Florida 2017

Ecology of coral disease Identifying coral disease

GS Aeby

Ecology of coral disease

Some diseases are seasonal

Some are not

Black band disease abundance increases in summer, Palm Is 2006-07

Sato et al. 2009

Acute Montipora white syndrome outbreaks occur in winter in Hawaii

No seasonality in chronic *Montipora* white syndrome

Aeby et al. 2010

Temporal changes in MWS in individually marked colonies (n=57)

Seasonal differences in MWS within Kaneohe Bay

Some diseases are host specific Some are not

Porites trematodiasis

Blackband disease

Porites

Goniopora, Pachyseris, Acropora, Platygyra, Pocillopora, etc.

Virulence varies among coral diseases

Coral Disease

Lesion Type

Virulence

Tissue loss

- Chronic
- Sub-acute
- Acute

• Discoloration

Direct colony mortality

Reduce coral growth Decrease reproduction

acute tissue loss High virulence

Acute Montipora white syndrome

Sub-acute tissue loss Medium virulence

Sub-acute white syndrome

Black band disease

Low virulence

Disease susceptibility varies among coral genera

Study	Region	coral genera
Willis et al. 2004	GBR	Pocilloporidae, Acroporidae, Poritidae
Haapkyla et al. 2010	GBR	Acropora, Montipora
Dalton & Smith 2006	eastern Australia	Acropora, Turbinaria, Pocillopora
Aeby et al. 2008	American Samoa	Acropora, Pavona, Porites
Myers & Raymundo 2009	Micronesia	Porites, Acropora, Pocillopora
Aeby et al. 2011	MHI & NWHI	Porites, Acropora, Montipora
	US Pacific Remote Island Areas	
	(Johnston Atoll, Wake, Baker,	
	Howland, Jarvis, Palmyra,	
Vargas-Angel 2009	Kingman)	Montipora, Porites, Acropora
Raymundo et al. 2005	Philippines	Porites
Haapkyla et al. 2009	S.E. Sulawesi, Indonesia	Acropora, Porites, Astreopora/Anacropora
	Indian Ocean Cocos Islands,	
Hobbs & Frisch 2010	Christmas Island	Acropora
Williams et al. 2011	Palmyra	Astreopora, Acropora, Montipora

Differential disease susceptibility among coral genera

Study	Region	coral genera
Willis et al. 2004	GBR	Pocilloporidae, Acroporidae, Poritidae
Haapkyla et al. 2010	GBR	Acropora, Montipora
Dalton & Smith 2006	eastern Australia	Acropora, Turbinaria, Pocillopora
Aeby et al. 2008	American Samoa	Acropora, Pavona, Porites
Myers & Raymundo 2009	Micronesia	Porites, Acropora, Pocillopora
Aeby et al. 2011	MHI & NWHI	Porites, Acropora, Montipora
	US Pacific Remote Island Areas	
	(Johnston Atoll, Wake, Baker,	
	Howland, Jarvis, Palmyra,	
Vargas-Angel 2009	Kingman)	Montipora, Porites, Acropora
Raymundo et al. 2005	Philippines	Porites
Haapkyla et al. 2009	S.E. Sulawesi, Indonesia	Acropora, Porites, Astreopora/Anacropora
	Indian Ocean Cocos Islands,	
Hobbs & Frisch 2010	Christmas Island	Acropora
Williams et al. 2011	Palmyra	Astreopora, Acropora, Montipora

Acropora, Montipora, Porites, Pocillopora, Astreopora, Turbinaria, Pavona

What is causing disease in corals?

Ecology of coral disease

Seasonality of disease occurrence

Differs among disease types

Host specificity

Host specialists and host generalists

Differential susceptibility among coral genera

 Acropora, Montipora, Porites, Pocillopora, Turbinarea, Astreopora, Pavona

Virulence of different diseases

Acute, subacute, chronic tissue loss – reduced growth or reproduction

Disease etiologies

• Bacteria, fungus, parasites, protozoa

Identification of coral disease 1) Type of lesion

Tissue loss, Color change, Abnormal growths

2) Discriminate bet/ disease & other biological factors Field investigation -> laboratory studies

3) Describe the lesion Host affected Acute vs. subacute vs. chronic Focal, multi-focal, coalescing Location on colony Lesion margin

4) Disease nomenclature Host affected Lesion type

3 types of lesions

Tissue loss

• Discoloration

• Growth anomaly

Identification of coral disease 1) Type of lesion: Tissue loss, Color change, Abnormal growths

2) Discriminate bet/ disease & other biological factors Field investigation -> laboratory studies

3) Describe the lesion

Host affected Acute vs. subacute vs. chronic Focal, multi-focal, coalescing Location on colony Lesion margin

4) Disease nomenclature Host affected Lesion type Discriminate between disease & other biological factors

Color change

disease

competition abrasion invertebrate burrows

Algal abrasion

Competition among corals

Invertebrate burrows

Color change

mucous sheathing

endolithic hypermycosis (Dark Spot)

Discriminate between disease & other biological factors

White on colony

Bare Skeleton

Bleaching

 loss of symbiotic algae within coral tissue

> Polyps are alive and present

Leaves
 transparent coral
 tissue

Tissue loss:

White on coral colony

bleaching

bare skeleton

predation

disease

Predator present? Pattern of tissue loss Rate of tissue loss

Common coral predators

Photo by D. Gochfeld

Photo by E. Mueller

the st

Sau ...

380

10

Parrotfish predation

Photo by D. Gochfeld

Damselfish predation

Photo by D. Gochfeld

Pattern of tissue loss

NOS

Disease

Evidence of progressive tissue loss?

Drupellid snail predation!

Tissue loss:

White on coral colony

bleaching

bare skeleton

predation

disease

Lab studies:

Histology, microscopy, microbial

Predator present? Pattern of tissue loss Rate of tissue loss

Growth anomalies

protruberant growth distinct margins aberrant calyx formation enlarged calices reduced # calices

Investigation of coral disease 1) Type of lesion: Tissue loss, Color change, Abnormal growths

2) Discriminate bet/ disease & other biological factors Field investigation -> laboratory studies

3) Describe the lesion

Host affected Acute vs. subacute vs. chronic Focal, multi-focal, coalescing Location on colony Lesion margin

4) Disease nomenclature Host affected Lesion type

Investigation of coral disease

3) Describe the lesion: Tissue loss disease: rate of tissue loss
Chronic (<1cm) subacute (1-5cm)

acute (>5cm)

Different ecologies

Montipora chronic tissue loss

Montipora acute tissue loss

slow tissue loss Chronic: year-round *Vibrio owensii*

fast tissue loss Seasonal: winter

Vibrio coralliilyticus Pseudoalteromonas sp.

 3) Describe the lesion:
 Focal, multi-focal, coalescing Location on colony Lesion margin

Multi-focal

Coalescing

Investigation of coral disease 3) Describe the lesion: Focal, multi-focal, coalescing Location on colony Lesion margin

Identification of coral disease 1) Type of lesion: Tissue loss, Color change, Abnormal growths

2) Discriminate bet/ disease & other biological factors Field investigation -> laboratory studies

3) Describe the lesion
 Host affected
 Acute vs. subacute vs. chronic
 Focal, multi-focal, coalescing
 Location on colony
 Lesion margin

4) Disease nomenclature Host affected Lesion type

NOAA | NOS | NCCOS

Search NCCOS

Coral Disease & Health Consortium

Solutions today for reefs tomorrow

Home About Us Coral Disease Coral Culture Library and Education Diagnostics Contact Us

Home / Diagnostics

Diagnostics

Standardized nomenclature and diagnostic criteria were developed by the Coral Disease and Health Consortium (CDHC) to assist in the identification of coral disease in the field. Through application of a series of steps, a researcher can determine a common field name for a coral lesion which can be further refined based on a morphologic diagnosis and an etiologic diagnosis. The approach involves describing the lesion in general terms based on visual appearance. The terms and accompanying photographs are provided to assist in this process.

The coral disease assessment consists of describing the lesion using standardized terms and recording this information on the coral disease assessment form. Once the coral lesion is described the researcher can make a field diagnosis using the diagnostic decision tree and the coral disease identification keys.

Diagnostics

Overview

- Lesion Terminology
- Lesion Assessment
- Field Diagnosis
- Coral Disease ID Key
- Diagnostic Decision Tree
- Related Links

Identification of coral disease White syndrome = tissue loss disease of unknown etiology 4) Disease nomenclature Host affected Platygyra acute tissue loss Lesion type

Porites growth anomalies

Diseases that can be diagnosed in the field •black band disease

Identification of coral disease Diseases that <u>cannot</u> be diagnosed in the field

• Tissue loss diseases

4) Disease nomenclature: Tissue loss diseases

White band disease - acroporids

White plague – other species

Aurantimonas coralicida (Richardson 1998, Denner et al. 2003)

White pox – A. palmata

Serratia marcescens (Patterson 2002)

Yellow band – Montastrea, Orbicella

Vibrio consortia – (Cervino et al. 2008)

A > Current Issue > vol. 99 no. 13 > Kathryn L. Patterson, 8725–8730, doi: 10.1073/pnas.092260099

Check for updates

The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata

Kathryn L. Patterson*†, James W. Porter‡, Kim B. Ritchie§¶, Shawn W. Polson^{II}, Erich Mueller**, Esther C. Peters‡‡, Deborah L. Santavy††, and Garriet W. Smith§§

Shifting white pox aetiologies affecting Acropora palmata in the Florida Keys, 1994–2014

Kathryn P. Sutherland, Brett Berry, Andrew Park, Dustin W. Kemp, Keri M. Kemp, Erin K. Lipp, James W. Porter

Published 15 February 2016. DOI: 10.1098/rstb.2015.0205

4) Disease nomenclature: Tissue loss diseases

White band disease – Acropora subacute tissue loss disease
White plague – acute tissue loss disease (multiple species)
White pox – A. palmata multi-focal subacute tissue loss disease
Yellow band – Montastrea yellow banded chronic tissue loss disease

Lesion description

Tissue loss, growth anomaly, discoloration?

Disease or biological interaction?

Acute? Subacute? Chronic?

Focal? Multi-focal? Coalescing?

Tissue loss, growth anomaly, discoloration? Disease or biological interaction? Acute? Subacute? Chronic? Focal? Multi-focal? Coalescing?

Damselfish predation

Damselfish nest

Tissue loss, growth anomaly, discoloration? Disease or biological interaction? Acute? Subacute? Chronic? Focal? Multi-focal? Coalescing?

Siderastrea diffuse non-thermal bleaching

Porites growth anomaly

Tissue loss, growth anomaly, discoloration? Disease or biological interaction? Acute? Subacute? Chronic? Focal? Multi-focal? Coalescing?

Pigmentation response

Tissue loss, growth anomaly, discoloration? Disease or biological interaction? Acute? Subacute? Chronic? Focal? Multi-focal? Coalescing?

Identification of coral disease 1) Type of lesion: Tissue loss, Color change, Abnormal growths

2) Discriminate bet/ disease & other biological factors Field investigation -> laboratory studies

3) Describe the lesion

Host affected Acute vs. subacute vs. chronic Focal, multi-focal, coalescing Location on colony Lesion margin, size & shape

4) Disease nomenclature Host affected Lesion type

Protecting the health and beauty of coral reefs

•Research
•Management
•Protection

