Florida 2017

## Ecological investigation of coral disease

Greta Smith Aeby, PhD University of Hawaii

CHE FALLOWING





Virulence

Habitat fragmentation

Stressors

Anthropogenic changes

Pathogenesis Source Infectious dose Mode of transmission

## Ecology of Montipora white syndrome

NSF

#### Windward side of Oahu in Kaneohe Bay



## Kaneohe Bay Oahu, Hawaii

Coconut Island



Spatial & temporal patterns of infection

Host

Stressors

## Environment

Anthropogenic influence



Host defense

Virulence

Mode of transmission

Source

## Levels of *Montipora* white syndrome within Kaneohe Bay in Sept. 2006



## **Kaneohe Bay**

Human population

Terrestrial run-off

Water circulation

### No seasonality in chronic Montipora white syndrome



Aeby et al. 2010



Temporal changes in MWS in individually marked colonies (n=57)





## Virulence of MWS

#### Sept 2006 57 colonies tagged

Sept 2007 53 colonies (93%) suffered partial to total mortality

Rate of tissue lost: ~3% of colony/month

Case fatality rate: 2006-2007=7% 2006-2008=28%

Aeby et al. 2010

## Transmission of MWS



#### Aeby et al. 2010





Virulence

Anthropogenic influence

Mode of transmission

Source

## Montipora capitata

clade C orange morph-clade D

red morph-clade C



#### Differential susceptibility of different color morphs of *M. capitata* to MWS





## **Coral Host Defenses**

Mucus production/sloughing Phagocytosis of foreign material Antimicrobial production Resident bacterial flora

Photo: National Coral Reef Institute

## Bacterial Contribution to Coral Disease Defense

Physical barrier to entry

Occupy metabolic niches

Antimicrobial production

## Host: Normal microbial community: red vs. orange morphs

### **Amanda Shore-Maggio**





#### Host:

NSF

#### Normal microbial community: red vs. orange morphs



Host:

#### Normal microbial community: red vs. orange morphs



Complete linkage clustering dendogram representing percent similarity between samples

Shore-Maggio et al. 2015

NSF





## **Isolation of Putative Pathogens**

Blake Ushijima

NSF



## **Isolation of Putative Pathogens**

NSF

Blake Ushijima





## Infection trials

• Further testing on 3 isolates

- OCN001
- OCN002
- OCN003





Control

Bact. control

**Potential Path.** 

NSF

## Infection trials

1 Run





NSF

Control

**Bact. control** 

**Potential Path.** 

3 isolates showed signs of tissue loss

OCN001 - 23% OCN002 - 54% OCN003 - 31%

## Infection trials chronic tissue loss (OCN002)



At Time of Inoculation

26 Days Post Inoculation (Disease Progression)

## Infection trials acute tissue loss (OCN001, OCN003)





## Pathogen: Differential infectivity of red vs. orange morphs

Phylogenetic tree showing relatedness of the three potential pathogens based on similarity of their *rrsH* gene sequence



NSF

Koch's postulates of disease causation OCN002-*Vibrio* sp.

•The microorganism must be isolated from a diseased organism and grown in pure culture.

•The cultured microorganism should cause disease when introduced into a healthy organism.

•The microorganism must be reisolated from the inoculated, diseased experimental host and identified as being identical to the original specific causative agent.

Ushijima et al. 2012

NSH



#### Ushijima et al. 2012

0.05

## Coral bacterial pathogens in Hawaii

| Bacterial strain            | infectivity | time to infection |
|-----------------------------|-------------|-------------------|
| OCN001 (Vibrio sp.)         | 23%         | 21-28 days        |
| OCN002 (V. owensii)         | 54%         | 21-28 days        |
| OCN003 (P. piratica)        | 31%         | 21-28 days        |
| OCN008 (V. coralliilyticus) | 85%         | 12hrs-4 days      |

(Koch's postulates fulfilled for V. owensii, V. coralliilyticus & P. piratica)

(Ushijima et al. 2012, 2014: Beurmann et al. 2017)

## Known Bacterial Pathogens of Coral

- 1. Vibrio owensii Chronic Montipora white syndrome
- 2. *Vibrio coralliilyticus* OCN008 acute *Montipora* white syndrome
- 3. *Pseudoalteromonas piratica* acute Montipora white syndrome
- 4. Vibrio corallilyticus OCN014 –acute Acropora white syndrome
- 5. Thalassamonas loyana White Plague Disease
- 6. Aurantimonas coralicida White Plague Disease
- 7. Serratia marcescens Acroporid serratiosis (White Pox)
- 8. Vibrio shiloi Bacterial bleaching
- 9. Vibrio coralliilyticus BAA450- Tissue loss/bleaching
- 10. Vibrio coralliilyticus P1-P7 acute tissue loss
- 11. Bacterial consortium: *Phormidium corallyticum/Ocillatoria* spp., *Trichodesmium* spp., *Desulfovibrio* spp., *Beggiatoa* spp. - Black Band Disease
- 12. Bacterial consortium: Vibrio rotiferianus, V. harveyi, V. alginolyticus, V.

proteolyticus - Yellow Band Disease





## Where in Kaneohe Bay do these pathogens occur?





Amanda Shore-Maggio

## Sources screened for coral pathogens

#### Seawater



#### Coral host





# Critters

#### Streams







## Coral pathogens detected in.....









#### Pseudoalteromonas sp. OCN003

#### Vibrio coralliilyticus strain OCN008









#### Winter months-cold, rainy

20

33

temperature stress salinity stress run-off

#### Southern end of Kaneohe Bay

CB

60

36

reduced circulation urban development freshwater input

#### 2010 Acute MWS Outbreak



7

72

159

17

1



Will a salinity stress on coral affect...?

A) time to infection

B) Dosage of pathogen needed to cause infection

## **Testing salinity stress on infection with MWS pathogens**

| Pathogen                      | Dosage          | Time    |  |
|-------------------------------|-----------------|---------|--|
| Vibrio coralliilyticus OCN008 | 10 <sup>8</sup> | 5 days  |  |
| Vibrio owensii OCN002         | 10 <sup>8</sup> | 28 days |  |

| C1                                | C1                        | C1                        | C1                        |  |  |
|-----------------------------------|---------------------------|---------------------------|---------------------------|--|--|
| no bacteria                       | OCN008 (10 <sup>4</sup> ) | OCN008 (10 <sup>6</sup> ) | OCN008 (10 <sup>8</sup> ) |  |  |
| E1                                | E1                        | E1                        | E1                        |  |  |
| no bacteria                       | OCN008 (10 <sup>4</sup> ) | OCN008 (10 <sup>6</sup> ) | OCN008 (10 <sup>8</sup> ) |  |  |
| E = 24hr salinity stress at 20ppt |                           |                           |                           |  |  |

## Testing salinity stress on infection with Vibrio coralliilyticus OCN008

Salinity Stress did....

A) NOT change time to infection with normal dosage

B) allow infection at lower dosage



## Testing salinity stress on infection with Vibrio owensii OCN002

Salinity Stress did....

- A) change time to infection with normal dosage
- B) allow infection at a lower dose

Normally takes ~28 days!





Chronic MWS

**Disease Ecology** 

Spatial & temporal patterns of infection

Host

Host defense

Resident bacterial flora Chemical defense

Stressors

## Environment

Anthropogenic influence

Winter conditions Salinity stress lower infectious dose decrease time to infection Pathogen

Virulence

acute MWS

Source

Bacterial pathogens

**Direct transmission** 

pathogens endemic in environment



Sean Callahan Fenny Cox **Thierry Work** Deborah Gochfeld Amanda Shore-Maggio Blake Ushijima Chris Runyon Silvia Beurmann Andy Burger Frank Stanton Megan Ross Steve Coles Ashley Smith Mareike Sudek









NOAA











