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1. EXECUTIVE SUMMARY 
 
Designing intervention measures to reduce the impacts of coral disease on tropical coral 
reefs requires an understanding of the drivers of disease prevalence within coral 
populations. Oftentimes these are related to local or regional environmental stressors. If 
these drivers are tangible targets for management action, then decisions can be made to 
regulate the levels of these drivers and yield positive outcomes for the reef. This project 
combined in situ coral disease surveys, spatial data synthesis, and statistical modeling to 
identify the environmental and human drivers of Stony Coral Tissue Loss Disease 
(SCTLD) in the Kristin Jacobs Coral Reef Ecosystem Conservation Area (Coral ECA).  
 
This report describes an effort to test whether there are predictable patterns of SCTLD 
incidence within a population of largest colonies being monitored monthly and treated 
when necessary. Several predictor variables hypothesized to be linked to SCTLD incidence 
were synthesized. These included abiotic environmental drivers (e.g., depth, seawater 
temperature, seawater nutrient concentrations) and human drivers (e.g., density of septic 
tanks as a proxy for human coastal development), outflow from the Inlet Contributing 
Areas (ICAs), and distance to offshore outfall locations). We calculated colony-specific 
estimates of these predictor variables and built statistical models to test their ability to 
explain spatial and temporal patterns in SCTLD infections.  
 
The temporal model explained 56.4% of the temporal variation in the total number of 
SCTLD infections over time. SCTLD infections showed a positive correlation with 
temperature stress, inlet flow, and total rainfall. Outliers created high model error for both 
temperature stress and inlet flow towards the higher values of both predictors. It appears 
more SCTLD lesions develop over time following a pro-longed period of temperature 
stress, in particular when there has been over 150 ‘Hot Snap’ exposure hours over the 
prior 90 days. This is then exacerbated by outflow from the ICA inlets and rainfall, in 
particular when there has been more than 5000 cubic feet per second summed flow 
coming out of the ICAs in the prior 7 days, and over 0.2 – 0.3 inches of rain per day in 
the prior 90 days.  
 
The spatial model explained 38.0% of the spatial variation in the total number of SCTLD 
infections over the entire period. SCTLD infections showed a positive correlation with 
the number of septic tanks within a 5 km radius, with a noticeable increase in lesions 
occurring beyond ~100 tanks. The correlation with the distance to the Government Cut 
outfall was less clear, with the number of lesions maximized at mid-distances. This 
should be interpreted with caution, however, as the distance to Government Cut outfall 
highly correlated with the distance to both Hillsboro and Boca outfalls, suggesting that 
either of these distances might offer the same predictive power in the model. 
 
These investigations showed that coastal urbanization and water management influence 
the number of coral disease lesions on Florida’s Coral Reef within the Coral ECA. They 
suggest strong links between SCTLD infection levels and potential pollutants, or 
pathogens associated with the presence of anthropogenically impacted water flowing out 
of the inlets. The nature and extent of these links warrant urgent and immediate attention.  
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The sum consequence of the relationships identified herein is that global stressors on corals 
are being exacerbated by the local human impacts of runoff and land-based sources of 
pollution that elevate on-reef nutrient levels. Mitigating local stressors would make 
conditions for corals less conducive to disease. These links highlight that there are 
management, conservation, and stewardship actions in SE Florida that can increase reef 
resilience to climate change and disease outbreaks. For example, the timing of inlet outflow 
can be regulated to ensure high flow does not coincide with periods of high seawater 
temperature stress. Future work can help to shape and target this and a range of other 
actions to maximize our influence on the capacity of reefs in SE Florida to function and 
provide goods and services under climate change.   

2. BACKGROUND 
 
Spatial and temporal patterns of coral diseases on tropical reefs are often driven by a 
complex array of interacting environmental, anthropogenic and host-specific factors that 
affect both pathogen virulence and host resistance or susceptibility (Williams et al. 2010; 
Aeby et al. 2011b; Aeby et al. 2020). Given that the prevalence of diseases on reefs is 
expected to increase in the future (Maynard et al. 2015), identifying disease drivers is key 
to designing effective local mitigation strategies, prioritizing disease intervention 
resources, and identifying areas suitable for reef restoration. Identifying the drivers of coral 
disease dynamics requires detailed information on the spatial and temporal patterns of 
disease occurrence, characterization of the gradients in suspected drivers, and the 
combining of these data in a suitable statistical modeling framework (Williams et al. 2010). 
 
Florida’s Coral Reef is currently experiencing a multi-year coral disease mortality event 
from Stony Coral Tissue Loss Disease (SCTLD) that has resulted in extensive coral die-
offs. Approximately 21 species of coral, including both Endangered Species Act-listed and 
the primary reef-builders, have displayed tissue loss lesions which often result in whole 
colony mortality. First observed near Virginia Key in late 2014, the disease has since 
spread to the northernmost extent of Florida’s Coral Reef, and south to the Dry Tortugas 
(Muller et al. 2020). The best available information indicates that SCTLD is also spreading 
throughout the Caribbean (Alvarez-Filip et al. 2019; Estrada-Saldívar et al. 2021). 
 
SCTLD’s unique trait of affecting many species at varying infection and virulence rates 
remains perplexing. A number of species are known as highly susceptible because they 
typically get the disease first and are decimated quickly, while a second group are slower 
to infect and have slower lesion progression rates. In many cases, all or almost all of the 
susceptible species succumb to the disease leaving very few survivors. However, some 
persist. Recent recon efforts show a number of individuals of highly susceptible species 
(Meandrina meandrites, Diploria labyrinthiformis) in the endemic zone (Southeast 
Florida) begging the question: why did these individuals not succumb to the disease? 
Unfortunately, there are few survivors remaining and none of the more sensitive 
conspecifics are alive for comparisons. 
 
The other less susceptible species (Orbicella spp., Montastraea cavernosa) appear more 
resistant to infection because they can persist amongst other diseased corals for years 
before signs of infection. Once infection signs appear, lesions may rapidly kill a coral, 
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persist slowly for a long time, or in some cases disappear (apparently fought off by the 
coral holobiont). Understanding this dynamic requires knowledge of differing infection 
rates of individuals. This is difficult to ascertain without extensive monitoring and disease 
intervention because it will likely perish soon after becoming diseased if not treated. The 
disease intervention keeps the coral alive and the monitoring captures the timing of 
reinfections facilitating an understanding of the individual’s susceptibility or resistance. 
Those that reside in the endemic zone alongside diseased colonies and yet have not been 
infected are assumed to be the most resistant. 
 
Populations of Florida’s mountainous star coral (Orbicella faveolata) are the subject of 
intensive disease intervention efforts to stop SCTLD. Successful disease intervention 
treatments on Florida’s Coral Reef have kept diseased reef-building corals alive providing 
a unique opportunity to test intraspecific differences between groups of corals with 
differing infection patterns. Some corals get infected once, some are reinfected numerous 
times, and some not at all. Viewing this collection of O. faveolata as patients or individual 
cases that are grouped as at risk (no infection) or differentially affected (i.e., degrees of 
infection rates) by SCTLD, it is important to have a basic ‘patient history’ or anamnesis as 
a foundation to interpret and contextualize more probative or diagnostic analyses. 
 
The intense successful disease intervention and monitoring provide an unprecedented in 
situ record of the occurrence of new SCTLD infections on a set of O. faveolata colonies. 
These data provide a measure of disease incidence and host susceptibility through time that 
can be related to concurrent spatial and temporal gradients in suspected drivers. This 
project builds upon previous efforts (Walker et al. 2021a) to identify the most influential 
drivers of SCTLD on O. faveolata corals within the Southeast Florida Coral Reef 
Ecosystem Conservation Area. 
 
Project Goals and Objectives 
 

This project builds upon previous data-driven statistical modelling efforts to capitalize on 
an additional 14 months of monitoring data for several monitored large corals in the Coral 
ECA collected from May 2020 to June 2021. These additional data increase the replication 
of the previous temporal model presented in Walker et al. (2021) from n=20 to n=34, 
therefore improving its statistical strength and importantly capturing another full seasonal 
cycle of SCTLD incidence (SCTLD incidence in the Coral ECA appears to peak in the 
summer months). If after adding these additional data there is once again a robust 
quantitative correlation between SCTLD incidence and ICA flow rates then this will 
increase confidence in the hypothesis that the link between the two is real and holds up 
over time.  
 
It is highly likely that other factors not included in the previous models could play a role 
in predicting SCTLD incidence across scales within the Coral ECA. For example, coral 
disease can peak on reefs subjected to high levels of suspended sediment (Pollock et al. 
2014) and chronic nutrient enrichment (Bruno et al. 2003), and where seasonal rainfall 
events result in episodic land-based runoff onto nearby coastal reefs (Haapkylä et al. 2011). 
The combination of outflow from ICAs in South Florida as well as land-based runoff 
following heavy rain events could result in raised nutrient and contaminant concentrations 
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of nearshore waters. Indeed, the previous temporal model (Walker et al. 2021a) still had 
50.3% of the variation in SCTLD incidence unexplained and some of this could be 
explained by factors such as these. To address this, this current project includes the 
generation of a number of new predictor variables and their generation across novel scales. 
Specifically, the new temporal model includes monthly variations in rainfall that might 
drive additional land-based runoff and sedimentation to the reefs beyond the intentional 
release of waters from the ICAs. This project also includes additional metrics of coastal 
land use beyond septic tank densities as a proxy for urbanization in the new spatial model, 
specifically the degree of coastal construction and impervious services that promote 
land-based runoff.  
 
Interestingly, despite previously identified links between water quality and coral disease 
dynamics in the literature, the previous models found no quantitative links between in situ 
water quality parameters and the occurrence of novel SCTLD lesions over space or time in 
the Coral ECA (Walker et al. 2021a). However, this could be due to the relatively poor 
temporal overlap between the response and predictor variables in the previous models. This 
current project includes a more robust exploration of the possible links between ICA flow 
rates and on-reef water quality, identifying whether any particular water quality parameter 
changes following periods of higher flow. This novel analysis builds on previous work 
(Whitall et al. 2019) and links the daily ICA flow rates to concurrent changes in a number 
of water quality parameters measured in situ (e.g. nitrate, nitrite, phosphorous) at the level 
of the reef benthos. Importantly, flow estimates were generated prior to the water quality 
sampling dates over several temporal windows. The goal was to identify the temporal 
window in historical flow rates that best explains any changes in water quality on the reef, 
potentially allowing the ability to infer travel times of water flow between the ICA inlets 
and the reef itself. 
 
Finally, following advice from the DAC, this project also expanded the number of spatial 
scales over which septic tank densities were quantified in the spatial model and the number 
of temporal scales over which the flow rates from the ICAs were summarized in the 
temporal model. This allowed the scales that offer greatest predictive power to be 
identified, with the goal to improve the amount of variation the models explain. 
Importantly, if a particular scale offers more predictive power than another, then this may 
indicate something about how SCTLD incidence patterns and suspected drivers are linked 
and inspire future hypotheses for investigation.  
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3. Methods 
 
Response variable data spatial processing 
 
3.1 Disease incidence data 
 
The response variable in this case is the number of novel SCTLD infections on several 
priority (n=69) large O. faveolata and M. cavernosa (n=37) corals that have been monitored 
by the project PI Brian Walker monthly from Sep 2018 to June 2021 (Figure 1). Each time 
a coral is visited, the number of SCTLD lesions are recorded. The lesions are then 
subsequently treated using techniques developed by the project team that are known to be 
successful (Walker and Brunelle 2018). This means that the number of SCTLD infections 
then recorded on each coral each month represents a measure of SCTLD incidence (novel 
development over time) (Figure 2). Such robust measures of coral disease incidence are 
rare highlighting the uniqueness and power of this dataset. Our monitored corals span a 
gradient of ~62 km from Key Biscayne to northern Broward County and cross numerous 
gradients in abiotic environmental conditions and local human impacts (Walker et al. 
2021a).  
 
Summary file: LCDB_complete_aug2021_updated_PriorityCoralsOnly.csv 
 
 
Predictor variable data spatial processing 
 
3.2 Coral host-specific variables 
 
The previous analyses identified a negative correlation between the spatial variation in the 
total number of SCTLD infections and the proportion of live coral tissue on a colony 
remaining at the end of the disease monitoring timeseries (Walker et al. 2021a). To once 
again account for possible colony-specific attributes within the models, this synthesized 
information was updated. Specifically, colony-specific estimates of depth, planar length, 
planar width, planar height, linear length, linear width, colony total surface area, and the 
surface area of live tissue were quantified. After some consideration, however, the 
proportion of live coral tissue on a colony remaining at the end of the disease monitoring 
timeseries was not included in the updated spatial model presented here. SCTLD results in 
substantial tissue death and therefore the amount of live tissue at the end of the survey 
period could purely reflect the impact of the disease, rather than being a predictor (cause) 
of it.  
 
Summary file: LCDB_complete_aug2021_updated_PriorityCoralsOnly.csv 
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Figure 1. Location of the priority monitored corals within the Coral ECA. 
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Figure 2. The total number of all new treatments and corals treated during each monitoring period 
within the Coral ECA.  
 
3.3 In situ water temperature 
 
Periods of extreme high temperatures have been linked to increased prevalence and 
incidence of coral diseases on reefs (Bruno et al. 2007; McClanahan et al. 2009; Williams 
et al. 2011). Temperature stress experienced by the monitored large corals was calculated 
using data from the long-term SECREMP monitoring programs.  
 
The long-term SECREMP monitoring programs routinely deploys and retrieves HOBO© 
temperature loggers within the vicinity of the sampled/monitored corals and provided the 
full temporal coverage of the project survey period. Each large coral was spatially joined 
to the nearest logger. From the temperature timeseries, the seasonal mean and standard 
deviation for each summer period (July 1st – September 31st) was calculated. From this, the 
number of anomalously high temperature events was computed using the “Hot Snap” 
metric, defined as any temperature event that exceeds 1SD of the long-term seasonal mean 
(Heron et al. 2010). “Period of accumulation” was set to 3, 7, 30 and 90 days, meaning that 
for each monthly coral survey across the disease survey timeline, the number of Hot Snaps 
was calculated over these various temporal windows prior to the survey date. The summed 
number of Hot Snap events were multiplied by two to estimate the number of exposure 
hours over each temporal window (due to the 2-hr sampling resolution of the loggers, i.e., 
one event equals two hours, two events equal 4 hours and so on). Loggers were exposed to 
solar irradiance which may affect their readings, however they were consistently deployed 
between sites and should be accurate relative to each other (Bahr et al. 2016). 
 
Summary file: Hobo_Hotsnaps.csv 
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3.4 In situ water quality 
 
Increased nutrient concentrations and other water quality parameters like suspended solids 
can increase coral disease prevalence and severity within coral populations (Bruno et al. 
2003; Voss and Richardson 2006; Pollock et al. 2014). This project utilized existing data 
from a long-term joint NOAA-FDEP water quality monitoring program across the Coral 
ECA in collaboration with Dr. David Whitall (National Centers for Coastal Ocean Science, 
NOAA) to quantify changes in water quality over time. The data represent monthly 
sampling at 71 sampling stations (Figure 3) to quantify a number of water quality 
parameters, of which the following analytes were focused on: 1) nitrate, 2) nitrite, 3) 
orthophosphate, 4) phosphorous, 5) total suspended solids, and 6) silicate. 
 
The first task was to remove those sampling stations that were deliberately clustered around 
the inlets of each ICA (n=27) as these did not represent truly independent replicates of 
water quality (recorded in “Inlet Nutrient sites to exclude.xlsx”). This resulted in a total of 
44 sampling stations included in all further analyses. The data were then filtered to focus 
on samples taken at the depth of the reef, not the surface. 
 
The second task was to adjust the analyte values to account for the minimum detection 
limits (MDLs) of the two water quality processing labs (NOAA and GERG-Texas A&M). 
In the previous project, the MDL adjustments had already been completed by Dr David 
Whitall prior to supplying the data. Here however, the large extent of the data meant that 
it would have taken Dr. Whitall >6 months processing time to complete the calculations. 
This is partly due to the processing pipeline bottleneck of having to perform the 
calculations manually using a published Microsoft Excel-based methodology (Flynn 
2010). As part of this project, a custom R routine (www.r-project.org) to re-create the Flynn 
(2010) methodology was created. The approach by Flynn maximizes the normality of a 
distribution of samples, after making a best-guess approach for values below a detection 
limit, set to half the reported detection limit for each analyte. Here, if an analyte had several 
different detection limits, the mean detection limit was used to approximate the best guess 
starting point for all values below the detection limit. Substantial QA/QC showed that this 
new R routine re-creates the output from Flynn (2010) exactly. The novel R routine 
developed under this project incorporates four existing R functions (optim, readxl, dplyr, 
signal) and combines these with a novel function (named “shapiro_weights”) to calculate 
the Shapiro Weights used in Flynn (2010). The new routine consists of 170 lines of R code 
and is designed in such a way that the NOAA database files for the water quality monitoring 
program can be loaded directly into it with no need for any pre-processing. A user can 
therefore reproduce the Flynn (2010) methodology using the routine with minimal training 
and only a basic knowledge of R. The novel R routine significantly reduces the post-
processing times for calculating the analyte MDLs, going from ~6 months person-time to 
a few days of auto-processing by a medium-spec computer (16 core, 30GB RAM).  
 
Summary file: The synthesis of the water quality data for all 6 analytes across all 44 NOAA 
water quality sampling stations, representing monthly sampling from 2018 to 2021 formed 
a summary file of 14,994 rows: Output_Corrected_Flynn_MDL_Data_by_Analyte.csv. 

http://www.r-project.org/
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Figure 3. Location of all water quality monitoring sites and DBHydro monitoring site stations 
across the four ICAs. Also shown are the locations of the offshore sewage outfalls and the 
monitored large corals, the latter color coded by their respective ICAs. 
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The third task was to spatially join each of the monitored large corals to the NOAA water 
quality sampling stations to generate coral-specific estimates of the analyte concentrations 
the corals are exposed to over time. Each coral was joined to the five nearest five sampling 
stations using the Generate Near Table tool in ArcGIS, sensu Walker et al. (2021) and the 
distance (in m) of each coral to each of the water quality sampling stations was recorded. 
Then for each large coral survey date, concurrent water quality sampling events within a 
series of temporal windows were searched for (across their respective 1 or 5 sampling 
stations): 1, 3, 7, 14, 30, 60, and 90 days. The mean and standard deviation for each analyte 
was then computed. At the smaller temporal windows, this resulted in a large proportion 
of NA values in some cases.  
 
Summary file: Corals_Nutrients_5_Nearest.csv  
 
 
3.5 DBHydro flow data 
 
The South Florida Water Management District’s DBHydro monitoring stations (Figure 3) 
and database collects hydrologic, meteorologic, hydrogeologic and water quality data and 
is the source of historical and up-to-date environmental data for the 16-county region 
covered by the District. Using this database, estimates of water flow from individual ICAs 
to the monitored corals in the Coral ECA were used as a proxy for exposure to land-based 
sources of nutrients and pollutants. Unlike in the previous work (Walker et al. 2021a), here 
a sub-set of the DBHydro monitoring stations that independently captured the full extent 
of the flow within each ICA were identified. Stations that were upstream or downstream 
from each other, and therefore were artificially inflating summed flow values, were 
identified using a map of the flow channel paths throughout the ICAs and one of each pair 
removed. Through this iterative pairwise process, 20 stations were identified for inclusion 
in the analyses. Flow data for each ICA across the entire monitoring period of the large 
corals (2016-2021) were extracted, even prior to the identification of the “priority” corals 
used in our subsequent analyses. Flow patterns were relatively similar over time across the 
four ICAs, although temporal peaks in flow could be twice as high in Government Cut 
compared to the other ICAs (Figure 4). A pairwise correlation analysis showed that the 
similarity in temporal flow patterns varied between ICAs, with Baker’s Haulover and 
Hillsboro the least correlated (r = 0.60), while Baker’s Haulover & Government Cut and 
Hillsoboro & Port Everglades were the most highly correlated (r = 0.87) (Figure 5). 
 
Summary file: ICA_FLOW_DBHYDRO_icaname.csv.  
 
The next task was to spatially join the patterns in ICA flow to the monitored large corals. 
Each large coral was assigned to an ICA by identifying the nearest ICA inlet to it in space, 
regardless of direction north or south. The summed flow data for each coral from its 
respective ICA were then extracted over a series of temporal windows: 1, 3, 7, 14, 30, 60, 
and 90 days prior to each coral survey date. 
 
Summary file: ICA_Flow_Corals.csv. 
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Figure 4. Temporal patterns in summed flow (in cubic feet per second) out of the ICA inlets over 
time. 
 
 
 
3.6 Testing for relationships between ICA flow and water quality  
 
Previous analyses by NOAA show there to be a correlation between in situ water nutrient 
concentrations and ‘low’ versus ‘high’ flow data from the DBHydro database (Whitall et 
al. 2019). This project builds on these analyses to treat the flow data as a continuous rather 
than a discrete (high versus low) predictor. Each water quality monitoring site was spatially 
joined to its closest ICA inlet using the Closest Geodesic option in ArcGIS Pro tool, Spatial 
Join. The summed flow data from the respective ICA over a series of temporal windows 
were then extracted: 1, 3, 7, 14, 30, 60, and 90 days prior to each sampling date at each 
water quality monitoring site. The data were summarized by analyte and by ICA. 
 
Summary file: ICA_Nutrients_Test.csv.  
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Figure 5. Pairwise Pearson’s (r) correlations of the temporal patterns in summed flow (in cubic feet 
per second) out of the ICA inlets over time. The relationships have a smoothed regression line fitted 
(red line). 
 
 
 
3.7 Timing of major sewer breaks. 
 
Four datasets were obtained from the DEP Water Compliance Enforcement Program 
collected from the State Watch Office that contain data for spills in Broward and Miami-
Dade County since 2000. The recording systems have changed over the years and the 
spreadsheets are different and contain varying degrees of different information. After 
evaluation, it was decided that these data were not useful in our statistical models. 
 
3.8 Coastal land use 
 
Land-based runoff to nearby coral reefs can be exacerbated by coastal urbanization that 
creates large expanses of impervious surfaces, such as concrete (Fabricius 2005; Brodie et 
al. 2012). This, in combination with high rainfall, can lead to high levels of nutrient runoff, 
poor water quality and sediment deposition that can promote coral disease establishment 
and persistence (Aeby et al. 2010; Haapkylä et al. 2011). This project utilized the NOAA 
Coastal Change Analysis Program (C-CAP) regional Land Cover and Change Dataset, a 
30 x 30 m resolution satellite-based product that contains information on a variety of land 
uses across the Florida region (https://coast.noaa.gov/digitalcoast/data/ccapregional.html). 
The dataset was last updated in 2016 and the focus here was on estimating coastal 

https://coast.noaa.gov/digitalcoast/data/ccapregional.html
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construction and development that could contribute to coastal runoff and pollution that 
might in turn trigger and exacerbate coral disease development. As such, two of the classes 
pertaining to Developed Land, namely Developed High Intensity and Developed Medium 
Intensity were synthesized. Developed High Intensity contains significant land area and is 
covered by concrete, asphalt, and other constructed materials. Vegetation, if present, 
occupies less than 20 % of the landscape. Constructed materials account for 80 – 100 % of 
the total cover. This class includes heavily built-up urban centers and large constructed 
surfaces in suburban and rural areas with a variety of land uses. Developed Medium 
Intensity contains areas with a mixture of constructed materials and vegetation or other 
cover. Constructed materials account for 50 – 79 % of total area. This class commonly 
includes multi- and single-family housing areas, especially in suburban neighborhoods, but 
may include all types of land use. The amount (in m2) of Developed High Intensity and 
Developed Medium Intensity land within the vicinity of the monitored corals was 
quantified using a Fibonacci sequence of expanding radial buffers (1, 2, 3, 5, 8, 13, and 21 
km). 
 
Summary file: Priority_Corals_Land_Cover.csv 
 
 
3.9 Rainfall patterns 
 
Episodes of heavy rainfall can lead to land-based runoff to nearby coastal areas and 
contribute to the establishment and persistence of coral diseases (Haapkylä et al. 2011). 
Furthermore, such events can stir up deposited sediment and introduce new sediment 
sources from the land into suspension that can also exacerbate coral disease (Pollock et al. 
2014). This project utilized the South Florida Water Management District’s Daily 
Historical Rainfall database (www.sfwmd.gov/weather-radar/rainfall-historical/daily) to 
quantify the mean daily rainfall experienced prior to each disease survey over several 
temporal windows. A total of 33 stations that fell within the bounds of the four ICAs were 
selected (these can be found in the summary file “Rainfall_Stations.csv”) and daily rainfall 
values computed across the entire disease survey timeseries for each individual ICA. 
 
Summary file: ICA_RAIN_DBHYDRO_ icaname.csv 
 
 
3.10 Human population density 
 
Previous works have shown a link between local human impacts and coral disease 
prevalence, specifically using local human population density as a proxy for cumulative 
impacts (Aeby et al. 2011b). To quantify human populations within the vicinity of the coral 
disease survey locations this project used the 2019 U.S. Census Population and Housing 
Unit Counts dataset for Florida (https://www.census.gov/geographies/mapping-files/time-
series/geo/tiger-data.html). Specifically, the project used the geodatabase entitled 
“ACS_2019_5YR_BG_12.gdb”. Using R, this was joined with the Census table 
X01_AGE_AND_SEX, using the two columns: B01001e1 and B01001m1, that is defined 
by the metadata table: SEX BY AGE: Total: Total population -- (Estimate).  

http://www.sfwmd.gov/weather-radar/rainfall-historical/daily
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-data.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-data.html
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Summary file: Priority_Corals_Human_Population_Density.csv 
 
 
3.11 Distance to outfall locations and septic tanks 
 
The pairwise linear distances (in m) of each surveyed large coral to each sewage outfall 
location (BAK030, PEV050, HIL060, BOC080, GOC014) was calculated (Figure 3).  
 
Summary file: DISTANCE_TO_ALL_OUTFLOWS_Priority_Corals.csv 
 
The number of septic tanks within the vicinity of each coral was quantified using the 
expanding radial buffers (1, 2, 3, 5, 8, 13, and 21 km) using data from the ‘Our Florida 
Reefs’ online database (https://ourfloridareefs.org) for the year 2013. 
 
Summary file: Data_Output/Count_Septic_Tanks_Buffers_Corals.csv 
 
 
3.12 GIS data 
 
For each of the data layers described above, any relevant ArcGIS files, R code files, and 
data output files have been archived at NSU and provided to FDEP. These are organized 
into folders named by the predictor variable of interest (Tasks 2.1 to 2.12).  
 
3.13 ArcGIS geodatabase 
 
For each of the completed data layers described above (Tasks 2.1 to 2.12), an ArcGIS 
geodatabase summary has been built containing all relevant primary and meta-data for each 
predictor variable georeferenced over all the defined spatial and temporal scales. These are 
archived at NSU and have been provided to FDEP. 

 
3.14 Statistical modeling 
 
Modeling the links between ICA flow and on-reef water quality 
 
This analysis utilized 6132 individual water quality analyte measurements from 2018 to 
2010. Initial data exploration showed that examining flow over the previous 3 days prior 
to water sample collections would yield the strongest relationships. The possible links 
between ICA inlet flow and changes in the water quality parameters (nitrate, nitrite, 
phosphorous, orthophosphate, silicate, total suspended solids) were modeled using 
generalized additive models (GAMs) (Wood 2006a) with the mgcv package for R (Wood 
2012). The analyte response variables were logged and fitted to the flow values to allow 
for random smooths by ICA and year (penalized deviations from the main smooth), using 
restricted maximum likelihood (REML) as follows: 
 

gam(log(X) ~ s(flow, bs=c("tp")) + te(flow, ICA, year, bs=c("tp","re","re"))  

https://ourfloridareefs.org/
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where “tp” represents a thin-plate regression spline (an isotopic smoother term) (Wood 
2003) and “re” represents a parametric term penalized by a ridge penalty (Wood 2006b). 
This approach allowed a global trend to be modeled, as well identifying whether and in 
what ways individual ICAs or years diverged substantial from this trend. 
 
 
SCTLD incidence modeling 

 
Coral disease data are challenging to model due to the often zero-inflated nature of the 
data resulting from low overall disease prevalence and incidence within coral populations 
(Williams et al. 2010; Aeby et al. 2011a; Aeby et al. 2011b). This means many traditional 
statistical modeling techniques are inappropriate. Here pattern of SCTLD incidence were 
modeled using distance-based permutational multiple regression (McArdle and Anderson 
2001). The approach carries out a partitioning of variation in a data set described by a 
resemblance matrix according to a multiple regression model. Predictor variables can be 
categorical or continuous and the technique makes no prior assumptions about the nature 
of the response variable distribution, meaning that normality does not have to be 
satisfied. The power of this monitoring data set is to be able to say with confidence 
whether corals experienced repeat infections over the time period and if they did, to what 
degree and what might be driving this variation. 
 
To models patterns in SCTLD incidence over time (temporal model), the unit of 
replication was ‘survey month’. The goal was to maximize temporal replication (survey 
months) while minimizing spatial bias. Across the various monitored large corals, the 
start of the timeseries was set to September 2018, when the maximum number of large 
corals (n=68) all began to be routinely monitored; the timeseries then ran until June 2021. 
To contribute to the temporal model, the large corals had to be susceptible to SCTLD 
(i.e., had at least 1 lesion recorded across the entire timeseries from Sep 2015 to Aug 
2021) and been surveyed in at least 32 out of the 34 survey months, resulting in 47 large 
corals being included (Appendix 1). For each survey month, the total number of novel 
lesions was summed across these 47 corals and then related over time to concurrent 
changes in the predictor variables.  
 
To models patterns in SCTLD incidence over space (spatial model), the unit of 
replication were the individual large corals themselves. The goal was to maximize spatial 
replication (number of colonies) while minimizing temporal bias. The start of the 
timeseries was set to July 2019, when the maximum number of corals were surveyed. Of 
these 90 corals, 66 showed susceptibilities to SCTLD (i.e., had at least 1 lesion recorded 
across the entire timeseries from Sep 2015 to Aug 2021) and were included in the spatial 
modeling process (Appendix 2). For each coral, the total number of novel lesions was 
summed across the 24-month period and then related to concurrent spatial changes in the 
predictor variables.  
 
Prior to model fitting, the predictor variables (n=21 temporal model, n=39 spatial model) 
were investigated for collinearity by calculating pairwise Pearson’s correlations (r). For 
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any that equaled r > 0.8, one of the two predictors were removed. Which variable was 
removed was based on the suspected ability to interpret the mechanistic link between the 
predictor and response variable should the predictor variable emerge as important, as well 
as attempting to ensure spread across the various spatial/temporal scales computed for 
each predictor. This resulted in a total of 12 and 17 predictor variables included in the 
temporal and spatial model fitting process, respectively (Appendix 3, 4). The predictors 
were normalized to account for variations in their data range and units and all possible 
candidate models (unique combinations of the predictors) were computed. These were 
then ranked based on Akaike Information Criterion (Akaike 1973) with a second-order 
bias correction applied (AICc) (Hurvich and Tsai 1989; Burnham and Anderson 2004) to 
account for the relatively large number of predictor variables relative to independent 
response variables. After fitting the distance-based permutational multiple regression 
models, the significant predictors explaining temporal and spatial variations in SCTLD 
were investigated in more detail for possible non-linear effects on disease dynamics using 
generalized additive models (GAM). 
 
 

4. RESULTS 
 
4.1 Links between ICA flow and on-reef water quality  
 
There were significant relationships between ICA inlet flow over the previous 3 days and 
the on-reef concentration of all six water quality analytes (Table 1). Model performance 
ranged from 22.7 to 40.6% deviance explained, and there were significant effects of total 
flow on nitrate and nitrite after accounting for the effects of ICA and year (Table 1). The 
patterns between flow and the remaining four analytes (orthophosphate, phosphorus, 
silicate and total suspended solids) were purely driven by individual effects within certain 
ICAs and years (Table 1, Appendix 5). 
 
Most of the relationships identified were positive, such that increases in flow resulted in an 
increased concentration of the analyte. For example, as flow increased, the concentration 
of both nitrate and nitrite increased, up until a certain summed flow when the 
concentrations started to level off (Figure 6). This suggests that initial increases in flow 
result in marked increases in on-reef nitrate and nitrite, but that there then comes a 
saturation point, particularly for nitrite concentration above ~5000 cubic feet/second 
summed flow (Figure 6). For nitrate, some ICAs had more pronounced patterns than others, 
particularly in certain years. For example, in 2018 there were clear positive trends between 
flow and on-reef nitrate concentration in Baker’s Haulover and Hillsboro, but not 
Government Cut or Port Everglades Inlet; in some years, however, these positive trends 
appeared to break down (Figure 7). Similarly for nitrite, some ICAs again had more 
pronounced patterns than others, particularly in certain years. In 2018, for example, there 
was a clear positive trend in Baker’s Haulover more so than in the other ICAs (Figure 8). 
The relationships between flow and orthophosphate, phosphorus, silicate and total 
suspended solids can be found in Appendix 5. These patterns would benefit from further 
investigation, in particular building a model to test how flow might interact and combine 
with rainfall patterns to drive on-reef water quality. 
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Table 1. Generalized additive model (GAM) results testing for a relationship between ICA inlet 
flow over the previous 3 days and concentration of six on-reef water quality analytes. 
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Figure 6. Global effect of ICA inlet flow over the previous 3 days and concentration of on-reef 
nitrate (top) and nitrite (bottom), having accounted for variations across individual ICAs and 
years. Solid line represents the model fit and shading represents the 95% confidence interval. 
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Figure 7. Relationship between ICA inlet flow over the previous 3 days and concentration of on-
reef nitrate across individual ICAs and years. Solid line represents the model fit and shading 
represents the 95% confidence interval. The black circles indicate the underlying data in each 
case. Where no data exists, the fits represent model predictions based on trends in other 
ICAs/years that inform the smoother terms in these regions. 
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Figure 8. Relationship between ICA inlet flow over the previous 3 days and concentration of on-
reef nitrite across individual ICAs and years. Solid line represents the model fit and shading 
represents the 95% confidence interval. The black circles indicate the underlying data in each 
case. Where no data exists, the fits represent model predictions based on trends in other 
ICAs/years that inform the smoother terms in these regions. 
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4.2 Drivers of temporal and spatial patterns in SCTLD incidence 
 
Temporal model: The total number of novel SCTLD lesions (disease incidence) varied 
over time and ranged from 0 to 60 in any given month from September 2018 to June 
2021 (Figure 9). There was only one survey month (May 2020) when zero lesions were 
recorded. This temporal variation was best explained by a model containing three 
predictors (Table 2), namely exposure to temperature stress (‘Hot Snaps’) in the 90 days 
prior (35.6% variation explained), flow out of the ICA inlets over the previous 7 days 
(14.1% variation explained), and mean daily rainfall in the 90 days prior (6.7% variation 
explained). Overall, this model explained 56.4% of the temporal variation in the total 
number of SCTLD infections over time (Table 2).  
 
SCTLD infections showed a positive correlation with temperature stress (Figure 10), a 
positive correlation with inlet flow (Figure 11), and a positive correlation with total 
rainfall (Figure 12). Outliers created high model error for both temperature stress and 
inlet flow towards the higher values of both predictors (Appendix 6). It appears more 
SCTLD lesions develop over time following a pro-longed period of temperature stress, in 
particular when there has been over 150 ‘Hot Snap’ exposure hours over the prior 90 
days. This is then exacerbated by higher outflow from the ICA inlets and heavier rainfall, 
in particular when there has been more than 5000 cubic feet per second summed flow 
coming out of the ICAs in the prior 7 days, and more than 0.2 – 0.3 inches of rain per day 
over the prior 90 days. However, flow over the previous 7 days collineated highly with 
flow over the previous 14 and 30 days (14 and 30 days were therefore excluded from our 
model fitting process, Appendix 3), and so any of these temporal windows would likely 
offer similar predictive power. A more cautious interpretation, therefore, would be that 
flow over the previous 7 to 30 days shows a positive relationship with SCTLD lesion 
development over time. 
 
 
 
 

 
 
Figure 9. SCTLD disease incidence (number of novel SCTLD lesions over time) on 52 large 
corals monitored monthly from September 2018 to June 2021.  
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Table 2. Temporal and spatial model summaries, showing statistics for the predictors included in 
the optimal models, the percentage of variation in the response variable they explain (Prop) and 
their cumulative percentage of variation they explain (Cumul). 
 

 
 
 

 
Figure 10. Relationship between seawater temperature stress (total ‘Hot Snap’ exposure hours) 
over the prior 90 days and number of novel SCTLD lesions developing over time. Note the x-axis 
is trimmed to emphasize the relationship and exclude the high model error after Hot Snap >250 
(n=1 data point). 
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Figure 11. Relationship between ICA inlet flow (summed cubic feet per second) over the prior 7 
days and number of novel SCTLD lesions developing over time. Note the x-axis is trimmed to 
emphasize the relationship and exclude the high model error after flow >15000 (n=2 data points). 
 

 
Figure 12. Relationship between mean daily rainfall (in inches) over the prior 90 days and 
number of novel SCTLD lesions developing over time. 
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Spatial model: The total number of SCTLD infections ranged from 0 to 44 on any 
individual large coral colony from July 2019 to June 2021. This spatial variation was best 
explained by a model containing two predictors (Table 2), namely the number of septic 
tanks within a 2 km radius (25.4% variation explained) and the linear distance to the 
Government Cut outfall (12.6% variation explained). Overall, this model explained 
38.0% of the spatial variation in the total number of SCTLD infections over the entire 
period (Table 2).  
 
SCTLD infections showed a positive correlation with the number of septic tanks within a 
5 km radius, with a noticeable increase in lesions occurring beyond ~100 tanks (Figure 
13). The correlation with the distance to the Government Cut outfall was less clear, with 
the number of lesions maximized at mid-distances (Figure 14). This should be interpreted 
with caution, however, as the distance to Government Cut outfall highly correlated with 
the distance to both Hillsboro and Boca outfalls, suggesting that either of these distances 
might offer the same predictive power in the model. 
 

 
 
Figure 13. Relationship between the number of septic tanks within a 5 km radius and spatial 
variations in the total number of novel SCTLD lesions.  
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Figure 14. Relationship between the linear distance (in km) to Government Cut outfall and spatial 
variations in the total number of novel SCTLD lesions. 
 
 
Sensitivity analyses 
 
The Ft. Lauderdale cluster of corals potentially introduces spatial autocorrelation that 
might invalidate the statistical assumptions of data independence in the spatial model 
(Walker et al. 2021b). The spatial model was therefore re-run with all but one of these 
corals removed (LC-047) to see what effect this has on the model results. Overall, the 
results were very similar. The optimal model still contained the same two predictors and 
explained 37.8% of the spatial variation in the total number of SCTLD infections over the 
entire period. Given that this represented a reduction of 0.2% variation explained 
compared to the model presented in Table 2, it is concluded that the effect of the Ft. 
Lauderdale cluster of corals are minimal to non-existent. 
 

5. CONCLUSIONS AND FUTURE WORK 
 
This project identified a correlation between: 1) on-reef nutrient concentrations (water 
quality) and ICA inlet flow; 2) inlet flow and SCTLD incidence in the Kristin Jacobs Coral 
Reef Ecosystem Conservation Area (Coral ECA); and, 3) SCTLD incidence and exposure 
to stress caused by anomalously high seawater temperatures associated with global 
warming. The sum consequence of these relationships we have identified is that global 
stressors on corals are being exacerbated by the local human impacts of runoff and land-
based sources of pollution that elevate on-reef nutrient levels. Mitigating local stressors 
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would make conditions for corals less conducive to disease. These links highlight that there 
are management, conservation, and stewardship actions in SE Florida that can increase reef 
resilience to climate change and disease outbreaks. As one example, the timing of inlet 
outflow can be regulated to ensure high flow does not coincide with periods of high 
seawater temperature stress. Future work can help to shape and target this and a range of 
other actions to maximize our influence on the capacity of reefs in SE Florida to function 
and provide goods and services under climate change.   
 
Previous attempts to identify direct links between SCTLD patterns and in situ on-reef 
nutrient concentrations were unsuccessful. The disease surveys and water quality sampling 
have taken place in different locations and at different times (Walker et al. 2021a). Future 
efforts must focus on overcoming this data mis-match by generating more spatially resolute 
water quality data using spatial interpolation. These maps would provide water quality 
estimates for all locations within the Coral ECA. Even though there would be varying 
levels of confidence in the interpolated data, this approach would allow a more direct 
comparison of water quality and SCTLD incidence. We can then determine the broader 
influence of water quality on coral and reef fish communities within the Coral ECA. We 
are now positioned to lead collaborative projects to deliver on this proposed research and 
help to target and shape actions that support reef resilience. 
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Appendices 
 
 
Appendix 1. Monitored large corals included in the temporal model (Sep-18 to Jun-21) (n=47). 
Those shaded grey satisfied the temporal replication requirements but have never shown 
susceptibility to SCTLD since monitoring began and so were excluded from the analysis. 
 

LC-002 LC-043 LC-066 LC-114 
LC-003 LC-044 LC-070 LC-115 
LC-005 LC-047 LC-075 LC-116 
LC-007 LC-048 LC-077 LC-118 
LC-009 LC-049 LC-078 LC-119 
LC-013 LC-050 LC-079 LC-120 
LC-015 LC-051 LC-080 LC-122 
LC-016 LC-052 LC-085 LC-123 
LC-018 LC-053 LC-090 LC-124 
LC-024 LC-054 LC-098 LC-126 
LC-028 LC-058 LC-101 LC-127 
LC-041 LC-059 LC-103 LC-128 
LC-042 LC-062 LC-110 LC-129 

 
 
Appendix 2. Monitored large corals included in the spatial model (n=66). 
 

LC-002 LC-047 LC-067 LC-115 MC-004 
LC-003 LC-048 LC-070 LC-116 MC-005 
LC-005 LC-049 LC-074 LC-117 MC-006 
LC-007 LC-050 LC-075 LC-118 MC-007 
LC-009 LC-051 LC-077 LC-119 MC-008 
LC-013 LC-052 LC-078 LC-120 MC-009 
LC-015 LC-053 LC-079 LC-122 MC-010 
LC-016 LC-054 LC-080 LC-123 MC-011 
LC-018 LC-055 LC-084 LC-124 MC-013 
LC-023 LC-056 LC-085 LC-125 MC-014 
LC-024 LC-058 LC-087 LC-126 MC-015 
LC-028 LC-059 LC-088 LC-127 MC-016 
LC-040 LC-061 LC-090 LC-128 MC-017 
LC-041 LC-062 LC-098 LC-129 MC-018 
LC-042 LC-063 LC-101 LC-157 MC-019 
LC-043 LC-064 LC-103 MC-001 MC-020 
LC-044 LC-065 LC-110 MC-002 MC-021 
LC-045 LC-066 LC-114 MC-003 MC-022 
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Appendix 3. Predictor variables included in the temporal model fitting process. 
 
 1 Flow_1 Exclude 
 2 Flow_3 Exclude 
 3 Flow_7 Trial 
 4 Flow_14 Exclude 
 5 Flow_30 Exclude 
 6 Flow_60 Trial 
 7 Flow_90 Trial 
 8 Rain_1 Exclude 
 9 Rain_3 Trial 
10 Rain_7 Trial 
11 Rain_14 Trial 
12 Rain_30 Exclude 
13 Rain_60 Trial 
14 Rain_90 Trial 
15 HotSnap_1 Exclude 
16 HotSnap_3 Trial 
17 HotSnap_7 Trial 
18 HotSnap_14 Exclude 
19 HotSnap_30 Trial 
20 HotSnap_60 Exclude 
21 HotSnap_90 Trial 
 
 
Appendix 4. Predictor variables included in the spatial model fitting process. 
 
 1 depth_ft Trial 
 2 length_planar Exclude 
 3 width_planar Trial 
 4 height_planar Trial 
 5 length_linear Trial 
 6 width_linear Trial 
 7 landuse_medium_1km Exclude 
 8 landuse_high_1km Trial 
 9 landuse_medium_2km Exclude 
10 landuse_high_2km Exclude 
11 landuse_medium_3km Exclude 
12 landuse_high_3km Exclude 
13 landuse_medium_5km Exclude 
14 landuse_high_5km Exclude 
15 landuse_medium_8km Exclude 
16 landuse_high_8km Exclude 
17 landuse_medium_13km Exclude 
18 landuse_high_13km Trial 
19 landuse_medium_21km Exclude 
20 landuse_high_21km Trial 
21 HumPop_1km Trial 
22 HumPop_2km Trial 
23 HumPop_3km Exclude 
24 HumPop_5km Exclude 
25 HumPop_8km Exclude 
26 HumPop_13km Exclude 
27 HumPop_21km Trial 
28 Septic_1km Exclude 
29 Septic_2km Trial 
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30 Septic_3km Exclude 
31 Septic_5km Trial 
32 Septic_8km Exclude 
33 Septic_13km Exclude 
34 Septic_21km Trial 
35 Bakers_Haulover Trial 
36 Boca Exclude 
37 Government_Cut Trial 
38 Hillsboro Exclude 
39 Port_Everglades Trial 
 
 
 
 
Appendix 5. Relationship between ICA inlet flow over the previous 3 days and concentration of 
on-reef orthophosphate, phosphorus, silicate and total suspended solids (TSS) across individual 
ICAs and years. Solid line represents the model fit and shading represents the 95% confidence 
interval. The black circles indicate the underlying data in each case. Where no data exists, the fits 
represent model predictions based on trends in other ICAs/years that inform the smoother terms in 
these regions. 
 
 

 



Office of Resilience and Coastal Protection 35    June 2022  
 

 
 
 

 



Office of Resilience and Coastal Protection 36    June 2022  
 

 
 
 
Appendix 6. Relationship between seawater temperature stress (total ‘Hot Snap’ exposure hours) 
over the prior 90 days and number of novel SCTLD lesions developing over time, and the 
relationship between inlet flow stress over the prior 7 days and number of novel SCTLD lesions 
developing over time – both with the complete x-axis model error displayed. 
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