52	
MW-8	4/16/2019	16.2	
RW-3	4/16/2019	8.17	
RW-3 (Dup)	4/16/2019	8.16	
Control	4/16/2019		2.2
Surface Water Site	4/16/2019		1.37
Down Gradient	4/16/2019		0.88

SIS-2019-04-17-01 Serial Number: 0112981 Chemical Analysis Report Page 1 of 23

Chemical Analysis Report sis-2019-04-17-01

Florida Department of Environmental Protection Central Laboratory 2600 Blair Stone Road Tallahassee, FL 32399-2400 DOH Accreditation E31780

Event Description: Rolling Hills C&D Request ID: RQ-2019-04-15-52 Customer: SIS Project ID: SIS-INVEST

Send Reports to: FL Dept. of Environmental Protection 2600 Blair Stone Road Twin Towers Bldg. MS# 4515 Tallahassee, FL 32399 Attn: David Phillips For additional information please contact Colin Wright, Ph.D. Liang-Tsair Lin, Ph.D. Kerry Tate, Ph.D. Dr. rer. nat. Bettina Steinbock Thekkekalathil Chandrasekhar, Ph.D, QA Officer Phone (850) 245-8085

Certified by: Colin Wright, Program Administrator

Date Certified: 25-APR-2019 14:25

Colin Wiglet

Case Narrative

Unless otherwise noted, all samples included in this report were received in accordance with protocols referenced in Chapter 62-160, Florida Administrative Code (F.A.C.). Results published in this report pertain only to the samples as submitted to, and received by the laboratory. All times in this report are adjusted to the applicable Eastern Time Zone (EST or EDT).

Results for the following analytical group are included in this report: Metals.

Scientific notation may be used in reporting very large or small values. Values reported using scientific notation will take the form of the following example: 1.3E+03, which is equivalent to 1.3×10^3 or 1300.

Unless otherwise noted, analytical values for soil and sediment samples are reported on a dry weight basis, and analytical values for waste and tissue samples are reported on a wet weight basis.

Results for TNI accredited tests met requirements established by The NELAC Institute. A double asterisk (**) is used to indicate an analyte/matrix/method for which the laboratory is not TNI accredited by the Florida Department of Health Environmental Laboratory Certification Program or where accreditation for that field of testing is not applicable.

Any significant anomalies or deviations from established protocols are documented in Non-Conformance Reports, which, where appropriate, are included within this analytical report. Additional comments related to specific analytical tests may be included as remarks following the analytical results for each sample. Such comments and remarks are for informational purposes only and are not intended to convey judgement about the usability of the reported data.

A quality control report on the performance of the test method for the submitted samples is included. Uncertainty associated with the analytical results contained in this report can be estimated from the reported quality assurance results and from published quality control acceptance limits for each analytical test. Matrix quality control results (matrix spike recoveries and matrix sample precision) pertain only to the matrix sample tested and do not necessarily reflect test method performance for other samples.

Typical matrix quality control (QC) measurements may include matrix spike recovery, matrix spike duplicate recovery, matrix spike precision and matrix sample precision. Not all matrix QC results may be available or reportable; where they are not an explanation is provided. Typical reasons for unavailable QC results include, but are not limited to, a) insufficient matrix sample to perform some or all QC measurements; b) analyte concentration in the sample replicated was too low for a meaningful measurement of precision and c) analyte concentration in the matrix sample spiked was too high (relative to the amount of analyte spiked) for a meaningful measurement of recovery. Where matrix QC results are unavailable, other method performance metrics (e.g., LCS recovery, LCS precision, surrogate recovery) may be used to assess performance of the method. Comments explaining any missing QC measurements are not intended to convey any adverse conclusions about the quality of the reported data.

Precision is reported as relative percent difference unless otherwise noted.

Quality Control codes as defined below may be used in this report to indicate results that are associated with one or more quality control elements which did not fall within established test method criteria. Such results may be qualified as estimates using a J qualifier as required by 62-160 F.A.C. Explanations are included in the report for any results that were reported as estimates for other reasons.

QC Codes used in this report may include:

- LCS Recovery for the batch Laboratory Control Sample (LCS) was outside existing control limits;
- MS Recovery for the batch matrix spike (MS) was outside existing control limits;
- CCV Recovery for a continuing calibration verification (CCV) standard was outside existing control limits;
- SUR Recovery of a surrogate (SUR) for associated analytes was outside existing control limits;
- RPD The precision, measured as relative percent difference (RPD), of batch replicate measurements was outside existing control limits;
- RSD The precision, measured as relative standard deviation (RSD), of batch replicate measurements was outside existing control limits;
- SMP Sample used precision derived from replicate analyses of a sample;

The following data qualifiers are used, where applicable, in this report as specified in 62-160 F.A.C.

- A Value reported is the mean of two or more determinations.
- B Results based on colony counts outside the acceptable range.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value and/or the analysis did not meet established quality control criteria.
- K Actual value is known to be less than value given.
- L Actual value is known to be greater than value given.
- N Presumptive evidence of presence of material.
- O Sampled, but analysis lost or not performed.
- Q Sample held beyond normal holding time.
- T Value reported is less than the criterion of detection.
- U Material was analyzed for but not detected. The reported value is the method detection limit for the sample analyzed.
- V Analyte was detected in both sample and method blank.
- X Too few individuals to calculate SCI value.
- Y The laboratory analysis was from an unpreserved or improperly preserved sample. The data may not be accurate.
- Z Colonies were too numerous to count (TNTC).

Quality control information from overflow laboratories may not be included in this report. Please refer to the associated report from the overflow laboratory for additional information.

Collection Date/Time: 04/16/2019 12:10

Field ID: MW-7R

Matrix: W-GROUND

Sample ID	Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes
2078868	EPA 1631E	Mercury	1.52		ng/L	P362610	

Ref. Method and Comment:

Collection Date/Time: 04/16/2019 13:40

Field ID: MW-8

Matrix: W-GROUND

Sample ID	Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes
2078869	EPA 1631E	Mercury	16.2		ng/L	P362610	

Ref. Method and Comment:

EPA 1631E: Batch matrix spike recoveries are unavailable for one of two spiked samples because of high analyte concentration in the QC sample. The result was confirmed on 04/24/2019.

Collection Date/Time: 04/16/2019 14:20

Field ID: MW-2

Matrix: W-GROUND

Sample ID	Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes
2078870	EPA 1631E	Mercury	3.04		ng/L	P362610	

Ref. Method and Comment:

Collection Date/Time: 04/16/2019 15:05

Field ID: RW-3

Matrix: W-GROUND

Sample ID	Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes
2078871	EPA 1631E	Mercury	8.17		ng/L	P362610	

Ref. Method and Comment:

Matrix: W-GROUND

Sample Location: ROLLING HILLS C&D FACILITY

Collection Date/Time: 04/16/2019 15:05

Field ID: RW-3 DUP

Sample ID	Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes
2078872	EPA 1631E	Mercury	8.16		ng/L	P362610	

Ref. Method and Comment:

Collection Date/Time: 04/16/2019 12:50

Field ID: CONTROL

Sample ID

2078873

CONTROL				Matrix: W-GROUND			
Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes	
EPA 1631E	Mercury	2.20		ng/L	P362610		

Ref. Method and Comment:

Matrix: W-GROUND

Sample Location: ROLLING HILLS C&D FACILITY

Collection Date/Time: 04/16/2019 12:25

Field ID: SURFACE WATER SITE

Sample ID	Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes
2078874	EPA 1631E	Mercury	1.37		ng/L	P362610	

Ref. Method and Comment:

Matrix: W-GROUND

Sample Location: ROLLING HILLS C&D FACILITY

Collection Date/Time: 04/16/2019 11:55

Field ID: DOWN GRADIENT

Sample ID	Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes
2078875	EPA 1631E	Mercury	0.88		ng/L	P362610	

Ref. Method and Comment:

Collection Date/Time: 04/16/2019 12:14

Field ID: MW-1R

Matrix: W-GROUND

Sample ID	Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes
2078876	EPA 1631E	Mercury	0.51		ng/L	P362610	

Ref. Method and Comment:

Collection Date/Time: 04/16/2019 12:19

Field ID: MW-4

Matrix: W-GROUND

Sample ID	Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes
2078877	EPA 1631E	Mercury	7.31		ng/L	P362610	

Ref. Method and Comment:

Collection Date/Time: 04/16/2019 14:24

Field ID: MW-5R

Matrix: W-GROUND

Sample ID	Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes
2078878	EPA 1631E	Mercury	13.2		ng/L	P362610	

Ref. Method and Comment:

EPA 1631E: Batch matrix spike recoveries are unavailable for one of two spiked samples because of high analyte concentration in the QC sample. The result was confirmed on 04/24/2019.

Matrix: W-EQPMT-BK

Sample Location: ROLLING HILLS C&D FACILITY

Collection Date/Time: 04/16/2019 15:00

Field ID: SUB PUMP EB

Sample ID	Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes
2078879	EPA 1631E	Mercury	0.10	U	ng/L	P362610	

Ref. Method and Comment:

Collection Date/Time: 04/16/2019 15:35

Field ID: MW-6

Matrix: W-GROUND

Sample ID	Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes
2078880	EPA 1631E	Mercury	6.20		ng/L	P362610	

Ref. Method and Comment:

Matrix: W-EQPMT-BK

Sample Location: ROLLING HILLS C&D FACILITY

Collection Date/Time: 04/16/2019 15:55

Field ID: PP EB

Sample ID	Ref. Method	Component	Result	Code	Units	Batch ID	QC Codes
2078881	EPA 1631E	Mercury	0.10	U	ng/L	P362610	

Ref. Method and Comment:

SIS-2019-04-17-01 Serial Number: 0112981 Chemical Analysis Report Page 17 of 23

Quality Assurance Report Method Blank Results

Reference Method: EPA 1631E Batch ID: P362610

Component Mercury Result 0.10 Code U **Units** ng/L

SIS-2019-04-17-01 Serial Number: 0112981 Chemical Analysis Report Page 18 of 23

Quality Assurance Report Laboratory Control Sample Accuracy

Reference Method: EPA 1631E Batch ID: P362610

Component Mercury
 % Rec.1
 % Rec.2
 Pass/Fail

 106
 P

Control Limits 80 - 120

SIS-2019-04-17-01 Serial Number: 0112981 Chemical Analysis Report Page 19 of 23

Quality Assurance Report Matrix Spike Accuracy

Reference Method: EPA 1631E Batch ID: P362610

Spiked Sample	Component	% Rec.1	% Rec.2	Pass/Fail	Control Limits
2078875	Mercury	99.6	98.2	P/P	80 - 120

SIS-2019-04-17-01 Serial Number: 0112981 Chemical Analysis Report Page 20 of 23

Quality Assurance Report Precision

Reference Method: EPA 1631E Batch ID: P362610

Replicated					
Lab Sample	Component	% RSD/RPD	Sample/Spike/LCS*	Pass/Fail	Control Limits
2078875	Mercury	0.973	Spike	Р	0 - 20

* Sample, spike and/or laboratory control sample precision (LCS) is reported. Replicate spike precision may be reported when sample results are below quantifiable levels.

Quality Assurance Report Calibration Verification

Reference Method: EPA 1631E

Run ID: A90890

Included Lab Sample IDs: 2078868, 2078869, 2078870, 2078871, 2078872, 2078873, 2078874, 2078875, 2078876, 2078877, 2078878, 2078879, 2078880, 2078881

Component	% Rec.1	% Rec.2	Pass/Fail*	Control Limits
Mercury	103	106	P/P	85 - 115
Mercury	104	105	P/P	85 - 115
Mercury	105	103	P/P	85 - 115

* Pass/Fail determinations are made for each bracketing calibration verification check.

Control limits for initial calibration checks may be different from those for continuing checks, depending on method requirements. Where they are different, both control limits are provided.

SIS-2019-04-17-01 Serial Number: 0112981 Chemical Analysis Report Page 22 of 23

Quality Assurance Report Summary

Ref. Method	Analyte	LCS % Recovery	MS % Recovery		Precision	
				LCS	SMP	MS
EPA 1631E	Mercury	106	99.6 98.2			0.973

Reference Method Descriptions

 Method / DoH Cert #
 I

 EPA 1631E / E31780
 I

Description

Mercury in aqueous samples using cold vapor atomic fluorescence spectroscopy.

Associated Samples

2078868, 2078869, 2078870, 2078871, 2078872, 2078873, 2078874, 2078875, 2078876, 2078877, 2078878, 2078879, 2078880, 2078881

SIS-2019-04-17-01 Serial Number: 0112981 Chemical Analysis Report Page 23 of 23

Preparation and Analysis Log

	Received	Prep		Analysis		
Ref. Method	Date	Date/Time	Prepared By	Date/Time	Analyzed By	Associated Samples
EPA 1631E	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 09:52	Vijayalakshmi Reddy	2078879
	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 09:56	Vijayalakshmi Reddy	2078881
	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 10:09	Vijayalakshmi Reddy	2078868
	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 10:13	Vijayalakshmi Reddy	2078869
	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 10:17	Vijayalakshmi Reddy	2078870
	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 10:21	Vijayalakshmi Reddy	2078871
	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 10:25	Vijayalakshmi Reddy	2078872
	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 10:42	Vijayalakshmi Reddy	2078873
	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 10:46	Vijayalakshmi Reddy	2078874
	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 10:50	Vijayalakshmi Reddy	2078875
	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 11:03	Vijayalakshmi Reddy	2078876
	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 11:07	Vijayalakshmi Reddy	2078877
	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 11:11	Vijayalakshmi Reddy	2078878
	04/17/2019	04/18/2019 15:26	Vijayalakshmi Reddy	04/22/2019 11:35	Vijayalakshmi Reddy	2078880

SITE	SITE SITE SITE												
NAME:			OD Facil	SAMPLE			ensace	JIA	DATE	04/16/	2019		
WELL NO				SAMPLE			ТА		DATE.	047107	2010		
WELL	P (inches);		BING METER (incl	nes): 1/2	WELL SCR	REEN INTERVAL	STATIC I	DEPT	H et): 3	5.94	PURGE I	PUMP TY ER: F	PE SP
WELL VO only fill c	LUME PURG	2 010 6E: 1WELL ble) = (VOLUME = (58.9	TOTAL WEI	L DEPTH -	- STATIC DEPTH T feet) X	O WATER	k) X 6	WELL	CAPACITY allons/foot	3.48	gall	ons
EQUIPME		PURGE: 1		VOL. = PUM	P VOLUME	+ (TUBING CAPACI	тү х	TU	BING LE	ENGTH) + FLC	W CELL VOI	LUME	
(only fill o	out if applica	ble) =	gallons +	(gallons/foo	tX	feet) +			gallons =	gallons		
INITIAL P DEPTH IN		BING F	INAL PUMP DEPTH IN		8`	PURGING	158		GING ED AT:	1212	TOT/ PUR	AL VOLU GED	ме 7. 0
WELL (fee		CUMUL.	VELL (feet):	DEPTH	TEMP.	COND.	DISS	SOLVE	ED	pH	(ganc		-
TIME	PURGED (gallons)	VOLUME PURGED (gallons)	RATE (gpm)	TO WATER (feet)	(°C)	(μmhos/cm or μS/cm)	OXYG mg satu	/L Curation		(standard units)	ORP	(NTUS	
1158	0	0		39.05					1415				
1206 4 4 0.5 39.04 24.6 23.8 102%/8.20 5.21 242.6 12.9 NONE													
1209 1.5 5.5 0.5 39.04 29.5 24.1 101 10 18.42 5.20 247.4 18.6 NON													O NONE
1212	1.5	7.0	0.5	39.04	24.4	24.3	100%	0/8	7,36	5.23	244,2	0.8	6 NONE
			8										
						_							
WELL CA	PACITY (Gal	lons Per Foo	t): 0.75" = 0	.02: 1" =	0.04: 1.25	" = 0.06; 2" = 0.1	6: 3" =	0.37;	4" = (0.65; 5"=1	.02; 6" = 1	.47; 1	2" = 5.88
TUBING IN	SIDE DIA. C	CAPACITY (G	al./Ft.): 1/8"	= 0.0006;	3/16" = 0.00		5; 5/16	" = 0.0	004; 3	3/8" = 0.006;	1/2" = 0.01	0; 5/8	" = 0.016
SAMPLED	BY (PRINT)	1	SAMPLER	(S) SIGNAT	RES:								
AFFILIATI	ON:FDEP/SI	S		đ	Mr		SAMPLIN	IG D AT:	12	14	ENDED AT	12	:15
PUMP OR	TUBING	29'	SAMPLE F				TUBING)DE			
FIELD	WELL (feet)	: 20	FIELD-FIL	TERED: Y	N N	FILTER SIZE:				ATE: Y	N		
DECONTA	MINATION:		Filtration E	Equipment T	ype:						\mathcal{O}		
SAMPLE ID	SPECIF	MATERI	AL VOLU	ME PRE	SERVATIVE	TOTAL VOL	FINA		INTEND	ED ANALYSIS	AND/OR ME	THOD	SAMPLING EQUIPMENT CODE
				ml 7-		(mL)				01/-611	ED-W		ELD
MW-1R	1		2501						W-1	CI -IC. W-SC	4-IC. W-TD	s	FLP
MW-1R	1	PI	500 1	 ml	HNO3				W-HG-1	TDA-R. W-IC	PMS-R. W-	ICP-R	FCP
MW-1R	1	PL	125 r	nL	H2SO4			-		W-NH3, W-	NO2NO3		ELP
													,
REMARKS													
l	used 10% onk on Do% Sample time: 1214												
MATERIAL (Specify)	CODES:	AG = An	nber Glass;	CG = Clea	r Glass; I	PE = Polyethylene;	PP = P	olypr	opylene;	S = Silicor	ne; T = Tefl	on; O	= Other
SAMPLING	PURGING	APP = Afte RFPP = Re	er Peristaltic verse Flow F	Pump; Peristaltic Pu	B = Bailer; ump; SI	BP = Bladder F M = Straw Method (Pump; Tubing Gr.	ESF avity I	P = Elect Drain);	ric Submersit VT = Vac	ole Pump; uum Trap;	PP = P 0 = 0	eristaltic Pump ther (Specify)
NOTES	and the second se												

SITE								SI	SITE								
NAME:	Rolli	ing l	lills C	&D Fa	acili	ty		L	OCATION: F	Pensac	ola	1					
WELL N	o: MW-	2				SAMPI	EID: NW-	2	2 0410-76 DATE: 04/16/2019								
							F	PU	RGING DA	ATA							
WELL DIAMET	ER (inches):	2	TUE	BING METER	(inche	es):	WELL SCF DEPTH: 4	.3 f	N INTERVAL feet to 19.3	STATIC TO WAT	DEP FER ((feet): E	3,95	PURGE OR BAIL	ER: Per	istallic	
WELL V only fill	OLUME PUR out if applica	GE: 1 able) =	WELL '	/OLUME 19.3	E = (T	OTAL W	B 95	- S	TATIC DEPTH feet) X	TO WATE 0.1	R) (X WELL g	CAPACITY allons/foot	- 1.65	gallo	ns	
EQUIPM	ENT VOLUM	E PUR	GE: 1 E	QUIPME	ENT V	OL. = Pl	JMP VOLUME	+ (TI	UBING CAPACI	ITY X		TUBING LE	ENGTH) + FL	OW CELL VOI	LUME		
(only fill	out if applica	able) :	=	gallor	1s + (gallons/foo	ot X		feet) +			gallons =	gallons			
INITIAL	PUMP OR TU	BING	F	INAL PU	JMP O		IG		IDOINO		DU	DOING		тотя	L VOLUM	E	
DEPTH I	N 12		D	EPTH IN	d of):			IN	ITIATED AT:	353	EN	IDED AT:		PUR	GED		
WELL		CL	JMUL.		-	DEPTH			COND.	DIS	SOL	VED	рН	(guine	/////		
TIME	PURGED (gallons)	PU (ga	LUME RGED	PUR RAT (gpn	GE TE n)	TO WATE (feet)	ε (°C)		(μmhos/cm or μS/cm)	nhos/cm or OXYGEN (circle (standard μS/cm) saturation) units)				ORP	TURBIDIT (NTUs)	ODOR	
1353	-	-		,15	5	8.9	5 21.0		330.6	7.5	10	0.65	6.30	-529	1		
1406	1406 1.8 1.8 "								342.8	0.6	10	.05mg/	6.35	-97.4	7.42	2	
1409	.45	2	25	11		N	20.1		341.0	0.3/	0.	03	6.36	-115.0	5,88		
141 Z	.45	2.	70	M		**	20,0	0	336.4	0.11	0.	01	6.37	-121.8	4.43		
1415	1415 .45 3.15 " "								329.5	· 0.11.	-0	.01	6,37	-17.8	2.51		
															,		
		10															
WELL CA	APACITY (Gal	lons F	Per Foot): 0.75" L/Ft.):	' = 0.0 1/8'' =	2; 1" 0.0006:	= 0.04; 1.25 3/16" = 0.00	" = ()14:	0.06; 2" = 0.1	16; 3"= 6: 5/16	: 0.37 ;" = 0	7; 4" = 0 0.004: 3	0.65; 5" = 1 8/8" = 0.006;	.02; 6" = 1 1/2" = 0.01	.47; 12" 0: 5/8":	= 5.88 = 0.016	
102110						0.0000,	SA	AM	IPLING DA	ATA					.,		
SAMPLE	D BY (PRINT)	/ S		SAMP	LER(S	6) SIGNA	TURES:			SAMPLIN	1G	10	70	SAMPLING	171	7 4	
		-		DJ,	DI	Μ,	IN			INITIATE	D A1	r 4	20	ENDED AT:	14	20	
DEPTH I	N WELL (feet)	:		FLOW	RATE	imP E (mL pe	r minute):			MATERIA	AL C	ODE: HD	PE				
FIELD DECONT	AMINATION:	Y	N	FIELD- Filtrati	-FILTE ion Eq	ERED: juipmen	Y N tType:	FIL	.TER SIZE:	μm	_	DUPLIC	ATE: Y	N			
	SAMPLE C	CONT					SAMPLE	PR	ESERVATION							SAMPLING	
SAMPLE		NERS	MATER	RIAL	VOLU	IME	PRESERVATIV USED	Έ	TOTAL VOL ADDED IN FIEL	.D FINA pH	L	INTENDE	ED ANALYSIS	AND/OR ME	THOD	EQUIPMENT CODE	
MW-2/PZ	-2 1		PL		250 1	mL	ZnAc-NaOH		(1112)				OV-SUL	ED-W			
MW-2/PZ	-2 1		PL		11	_	lce					W-C	CL-IC, W-SC	4-IC, W-TD	S		
MW-2/PZ-2 1 PL 500 mL HNC							HNO3					W-HG-T	DA-R, W-IC	PMS-R, W-I	CP-R		
MW-27PZ-2 1 PL 125 mL H2SO4												-	W-NH3, W-	NO2NO3			
REMARKS:																	
ultra trace mercury - 0410-T6																	
MATERIA (Specify)	L CODES:	4	AG = Am	ber Glas	55;	CG = Cle	ear Glass; F	'Е =	Polyethylene;	PP = F	olyp	propylene;	S = Silicor	ie; T = Teflo	on; O =	Other	
SAMPLIN	G/PURGING	AP	P = Afte	Perista	Itic P	ump;	B = Bailer;	4 - 4	BP = Bladder I	Pump;	ES	SP = Electr	ic Submersit	le Pump;	PP = Peri	staltic Pump	
NOTES:	1.	The	above o	lo not o	const	titute al	l of the inform	n=: nati	ion required l	by Chapt	er 6	2-160, F.	A.C.	um irap;	U = Oth	er (opecity)	
2.	STABILIZA	TION C	RITERIA	FORR	ANGE	OF VAR	ATION OF LAST	THE	REE CONSECUT	IVE READ	INGS	SISEE FS	2212, SECTI	<u>on 3)</u>			

NAME: ROILING FUILS C&O FACUITY LOCATON: Personal WELL NO: RW-3 SAMPLE ID: RW-3 DATE: 04/16/2019 WELL NO: RW-3 DATE: 04/16/2019 PURGE PUMP TYPE ODATETER (Inches): UPURS C: VELL SCREEN INTERVAL STATIC DEPTH OR BALER: WELL SCREEN INTERVAL DEPTH: 24.8 kett 03.40 STATIC DEPTH OW REAL (Ref.): 3.05 OR BALER: WELL SCREEN INTERVAL DEPTH: 24.8 kett 03.40 STATIC DEPTH OW REAL (Ref.): 3.05 OR BALER: WELL VOLUME PURGE: TEQUIPMENT VOLUME (TUBING GAPACITY WELL CARDITY TUBING ENGITH FURGED PURGE TUBING PURGEN FURGING PURGING	
VELL NO: RVV-3 DATE: UP / 2019 PURGING DATA PURGING DATA WELL DUAMETER (inches): TUBING DAMETER (inches): DAMETER (inches): DETH: 24.8 feet to 34.8 TVALE OP/H TOTAL WELL OP/H DUALE OF ITAL WELL OP/H SAMETER (inches): PURGING DATA WELL VOLUME PURGE: INTIGATION TOTAL WELL OP/H TOTAL WELL OP/H SAMETER (inches): TVBING DETH: VALE OF ADATE (inches): PURGING DETH: PURGING DUALE OF ADATE (inches): PURGING DIALE PURGING DUALE PURGING D	
PURGING DATA VELL TUBING DATA VELL SCHER INTERVAL SAMPLER (Inches): DURGE PUMP TYPE DIAMETER (Inches): PURGE PUMP TYPE DR BALLER: VELL SCHER INTERVAL SAMPLER (Inches): PURGE PUMP TYPE DR BALLER: OTAL VOLUME + (TOTAL WELL DEPTH - STATIC DEPTH TOWATER): WELL CAPACITY Only fill out #applicable) = (34.8 feet x ONLOWE + (TOTAL WELL DEPT - STATIC DEPTH TOWATER): X TUBING CELLOWERT VOLUME + (TUBING CAPACITY X TUBING CELLOWERT TOTAL VOLUME + (TUBING CAPACITY X TUBING CELLOWERT TUBING CELLOWERT TOTAL VOLUME + (TUBING CAPACITY X TUBING CELLOWERT TUBING CELLOWERT TOTAL VOLUME + (TUBING CAPACITY X TUBING CELLOWERT TUBING COLSON <th colsp<="" td=""></th>	
WELL VOLUME PURGE: I WELL VOLUME TOTAL WELL DEPTH - STATE DEPTH TO WATER; X WELL ACAPACITY only fillout if applicable) = 34.8 feet - 13.05 feet - 0.05 gallonsfoot = 14.13 gallons colument YouLume PURGE: Touline PURGE: Touline PURGE: Foet - 13.05 feet - 13.05 feet - 13.05 feet - 13.05 gallonsfoot = 14.13 gallons colument YouLume PURGE: FOMA PURPOR TUBING PURGING Fund PURGE Fort - 13.05 TotAL VOLUME PURGING purget - 13.05 feet - 13.05 feet - 13.05 TotAL VOLUME gallons - 15.00 PURGING purget - 13.05 feet - 13.05	
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + TUBING CAPACITY X TUBING LENGTH) + FLUOK CELL VOLUME gallons = gallons = (gallons + (g	
NITIAL PUMP OR TUBING DEPTH IN WELL (feet): FINAL PUMP OR TUBING DEPTH IN WELL (feet): FINAL PUMP OR TUBING DEPTH IN WELL (feet): PURGING INITIATED AT: PURGING (H 3 7 PURGING INITIATED AT: PURGING INTIATED AT: PURGING INTIATED AT: PURGING INTIATED AT: PURGING INTIATED AT: PURGING INTIATED AT: PURGING INTIATED AT: PURGING INTIATED AT: PURGING INTIATED AT: PURGING INTIATED AT: PURGING INTIATED AT: <	
TIME VOLUME PURGED CUMUL (Walking) CUMUL PURGED CUMUL RATE DURGE (gallons) PURGE (gallons) PURCE P	
1437 - 1.0 13.05 33.4 20.72 4.0 0.33 6.49 -105.7 - Suffur- 1452 15 1.0 1' 23.3 1982 - 24/-094 6.49 -105.4 5.74 1454 19 1.0 1' 23.3 1982 - 24/-094 6.49 -105.4 5.74 1456 4 19 1.0 1' 23.3 1988 0/0 6.49 -106.4 5.74 1500 4 23 1.0 1' 23.3 1995 0/0 6.49 -98.3 7.46 10 1500 4 23 1.0 1' 23.3 1995 0/0 6.49 -98.3 7.46 10 1500 4 23 1.0 1/2 23.3 1995 0/0 6.49 -98.3 7.46 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	
1452 15 15 1.0 1' 23.3 1982 -01/204 6.48 -1054 5.74 1 1456 4 19 1.0 1'' 23.3 1988 0/0 6.48 -1054 5.744 1 1500 4 23 1.0 1'' 23.3 1988 0/0 6.48 -98:3 3.46 1 1500 4 23 1.0 1'' 23.3 1995 0/0 6.48 -98:3 3.46 1 1500 4 23 1.0 1'' 23.3 1995 0/0 6.48 -98:3 3.46 1 1500 4 23 1.0 1'' 23.3 1995 0/0 6.48 -98:3 3.46 1 1500	
1456 4 19 1.0 11 23.3 1988 0/0 6.48 -100.4 3.50 11 1500 4 23 1.0 11 23.3 1995 0/0 6.48 -100.4 3.50 11 1500 4 23 1.0 11 23.3 1995 0/0 6.48 -98.3 2.46 11 1500 4 23 1.0 11 23.3 1995 0/0 6.48 -98.3 2.46 11 1500 4 23 1.0 11 23.3 1995 0/0 6.48 -98.3 2.46 11 1500 4 144 14 144	
1500 H 23 1.0 1.0 23.3 199.5 0/0 6.48 -98.3 2.46	
NELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 6" = 1.02; 6" = 1.47; 12" = 5.88 VELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.26" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 6" = 1.47; 12" = 5.88 VIBING INSIDE DIA. CAPACITY (Gal/Ft.): 118" = 0.0006; 3146" = 0.0014; 114" = 0.0026; 6/16" = 0.0014; 318" = 0.006; 112" = 0.010; 5/8" = 0.016 SAMPLED BY (PRINT) / FFILIATION:FDEP/SIS SAMPLER(5) SIGNATURES: DD, D, M, J, N SAMPLER(5) SIGNATURES: DD, D, M, J, N SAMPLING DATA SAMPLER(5) SIGNATURES: DD, D, M, J, N SAMPLER(5) SIGNATURES: DD, D, M, J, N SAMPLE PUMP FLOW RATE (mL per minuta); Filter Size:	
vvell CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 vvell CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 vvell CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.004; 3.8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLE D SY (PRINT) / SAMPLE D SY (PRINT) / SAMPLER(S) SIGNATURES: D M, JN TUBING ENDED ATA SAMPLER(S) SIGNATURES: D M, JN SAMPLER(S) SIGNATURES: D M, JN TUBING ENDED AT: 150 5 SAMPLING DATA SAMPLER(S) SIGNATURES: D M, JN TUBING POLY FULL (feet): 15 FIELD PUMP FIELD-FILTERED: Y N FILTER SIZE:	
NELL CAPACITY (Gallons Per Foot): 0.76" = 0.02; 1" = 0.04; 1.26" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 UBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.006; 3/16" = 0.004; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.016; 1/2" = 0.016; 5/8" = 0.006; 1/2" = 0.016; 5/8" = 0.016; 1/2" = 0.016; 5/8" = 0.016; 1/2" = 0.016; 5/8" = 0.016; 1/2" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 1/2" = 0.016; 5/8" = 0.016; 1/2" = 0.016; 5/8" = 0.016;	
VELL CAPACITY (Galions Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 VELL CAPACITY (Galions Per Foot): 0.75" = 0.02; 1" = 0.006; 3/16" = 0.004; 3/8" = 0.006; 3/8" = 0.016; VELL CAPACITY (Galions Per Foot): 0.75" = 0.02; 1" = 0.026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLED BY (PRINT) / SAMPLER(S) SIGNATURES: SAMPLING DATA SAMPLED BY (PRINT) / SAMPLER(S) SIGNATURES: SAMPLING DATA DUP OR TUBING SAMPLE PUMP TUBING MATERIAL CODE: HDPE FIELD SAMPLE PUMP FLOW RATE (mL per minuta); 1 9P" TUBING VECONTAMINATION: Y Filtration Equipment Type! TUTAL VOL MATERIAL CODE: HDPE SAMPLE CONTAINERS SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLING EQUIPMENT SAMPLING EQUIPMENT SAMPLING EQUIPMENT SAMPLE ID # MATERIAL VOLUME PRESERVATION N N SAMPLING EQUIPMENT SAMPLE ID # MATERIAL VOLUME <	
VELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 VELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 VUBING INSIDE DIA. CAPACITY (Gallons Per Foot): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLED BY (PRINT) / VFFILIATION: FDEP/SIS SAMPLER(S) SIGNATURES: SAMPLED BY (PRINT) / VFFILIATION: FDEP/SIS SAMPLER(S) SIGNATURES: DYUMP OR TUBING DEPTH IN WELL (feet): SAMPLE PUMP FLOW RATE (mL per minute); 1 SP M FILED DEPTH IN WELL (feet): SAMPLE PUMP FLOW RATE (mL per minute); 1 SP M FILED SAMPLE CONTAININATION: Y SAMPLE CONTAINER SAMPLE CONTAINER SAMPLE CONTAINER SAMPLE CONTAINER SAMPLE D SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE ID # MATERIAL CODE VOLUME PRESERVATIVE CODE MATERIAL VOL MATERIAL CODE SAMPLE ID # MATERIAL CODE VOLUME PRESERVATIVE CODE TOTAL VOL (mL) FILED CONTAINERS VOLUME VOLUME PRESERVATIVE MATERIAL CODE FINAL PH	
NELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 UBING INSIDE DIA. CAPACITY (Gal/Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.016; 5/8" = 0.016 SAMPLED BY (PRINT) / NFFILLATION:FDEP/SIS SAMPLER(S) SIGNATURES: PJ, D, M, J, N TUBING INITIATED AT: 150 5 SAMPLER(S) SIGNATURES: PJ, D, M, J, N SAMPLE PUMP FLOW RATE (mL per minute); 1 3P M TUBING MATERIAL CODE: HDPE SAMPLE PUMP FLOW RATE (mL per minute); 1 3P M SAMPLE CONTAINER SPECIFICATION SAMPLE PUMP FLOW RATE (mL per minute); 1 3P M FILTER SIZE:	
NELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 UBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLED BY (PRINT) / AFFILIATION: FDEP/SIS DUMP OR TUBING DEPTH IN WELL (feet): SAMPLER(S) SIGNATURES: DD, D, M, J, N SAMPLE PUMP FLOW RATE (mL per minute); 1 SP SAMPLING INITIATED AT: 1505 SAMPLE PUMP FLOW RATE (mL per minute); 1 SP TUBING MATERIAL CODE: HDPE TIBLD SAMPLE CONTAMINATION: Y FILTERED: Y SAMPLE PUMP Filtration Equipment Type: FILTER SIZE: SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE ID # MATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL PH INTENDED ANALYSIS AND/OR METHOD SAMPLING EQUIPMENT CODE	
VELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLED BY (PRINT) / SFILIATION:FDEP/SIS SAMPLER(S) SIGNATURES: DT, DM, TN DM, TN DM, TN DIMER OF TUBING PUMP OR TUBING DEPTH IN WELL (feet): SAMPLE PUMP FLOW RATE (mL per minute); FLOW RATE (mL per minute); PUMP OR TUBING SAMPLE CONTAINER SPECIFICATION SAMPLE PUMP FIELD-FILTERED: Y (N Filtration Equipment Type: MM DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATIVE CODE OUPLICATE: Y N SAMPLE PRESERVATIVE SAMPLE PRESERVATIVE TOTAL VOL (mL) N HATERIAL CODE	
VELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 UBING INSIDE DIA. CAPACITY (GalJFt.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLED BY (PRINT) / AFFILIATION:FDEP/SIS SAMPLER(S) SIGNATURES: D SAMPLER(S) SIGNATURES: D D D D D SAMPLER DY (PRINT) / AFFILIATION:FDEP/SIS SAMPLER(S) SIGNATURES: D	
SAMPLED BY (PRINT) / SAMPLED BY (PRINT) / SAMPLED BY (PRINT) / SAMPLER(S) SIGNATURES: DT DM SAMPLE PUMP FLOW RATE (mL per minute); 1 PT TUBING MATERIAL (feet): TO FIELD-FILTERED: Y N FILTER SIZE: PUM DUPLICATE: Y N SAMPLE CONTAINER SAMPLE PRESErVATION SAMPLE ID # CODE VOLUME PRESERVATIVE TOTAL VOL ADDED IN FIELD MATERIAL CODE VOLUME PRESERVATIVE TOTAL VOL ADDED IN FIELD MATERIAL VOLUME	
SAMPLED BY (PRINT) / NFFILIATION: FDEP/SIS SAMPLER(S) SIGNATURES: DS_D_M_J_N SAMPLING INITIATED AT: 1505 SAMPLING ENDED AT: 1505 PUMP OR TUBING DEPTH IN WELL (feet): SAMPLE PUMP FLOW RATE (mL per minute): J 3P m TUBING MATERIAL CODE: BAMPLING INITIATED AT: SAMPLING ENDED AT: SAMPLING ENDED AT: VILL FILLD-FILTERED: Y N FILTER SIZE: µm DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION INTENDED ANALYSIS AND/OR METHOD SAMPLING EQUIPMENT CODE SAMPLING INTENDED ANALYSIS AND/OR METHOD SAMPLING EQUIPMENT CODE	
Definition Display and a constraint of the constraint	
PUMP OR TUBING SAMPLE PUMP PUEPTH IN WELL (feet): 5 SAMPLE OW RATE (mL per minute); 1 3P m IELD FILTERED: VECONTAMINATION: Y N FILTERED: SAMPLE CONTAINER SAMPLE PRESERVATION SAMPLE ID # CODE VOLUME PRESERVATIVE TOTAL VOL ADDED IN FIELD FINAL CODE VOLUME	
FILED FILED-FILTERED: Y N FILTER SIZE: µm DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION DUPLICATE: Y N SAMPLE ID CODE # CODE MATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL PH INTENDED ANALYSIS AND/OR METHOD SAMPLING EQUIPMENT CODE	
SAMPLE CONTAINER SAMPLE PRESERVATION SAMPLE ID # CODE MATERIAL CODE VOLUME PRESERVATIVE TOTAL VOL ADDED IN FIELD (mL)	
SAMPLE ID CODE # CODE MATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL pH INTENDED ANALYSIS AND/OR METHOD EQUIPMENT CODE	
MW-3R 1 PL 250 mL ZnAc-NaOH	
IW-3R 1 PL 1 L Ice W-CL-IC, W-SQ4-IC, W-TDS	
IW-3R 1 PL 500 mL HNO3 (W-HG)TDA-R, W-ICPMS-R, W-ICP-R	
IW-3R 1 PL 125 mL H2SO4 <u>W-NH3, W-NO2NO3</u>	
vitratral OHDOTH OHDOTF NATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other Specify)	
AMPLING/PURGING APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump	
QUIPMENT CODES: REPP = Reverse Flow Peristatic Pump; SM = Straw Method (Tubing Gravity Drain); VT = Vacuum Trap; O = Other (Specify)	

SITE	Polli	ind k	-	201	acil	ity				SIT		Pe	neaco	ala							
WELL N	o MW.	1 1	1115 0		acii	SAME		D:)/	1 6	5115400	Jia	DATE	04/16/	2019				
		-	- Transie						P			Δ.	ТΔ		DATE	•••••					
WELL	ER (inches):	2	TUE	BING	R (inch	(es): 3	8	WELL	SCRE	EEN 9.6 f	INTERVAL eet to 54.6	Î	STATIC TO WAT	DEPT	rH eet):	35.37	PL OF	RGE I	PUMP TY ER:	PE	Esp
WELL V only fill	OLUME PUR out if applica	GE: 1 able) =	I WELL V	VOLUN 54.6	1E = (TOTAL feet -	WEL	L DEPT	гн - З-	ST/ 7	ATIC DEPTH feet) X	i to	WATER	i) X 6	WELL	CAPACITY allons/foot	- 3	. 11) gall	ons	
EQUIPM (only fill	ENT VOLUM	E PUR able) =	GE: 1 E	QUIPN	MENT V	/OL. = F	VMP	P VOLU gallons	ME + s/foot		BING CAPA	CIT	Y X feet) +	Т	UBING LI	ENGTH) + FL gallons =	OW CEL	L VO	LUME		
()				3																	
INITIAL F DEPTH I WELL (fe	PUMP OR TU N Set): 37	BING	F D W	INAL P EPTH /ELL (f	UMP (IN eet):	OR TUB	ing 7			PUR	RGING	1	250	PUR END	GING ED AT:	1317		TOTA PURC (gallo	GED () () () () () () () () () () () () ()	іме 5-	21
TIME	VOLUME PURGED (gallons)	CL VO PU	JMUL. DLUME RGED	PUF RA (gr	RGE TE om)	DEPT TO WATE (feet	ER	ТЕ! (°)	MP. C)		COND. (μmhos/cm or μS/cm)	č.	DISS OXYG mg. satu	SOLV EN (d /L or	ED circle % on)	pH (standard units)	OF	RP	TURBID (NTUs	ITY 5)	ODOR
1250	12	Z	>			38.	24								0.64						
1308	3.5	3.	5	0.	19	38.0	31	26	.5	·	669	ź	3.4%	18	B	6.41	-72	2.8	25.	3	NONE
1311	0,57	4.	.07	0.	19	38.	71	26	, 4	(671	4	1.0%	1	2,32	6.38	-79	.4	13.	7	NONE
1314	0.57	4.	64	0,1	9	37.	15	26.	.4	6	72	4	5.7%	0/1	0.51	6.39	-82	.2	7.9	5	NONE
1317	0.57	5	121	0.	19	38.	42	26.	.4	4	.79	5	5.7%	10	.45	6.41	- 84	1.0	10,-	7	NONE
							_					-									
							_			_		-									
							_			-		-									
										_		-									
										_		-									
							-		14	_		_									
WELL CA	APACITY (Ga	llons F CAPA	Per Foot CITY (Ga): 0.7{ d./Ft.):	5" = 0.0 1/8" :	02; 1 = 0.0006	" = 0. 5;	.04; 3/16" =	1.25"	' = 0.0 14;	06; 2" = 0 1/4" = 0.00).16)26;	; 3" = 5/16'	0.37;	4" = 0 004; 3	0.65; 5" = " 8/8" = 0.006;	1.02; 1/2"	6" = 1 = 0.01	.47; 1 0; 5/8	2" = 3 " = 0	5.88 .016
						,		1	SA	MF	PLING D	A	TA								
SAMPLE AFFILIA1	D BY (PRINT ION:FDEP/S) / IS		SAM	PLER(SIGN		RES: 2		-		S	SAMPLIN NITIATEI	G D AT:	12	.19		PLING ED AT:	14	2	,
	R TUBING	. 3	7'	SAM FLO) er m	inute):				T		LCO	DE: HD	PE					
FIELD		<u>v</u>	•	FIEL	-FILT	ERED:	Y		I	FILT	ER SIZE: _		_ μm		DUPLIC	ATE: Y	0	N			
DECONT	SAMPLE	CONT	AINER	Filla		quipine	ntiy	SAM	IPLE P	PRE	SERVATION	1		-							
SAMPLE I CODE	D SPECII				VOL	UME	PRE			TOTAL VOL							IS AND/OR METHOD			SAMPLING EQUIPMENT CODE	
MW-4	1		PL	_	250	mL	Zr	nAc-Na	aOH		(mL)			-		OV-SUL	.FD-W			L.	ESP
MW-4	1		PL		1	L		Ice							W-0	CL-IC, W-SC	04-IC, W-TDS				1
MW-4	1		PL		500	mL		HNO	3						W-HG-1	DA-R, W-IC	PMS-F	R, W-I	CP-R		
MW-4	1		PL	-	125	mL		H2SO	94							W-NH3, W	NO2N	03		•	ł
REMARK	S:																			2.04	
X	sample	+	me:	/	21	9															
MATERIA (Specify)	L CODES:	4	AG = Am	ber Gl	ass;	CG = C	lear	Glass;	PE	E = P	olyethylene); 	PP = P	olypr	opylene;	S = Silico	ne; T	= Tefl	on; O	= Oth	ner
SAMPLIN	G/PURGING	AP	P = After PP = Rev	r Peris /erse F	taltic F	Pump; eristalti	E c Pur	3 = Bail np;	ler; SM	E I = St	BP = Bladder raw Method	r Pu (Tu	ımp; ıbing Gra	ESF avity	P = Electr Drain);	ric Submersi VT = Vac	ole Pum uum Tra	ıp; ap;	PP = P 0 = 0	erista ther (ltic Pump Specify)
NOTES:	1.	The	above o	to not	cons	titute a	all of	the in	form	natio	n required	by	Chapte	er 62	-160, F.	A.C.	erenderede - saliti				

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

A. S. A. M.

SITE								S	ITE								
NAME:	Rolli	ing F	Hills C	&D Fa	acility	у		L	OCATION: F	ensac	ola	T					
WELL NO	o: MW-	5R				SAMPLE	$^{ID:} MV$	N	-SR			DATE:	04 / 16/	2019			
							F	PU	RGING DA	ATA							
DIAMETE	ER (inches):	2	DIA	BING METER ((inches	318	WELL SCI DEPTH: 3	REE 89.6	N INTERVAL 6 feet to 54.6	STATIC TO WAT	DEP	TH feet): Z	3.32	PURGE OR BAIL	PUMP TY .ER:	/PE	ESP
WELL VO	OLUME PUR	GE: 1	WELL		= (TC	DTAL WEI	L DEPTH	- s	TATIC DEPTH	O WATE	R))	WELL	CAPACITY			lone	
	outirappica	(9101		04.0	1	eet -	23.37	2	Teet) A	0.1	•	ye		5.00	y gan	0115	
(only fill	out if applica	able) =	GE: 1E	gallon	is + ()L. = PUM	gallons/foc	+ (1 ot X	UBING CAPACI	feet) +		UBING LI	gallons =	gallons	LOME		
INITIAL P		BING	F	INAL PU EPTH IN	MP OR			P		250	PU		1400	TOT	AL VOLI GED	JME	4.5
WELL (fe	et): 7>		W W	ELL (fee	et):						EN		1766	(galle	ons):	_/	9.2
TIME	VOLUME PURGED (gallons)	VO PU (ga	RGED	PURC RAT (gpn	SE E 1)	TO WATER (feet)	ТЕМР. (°С)		COND. (μmhos/cm or μS/cm)	OXY0 mg sat	GEN (g/L of turati	circle	pH (standard units)	ORP	TURBIC (NTU)ITY s)	ODOR
1350	D	1	0	0.4	0 2	23.68											
1416	15.4	15	5.4	0.0	00	3.71	25.3	_	1750	1.7%	10	.14	7.26	-108.4	18.	3	NONE
1419	1.8	1-	7.4	0.4	- 2	3.71	25.3		1752	1.7%	0/	0.13	7.25	-105.8	14.	8	MANE
1422	1.8	19	1,2	0.1	e 2	3.70	25.4		1756	1.6%	0/	0.13	7.24	-109.0	14.	6	NONE
								_									
								-									
								_									
									· · · · · · · · · · · · · · · · · · ·								
WELL CA	PACITY (Ga	llons F	Per Foot): 0.75"	= 0.02	; 1" = (0.04; 1.25	;" =	0.06; 2" = 0.1	6; 3" =	= 0.37	; 4" = 0).65; 5" = 1	.02; 6" = 1	.47; 1	2" =	5.88
TUBING	INSIDE DIA. C	CAPAG	GILL (Ga	(I <i>JF</i> t.):	1/8 = (0.0006;	, S	AN			5 = 0	.004; 3	<i>i</i> /o = 0.000;	1/2 - 0.01	0; 5/0	<u> </u>	.016
SAMPLE	D BY (PRINT) ION:FDEP/SI) / IS		SAMPI	LER(S)	SIGNATI	JRES:			SAMPLII	NG D AT	: 14	24	SAMPLING ENDED AT	. ,	14	26
		. 7	51	SAMP		in nor	ninute):						PF				
FIELD				FIELD	FILTER	RED: Y	R	FIL	LTER SIZE:	µm	12 01	DUPLIC	ATE: Y	N			
DECONT	SAMPLE	CONT	AINER	Filtrati		ipment i	SAMPLE	PR	RESERVATION		_						
		FICATI				DB		/E	TOTAL VOL	EINA		INTEND	ED ANALYSIS	AND/OR ME	THOD	SA EQ	MPLING UIPMENT
CODE		NERS	COD)E	VOLUN	ME IN	USED		ADDED IN FIEL (mL)	D pH							CODE
MW-5R	1		PL	-	250 m	nL Z	InAc-NaOH	ł					OV-SUL	FD-W		Į.	is A
MW-5R	1		PL		1 L		Ice					W-0	CL-IC, W-SC	94-IC, W-TD	s		
MW-5R	1		PL	•	500 m	۱L	HNO3					W-HG-1	DA-R, W-IC	PMS-R, W-I	CP-R		Ļ
MW-5R	1		PL	· -	125 m	۱L	H2SO4						W-NH3, W-	NO2NO3			v
REMARKS	3:																
	* Sa	mph	't him	le:/	42	4						<u>.</u>					
MATERIAI (Specify)	L CODES:	, F	AG = Am	ber Glas	is; C	G = Clear	Glass; I	PE =	= Polyethylene;	PP = F	Polyp	ropylene;	S = Silicor	ie; T = Tefl	on; O	= Oth	ner
	G/PURGING	AP	P = After PP = Rev	r Perista /erse Flo	ltic Pu w Peri	mp; istaltic Pu	B = Bailer; mp; SI	M =	BP = Bladder F Straw Method (1	Pump; Fubing Gi	ES	P = Electr Drain);	ic Submersit VT = Vac	le Pump; uum Trap;	PP = P 0 = 0	erista ther (ltic Pump Specify)
NOTES:	1.	The a	above c	lo not c	onstit	tute all o	f the infor	mat	tion required b	y Chapt	ter 6	2-160, F.	A.C.				

2. <u>Stabilization Criteria For Range of Variation of Last Three Consecutive Readings (see FS 2212, section 3)</u>

SITE									SITE	VII Lait								
NAME:	Roll	ing I	lills C	C&D	Facil	ity		L	LOCATION:	Pensac	ola	L						
WELL N	o: 1		mω	-6		SAMP	EID:	m	w-6			DATE:	04 / 16 /	2019				
			-		22	. 4 to	37.6	Pι	JRGING D	ATA								
WELL	ED (inchas)	2			R (inch	es).	WELL SC	REI	EN INTERVAL			PTH (feet):	12 05	PU	RGE	PUMP TY	YPE	ESA
WELL V	OLUME PUR	GE: 1	WELL	VOLU	ME = (TOTAL W	ELL DEPTH		STATIC DEPTH	TOWATE	R)	X WELL	CAPACITY		BAIL			
only fill	out if applica	able) =	(27	5	feet –	12.8	5	- feet) X	0.1	6	ga	allons/foot	= 4.	00	> gal	lons	
EQUIPM (only fill	ENT VOLUM out if applica	E PUR able) =	GE: 1 E	EQUIPI	MENT ons + (/OL. = Pl	JMP VOLUME gallons/fo	+ (ot X	TUBING CAPAC	TY X feet) +		TUBING LE	ENGTH) + FL gallons =	OW CEL ga	L VOL Ilons	UME		
		DINC						-							TOTA		IME	
DEPTH				EPTH	IN			P			PU		1524		PURG	GED	.7	2
WELL (fe	eet): /7			VELL (feet):		Y				SOL	VED AT.	1231		(gallo	ns):	20	
TIME	VOLUME PURGED (gallons)	ME VOLUME PURGE ED PURGED RATE ns) (gallons) (gpm)		RGE ATE pm)	TO TEMP. WATER (°C)			COND. (μmhos/cm or μS/cm)	OXYC mg sat	DISSOLVED OXYGEN (circle mg/L fr %		pH (standard units)	OR	Р	TURBIDITY (NTUs)		ODOR	
1522	\mathcal{O}		0			13.2	5											
1528	4		1	0.	7	13.2	525.0	0	784	5.1%	>/	0.41	7.57	-62	.8	0.3	9	NONE
1531	2.1	6	.1	0.	7	13.7	5 25. 3	5	795	3.7%	1	0.30	7.50	-68	3.4	0.3	4	NONE
1534	2.1	8	.2	0	.7	13.25	- 25.5	-	790	3.1%	1	0.25	7.47	-73	.5	0.3	5	NONE
	-			1							1							
				(
															_			
															-			
WELL CA	PACITY (Gal	lons F	er Foot): 0.7	5" = 0.0	02; 1"	= 0.04; 1.2	5" =	0.06; 2" = 0.1	l6; 3" =	0.3	7; 4" = 0).65; 5" = 1	.02; (6" = 1.	.47; 1	2" =	5.88
TUBING I	NSIDE DIA. C	CAPAC	CITY (Ga	al./Ft.):	1/8" :	= 0.0006;	3/16" = 0.0	014	; 1/4" = 0.002	6; 5/16	5" = (0.004; 3	3/8" = 0.006;	1/2" =	0.010); 5/8	3" = 0	.016
SAMPLE	D BY (PRINT)	1		SAM	PLER(S) SIGNA		AI										
AFFILIAT	ION:FDEP/SI	S				4	Mr.			INITIATE	IG D A1	1: 15	35	ENDE	D AT:	1.	53	6
PUMP OR	TUBING	,	V'	SAM	PLE P	UNA				TUBING								¥
FIELD	WELL (feet)	: /	7	FIEL	D-FILT	ERED:		FI	LTER SIZE:	<u>μm</u>	AL C	DUDUO			2			
DECONT	AMINATION:	Y		Filtra	ation E	quipment	Турен				_	DUPLICA	AIE: Y	C				
	SPECIF	ICATI	ON				SAMPL	E PF	RESERVATION						_		S	MPLING
SAMPLE II CODE	D # CONTAIN	IERS	MATE	RIAL De	VOL	UME	USED	VE	ADDED IN FIEL (mL)	D FINA pH	L	INTENDE	ED ANALYSIS	S AND/O	RME	THOD	EG	CODE
MW-4	1		PL	-	250	mL	ZnAc-NaOł	ł					OV-SUL	FD-W			F	SP
MW-4	1		PL		1	L	Ice					W-0	CL-IC, W-SC	04-IC, W	V-TDS	6)
MW-4	1		PL	-	500	mL	HNO3					W-HG-T	DA-R, W-IC	PMS-R	, W-I0	CP-R		
MW-4	1		PL		125	mL	H2SO4						W-NH3, W-	NO2NC)3		`	₹
REMARKS	5:																	
MATERIAI (Specify)	L CODES:	A	.G = Am	iber Gl	ass;	CG = Cle	ear Glass;	PE	= Polyethylene;	PP = P	olyp	propylene;	S = Silicor	ne; T =	= Teflo	on; O	= Ot	ner
SAMPLING	G/PURGING	API RFF	P = Afte P = Rev	r Peris verse F	taltic P low Pe	ump; eristaltic	B = Bailer; Pump; S	M =	BP = Bladder I Straw Method (Pump; Fubing Gr	ES avity	SP = Electr y Drain);	ic Submersit VT = Vac	ole Pump uum Tra	o; p;	PP = P 0 = 0	erista ther	altic Pump (Specify)
IOTES:	1.	The a	bove o	do not	t cons	titute al	of the infor	ma	tion required I	oy Chapt	er 6	2-160, F.	A.C.					

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> **pH:** \pm 0.2 units **Temperature:** \pm 0.2 °C **Specific Conductance:** \pm 5% **Dissolved Oxygen:** all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) **Turbidity:** all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

							DEP-SOP-00	01/01						
\$19 ¹⁰						FS_2200	Groundwat	er Sam	pling					
					0	Form	FD 9000-24 (modifie	ed)					
SITE					GF	CUNDV	VATER SA	MPLIN	IG LOO	j				
NAME:	Rolli	ing Hill	ls C&D) Facil	ity	84.811 X	LOCATION:	Pensac	ola					
WELL NO	o: MW -	8- MI	N-7	R	SAMPLE	ID: MW-	ER AULO	72	DAT	E: 04 / 16	/ 2019			
			· · ·			P	PURGING D	ΔΤΔ		eser directoria chieda				
WELL			TUBING			WELL SCR	EEN INTERVAL	STATIC	DEPTH	12 1111	PURGE	PUMP T	YPE	
DIAMETE	ER (inches):	2	DIAMET	ER (inch	es):	DEPTH: 5	6.0 feet to 61.0	TO WAT	ER (feet):	11.44	OR BAI	LER: Y	evis	taltic
only fill o	OLUME PURC	GE: 1 WI (ble) = (ELL VOLI -61	UME = (0-	TOTAL WE feet –	LL DEPTH $-$	STATIC DEPTH	TO WATER 0.1	r) x we 6	L CAPACITY	= 3,3	ga	llons	Y.D
FOLIDME			32		(OL - DUI	1.47	(TUDING CADAG				4.1		-	8.0
(only fill o	out if applica	able) =	ga	llons + (/OL. = PUN	gallons/foot	t X	feet) +	TUBING	gallons =	gallons	LUME		
INITIAL P	UMP OR TU	BING	FINAL	PUMP (OR TUBING	1	PURGING		PURGING		тот	AL VOL	UME	
WELL (fe	et): 12	-13	WELL	H IN (feet):			INITIATED AT:	133	ENDED AT	: Hr	PUR (gall	GED ons):		
TIME		CUMU VOLUI PURGI	IL. ME P ED F		DEPTH TO WATER	TEMP. (°C)	COND. (μmhos/cm or μS/cm)	DIS: OXYG mg	SOLVED EN (circle /L or %	pH (standard units)	ORP	TURBI (NTU	DITY Is)	ODOR
1, 73	(ganons)	(gallor		c		151	71127	sati	(77	407	18-70	10	0	
1150	90	80	0		11.74	18.6	1712	0.40	1.151	2 5.02	127.1	10:	7	
1150	25	10.0	- 0	5	17 45	100	27110	oide	1120	EAH	11-16	6.0	+	
12:00	25	12 0			12.17	18.8	2710	070	2001	5.07	110,5	2.0	1	
12:00	8.5	13.0		.5	12.75	18,8	275,0	0.33/	3.5 %	5.09	103.1	4,2	7	
(4:05	dis	15.5	0	.5	18.10	18.8	244.0	0.281	3.0 10	5,01	97,9	d.1	Ŧ	
							•							
WELL CAI	PACITY (Gall NSIDE DIA, C	Ions Per F	Foot): 0. ′ (Gal./Ft.)	75" = 0.0): 1/8" =)2; 1" = = 0.0006;	0.04; 1.25" 3/16" = 0.001	= 0.06; 2" = 0.' 4: 1/4" = 0.002	16; 3" = 6: 5/16'	0.37; 4"	= 0.65; 5" = 3/8" = 0.006:	1.02; 6" = 1	.47; 1 0: 5/	2" = 5 B" = 0.0	.88
						SA	MPLING D	ATA				<u>,</u>		
SAMPLED AFFILIATI	OBY (PRINT) ON:FDEP/SI	/ S	SAI	MPLER (S) SIGNATI	JRES:		SAMPLIN		10	SAMPLING ENDED AT	12	11	
PUMP OR	TUBING	13	SAI	MPLE PL	IMP		5 abilt	TUBING						
FIELD	WELL (feet):	10	FIE	LD-FILT	ERED: Y	N	FILTER SIZE:	μm						
DECONTA			I Filt	ration Ec	uipment T	ype:			-	CATE: 1				
	SPECIF	ICATION				SAMPLE						THOP	SA	MPLING
SAMPLE ID CODE	CONTAIN	ERS	ATERIAL CODE	VOLU	JME PR	USED	ADDED IN FIEL (mL)	.D FINAL pH	-	DED ANAL 15	S AND/OR ME	THOD	EQUIPMENT CODE	
MW-8-	1		PL	250	mL Z	nAc-NaOH				OV-SU	FD-W			
₩₩-8	1 1		PL	1		Ice			V	-CL-IC, W-SC	94-IC, W-TD	S-		
MW-8 1	i 1		PL	500	mL	HNO3			W-HO	TDA-R, W-IC	PMS-R, W-I	CP-R		
MW-8	1		PL	125	mL	H2SO4				W -NH3, W	NO2NO3			
REMARKS	:													
		uf	tra-	trac	e me	renor	y 04	10 -	13					
MATERIAL (Specify)	CODES:	AG =	Amber G	ilass;	CG = Clear	Glass; Pl	E = Polyethylene;	PP = Po	olypropylen	e; S = Silico	ne; T = Tefle	on; O	= Oth	er
SAMPLING EQUIPMEN	VPURGING	APP = / RFPP =	After Peri Reverse	staltic P Flow Pe	ump; ristaltic Pu	B = Bailer; mp; SM	BP = Bladder F = Straw Method (Pump; Tubing Gra	ESP = Ele vity Drain);	ctric Submersil VT = Vac	ble Pump; uum Trap;	PP = P 0 = 0	eristal ther (S	tic Pump Specify)
OTES:	1.	The abo	ve do no	ot const	titute all o	f the inform	ation required b	by Chapte	r 62-160, I	A.C.			•	

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> pH: \pm 0.2 units **Temperature**: \pm 0.2 °C **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) **Turbidity**: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

	SITE NAME:	Rollir	ng Hills (C&D Facil	lity		SITE LOCATION:	Pensacola	a						
	WELL NO	o: MW-8		34 	SAMPLE		-8 041	0-79	DATE:	04 / 16 /	2019				
						P	URGING DA	ATA							
	WELL DIAMETE	R (inches): 2	TU 2 DIA	BING AMETER (incl	ies):	WELL SCR DEPTH: 56	EEN INTERVAL 6.0 feet to 61.0	STATIC DE TO WATER	PTH (feet):	(feet): 8,15 OR BAILER:					
	WELL VC only fill o	OLUME PURG out if applicab	E: 1WELL de)= (VOLUME = (61.0	feet –	18.15	STATIC DEPTH feet) X	TO WATER) 0.16	X WELL ga	CAPACITY allons/foot =	6.85	gallon	° 7.0		
	EQUIPME (only fill o	ENT VOLUME out if applicab	PURGE: 1 le) =	EQUIPMENT gallons + (VOL. = PUM	IP VOLUME + gallons/foot	(TUBING CAPACI X	TY X feet) +	TUBING LE	ENGTH) + FL(gallons =	OW CELL VO gallons	LUME			
	INITIAL P DEPTH IN WELL (fe	UMP OR TUB	ING F	FINAL PUMP (DEPTH IN WELL (feet):			PURGING	233 EI	JRGING NDED AT:		TOT/ PUR (gallo	AL VOLUME GED ons):			
	TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	TEMP. (°C)	COND. (µmhos/cm or µS/cm)	DISSO OXYGEN mg/L satura	LVED (circle or % tion)	pH (standard units)	ORP	TURBIDITY (NTUs)	ODOR		
*1	1233	-0		025	18 15	20.0	416.6	22.2/1	98	10.04	92.4	19.4	-		
sia	1249	10	8.D	0,75	18.3	20.8	397.0	9.4/ N	84	594	909	10.5	~		
TS	1253	2004.0	18.0	025	**	214	261.1	5210.	410	5.43	130.9	8 39	-		
-ck	1257	2.0	10. D	025	- IV	21.5	202.0	3.0/0	26	5.24	147.)	4.16	~		
39	1321	2.0	12.0	0.25		21.6	168.3	13/0	11	500	160.4	2.98	<u> </u>		
ĺ	1329	2.0	14.0	0.25	11	21.7	168.3	0.610	05 male	5.95	176.2	2.81			
[1337	2.0	16.0	0.25	IX.	21.7	165.9	0.410.	03	4.89	1842	2.24			
								, -							
ļ															
L		NSIDE DIA. CA	PACITY (G	t): 0.75" = 0.0 al./Ft.): 1/8" :	02; 1" = 0 = 0.0006;	0.04; 1.25" 3/16" = 0.001	= 0.06; 2" = 0.1 4; 1/4" = 0.0020 MPLING D4	6; 3" = 0.3 6; 5/16" = ΔΤΔ	7; 4" = 0 0.004; 3	0.65; 5" = 1 /8" = 0.006;	.02; 6" = 1 1/2" = 0.01	.47; 12": 0; 5/8"=	= 5.88 0.016		
Г	SAMPLED	BY (PRINT) /		SAMPLER(S) SIGNATI	JRES:									
	AFFILIATI	ON:FDEP/SIS		PandzM	eyers a	Pennie	enser	INITIATED A	134D		ENDED AT:		HD		
	PUMP OR DEPTH IN	TUBING WELL (feet):		SAMPLE P	UMİP E(mLpern	ninute):		TUBING MATERIAL C	ODE: HD	PE					
Γ	FIELD		Y A	FIELD-FILT	ERED: Y	VDe:	FILTER SIZE:	μm ¯	DUPLICA	ATE: Y	(N)				
t	DECONTRA	SAMPLE CO	ONTAINER	- Indudon E	quipitent	SAMPLE I	PRESERVATION								
	SAMPLE ID CODE	CONTAINE	RS COL			ESERVATIVE	TOTAL VOL ADDED IN FIEL	D FINAL pH		ED ANALYSIS	AND/OR ME	THOD E	QUIPMENT		
F	MW-8	1	Pl	L 250	mL Z	nAc-NaOH	(iii2)			-OV-SUL	FD-W				
				L 1	L	Ice			W-C	CL-IC, W-SO	4-IC, W-TDS	5			
÷	MW-8	1 PL				111100			W-HO-T	DA-R. W-IC	PMS-R, W-I	CP-R			
-	MW-8 MW-8	1	PL	_ 500	mL	HNO3			Nº 19		and the second second second second	Construction of the second			
	MW-8 MW-8 MW-8	1	PL	L 500 L 125	mL mL	HNO3 H2SO4				W-NH3, W-	NO2NO3				
	MW-8 MW-8 MW-8 REMARKS	1 1 1 :		- 500 - 125	mL mL	HN03 H2SO4		Merch		W-NH3, W-	NO2NO3				
	MW-8 MW-8 MW-8 REMARKS MATERIAL (Specify)	1 1 1 : :	Pl Pl OY I (AG = Am	- 500 - 125 - 500 - 125 - 500 - 7 - 500 - 7	mL mL G = Clear	HINO3 H2SO4	= Polyethylene;	Merch PP = Poly	propylene;	W -NH3, W - S = Silicon	NO2NO3 e; T = Teflo	on; O = 0	ther		
	MW-8 MW-8 MW-8 REMARKS MATERIAL (Specify) SAMPLING EQUIPMEN	I 1 1 : : : : : : : : : : : : : : : : :	PL PL OUIC AG = Am APP = Afte RFPP = Ret	- 500 - 125 D - T nber Glass; r Peristaltic P verse Flow Pe	mL mL CG = Clear Pump; pristaltic Pu	HNO3 H2SO4 Glass; PE B = Bailer; mp; SM	BP = Bladder F = Straw Method (1	PP = Poly Pump; E Fubing Gravit	propylene; SP = Electri y Drain);	S = Silicon ic Submersib VT = Vacu	NO2NO3 e; T = Teflo le Pump; jum Trap:	on; O = O PP = Peris O = Other	ther taltic Pump r (Specify)		