Development of Interpretive Tools for Assessment of Contaminants in Coastal & Freshwater Sediments

Gail Sloane
Thomas Seal, Tom Biernacki
Florida Department of Environmental Protection

Alexandra Carvalho, Ph.D.
Steven J. Schropp, Ph.D.
Taylor Engineering, Inc.

Donald MacDonald, MESL
Chris Ingersoll, Ph.D., USGS
Sediment Quality Assessment Tools

- Metals Geochemical Normalization Tool
- Florida Marine and Freshwater SQAGs
 - Consensus Guidelines and discussion of other metrics to evaluate ecosystem health, including ecological and human health endpoints.
- Guidance Manual (Framework)
 - 3 volume document, Collaboration
 Great Lakes, British Columbia and Florida
The Weight of Evidence Approach

- Some lines of evidence weighted more heavily than others
- Increasingly complex evaluations only when needed
- Weight of Evidence Collected should be proportional to the weight of the decision being made.
- Multiple lines or evidence are necessary since there is no clear consensus on how incorporate uncertainties or relate measurement endpoints.
Sediment Metals Interpretive Tool Development

- Reference Element Approach
 - Normalize metal to reference element

- Requirements
 - Reference element(s) unaffected by human activities
 - “Clean” Sediment Database
 - Data from range of sediment grain size (fine to coarse grain sizes) and sediment types.
Sediment Metals

- Ubiquitous natural sediment constituent
 - Variable concentrations

- Common sediment contaminants
 - As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, Ag
 - Difficult to distinguish anthropogenic variability from natural variability
Contaminated Sediment?

Metal Concentrations (mg/kg)

<table>
<thead>
<tr>
<th>Site</th>
<th>As</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Pb</th>
<th>Hg</th>
<th>Ni</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.95</td>
<td>1.05</td>
<td>32.4</td>
<td>8.50</td>
<td>11.90</td>
<td>0.015</td>
<td>0.60</td>
<td>18.0</td>
</tr>
<tr>
<td>B</td>
<td>4.37</td>
<td>0.33</td>
<td>101</td>
<td>24.40</td>
<td>42.53</td>
<td>0.046</td>
<td>17.85</td>
<td>42.7</td>
</tr>
<tr>
<td>C</td>
<td>0.34</td>
<td>0.52</td>
<td>28.0</td>
<td>1.04</td>
<td>2.37</td>
<td>0.115</td>
<td>11.57</td>
<td>14.2</td>
</tr>
<tr>
<td>D</td>
<td>0.77</td>
<td>2.00</td>
<td>92.4</td>
<td>7.97</td>
<td>17.31</td>
<td>0.114</td>
<td>23.34</td>
<td>24.2</td>
</tr>
<tr>
<td>E</td>
<td>3.65</td>
<td>0.22</td>
<td>10.4</td>
<td>22.60</td>
<td>3.62</td>
<td>0.111</td>
<td>7.14</td>
<td>13.5</td>
</tr>
<tr>
<td>F</td>
<td>10.33</td>
<td>1.06</td>
<td>67.0</td>
<td>5.78</td>
<td>12.06</td>
<td>0.081</td>
<td>9.13</td>
<td>25.9</td>
</tr>
<tr>
<td>G</td>
<td>4.32</td>
<td>0.03</td>
<td>2.2</td>
<td>0.33</td>
<td>1.19</td>
<td>0.002</td>
<td>0.46</td>
<td>21.0</td>
</tr>
</tbody>
</table>
Contaminated Sediment?

Metal Concentrations (mg/kg)

<table>
<thead>
<tr>
<th>Site</th>
<th>As</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Pb</th>
<th>Hg</th>
<th>Ni</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.95</td>
<td>1.05</td>
<td>32.4</td>
<td>8.50</td>
<td>11.90</td>
<td>0.015</td>
<td>0.60</td>
<td>18.0</td>
</tr>
<tr>
<td>B</td>
<td>4.37</td>
<td>0.33</td>
<td>101</td>
<td>24.40</td>
<td>42.53</td>
<td>0.046</td>
<td>17.85</td>
<td>42.7</td>
</tr>
<tr>
<td>C</td>
<td>0.34</td>
<td>0.52</td>
<td>28.0</td>
<td>1.04</td>
<td>2.37</td>
<td>0.115</td>
<td>11.57</td>
<td>14.2</td>
</tr>
<tr>
<td>D</td>
<td>0.77</td>
<td>2.00</td>
<td>92.4</td>
<td>7.97</td>
<td>17.31</td>
<td>0.114</td>
<td>23.34</td>
<td>24.2</td>
</tr>
<tr>
<td>E</td>
<td>3.65</td>
<td>0.22</td>
<td>10.4</td>
<td>22.60</td>
<td>3.62</td>
<td>0.111</td>
<td>7.14</td>
<td>13.5</td>
</tr>
<tr>
<td>F</td>
<td>10.33</td>
<td>1.06</td>
<td>67.0</td>
<td>5.78</td>
<td>12.06</td>
<td>0.081</td>
<td>9.13</td>
<td>25.9</td>
</tr>
<tr>
<td>G</td>
<td>4.32</td>
<td>0.03</td>
<td>2.2</td>
<td>0.33</td>
<td>1.19</td>
<td>0.002</td>
<td>0.46</td>
<td>21.0</td>
</tr>
</tbody>
</table>
Lead/Aluminum Regression w/ 95% Prediction Limits
Metal/Reference Element Normalization Approach

Interpretation of Lead data using lead/aluminum relationship.
Contaminated Sediment?

Metal Concentrations (mg/kg)

<table>
<thead>
<tr>
<th>Site</th>
<th>As</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Pb</th>
<th>Hg</th>
<th>Ni</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.95</td>
<td>1.05</td>
<td>32.4</td>
<td>8.50</td>
<td>11.90</td>
<td>0.015</td>
<td>0.60</td>
<td>18.0</td>
</tr>
<tr>
<td>B</td>
<td>4.37</td>
<td>0.33</td>
<td>101</td>
<td>24.40</td>
<td>42.53</td>
<td>0.046</td>
<td>17.85</td>
<td>42.7</td>
</tr>
<tr>
<td>C</td>
<td>0.34</td>
<td>0.52</td>
<td>28.0</td>
<td>1.04</td>
<td>2.37</td>
<td>0.115</td>
<td>11.57</td>
<td>14.2</td>
</tr>
<tr>
<td>D</td>
<td>0.77</td>
<td>2.00</td>
<td>92.4</td>
<td>7.97</td>
<td>17.31</td>
<td>0.114</td>
<td>23.34</td>
<td>24.2</td>
</tr>
<tr>
<td>E</td>
<td>3.65</td>
<td>0.22</td>
<td>10.4</td>
<td>22.60</td>
<td>3.62</td>
<td>0.111</td>
<td>7.14</td>
<td>13.5</td>
</tr>
<tr>
<td>F</td>
<td>10.33</td>
<td>1.06</td>
<td>67.0</td>
<td>5.78</td>
<td>12.06</td>
<td>0.081</td>
<td>9.13</td>
<td>25.9</td>
</tr>
<tr>
<td>G</td>
<td>4.32</td>
<td>0.03</td>
<td>2.2</td>
<td>0.33</td>
<td>1.19</td>
<td>0.002</td>
<td>0.46</td>
<td>21.0</td>
</tr>
</tbody>
</table>
Limitations of the Metals/Reference Element Tool

- Use total digestion technique in preparing samples for analysis, total recoverable techniques produce useful information.
- Tool is valid for range of Al & Fe concentrations in the freshwater reference data set, and for aluminum in the coastal sediment reference data set.
- Some samples from “clean” sites will exceed upper or lower 95% prediction limits.
- Freshwater reference data set is from peninsular and north Florida.
Sediment Quality Assessment Guidelines

- **Threshold Effects Level (TEL)**
 - Marine waters

- **Threshold Effects Concentration (TEC)**
 - Freshwater

Concentrations below which effects rarely occur
Concentrations above which effects may begin
Sediment Quality Assessment Guidelines

- Probable Effects Level (PEL)
 Marine waters

- Probable Effect Concentration (PEC)
 Freshwater

concentrations above which effects occur frequently
Conceptual Coastal Sediment Quality Guideline for Cadmium

Probability of Adverse Biological Effects

Chemical Concentration (mg/kg dry weight)
TEL = 86.7
PEL = 544

No Effects
Significant effects (n = 53)

Phenanthrene (ppb, dry wt.)
Sediment Quality Guidelines Were Determined for 34 Priority Substances in Florida Coastal Waters, Including:

- 9 trace metals
- 13 individual PAHs
- 3 groups of PAHs
- Total PCBs
- 7 pesticides
- 1 phthalate ester
- **Metals**
 Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Silver, and Zinc

- **Polycyclic Aromatic Hydrocarbons (PAHs)**
 13 individual PAHs
 Sum LMW-PAHs, Sum HMW-PAHs, Total PAHs

- **Polychlorinated Biphenyls (PCBs)**
 Total PCBs

- **Pesticides**
 Chlordane, Dieldrin, Lindane, p,p'-DDD, p,p'-DDE, p,p'-DDT, Total DDT

- **Phthalates**
 Bis(2-ethylhexyl) pthalate
Freshwater Sediment Guidelines

Adopt the consensus-based sediment effect concentrations (i.e., threshold effect concentrations and probable effect concentrations) as SQAGs for 28 COPCs.
Freshwater Sediment Guidelines

Adopt effects-based sediment quality guidelines from other jurisdictions (i.e., the ones that are most consistent with the narrative intent of the SQAGs) as interim SQAGs for other COPCs.
Freshwater Sediment Guidelines

The following strategy for establishing bioaccumulation-based SQAGs was recommended:

- Adopt the NYSDEC (1999) sediment quality guidelines as interim SQAGs for the protection of aquatic-dependent wildlife;
- Adopt the lower of the NYSDEC (1999) or WDOH (1995; 1996) sediment quality guidelines as interim SQAGs for the protection of human health; and,
Freshwater Sediment Guidelines

Use tissue residue guidelines for the protection of aquatic-dependent wildlife (Newell *et al.* 1987) and human health (i.e., FDA Action Levels; USEPA 1989) to confirm that contaminated sediments pose a hazard to mammals, birds, and/or human health.
Uses of Sediment Assessment Tools

- Help interpret the significance of contaminant concentrations in marine and estuarine sediments.
- Determine areas where further, more in-depth investigations should be carried out.
- Monitor trends in contaminant concentrations over time.
- Track the influence of point and nonpoint sources.
Uses of Sediment Assessment Tools

- Identify contaminants of concern
- Prioritize areas for restoration
- Identify priority stormwater discharge sites for corrective action.
Interpretation of Lead data using lead/aluminum relationship.
Guidance Manual (Framework)

3 volume document, Collaborative Effort
Great Lakes, British Columbia and Florida
Planning a Sediment Assessment Survey

- Identify Sediment Quality Issues and Concerns
- Evaluate Existing Sediment Quality Data
- Develop a QAPP and Implement a Sampling Plan for a Detailed Site Investigation (Goals: Determine Magnitude and Extent of Contamination and Delineation)
- Make Decisions Regarding the Need for Remediation
THE SEDIMENT QUALITY
“QUADRAD”

- Sediment Chemistry
- Bioaccumulation Tests/Fish Tissue Analysis
- Sediment Toxicty
- Benthic Community Surveys
Drawing Conclusions

Potential Conclusions

<table>
<thead>
<tr>
<th>Chem</th>
<th>Tox</th>
<th>Benthic</th>
<th>Bio</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Sediment contamination present and contributing to toxicity, benthic impairment, and bioaccumulation.

| - | - | - | + |

Bioaccumulation has potential to impact higher trophic levels, but not impacting benthic community. Source of contamination undetermined.

| + | - | - | + |

Bioaccumulation has potential to impact higher trophic levels, but not impacting benthic community. Sediment likely the source.

| - | + | - | + |

Bioaccumulation has potential to impact higher trophic levels. Unmeasured factors influencing toxicity. Source of contamination undetermined.
Summary

- Recommend Use of Multiple Lines of Evidence for Sediment Assessment
- Make Use of Technical Guidance Manuals that are Available
- Decision-Making is a Complex Process, but can be Simplified by Collecting the Right Information. Make sure you have appropriate endpoints and normalizers.
Contact Information

www.dep.state.fl.us/water/monitoring.htm

Gail M. Sloane/Thomas L. Seal
2600 Blair Stone Road MS 3525
Tallahassee Fl, 32399-2400
850-245-8512/850-245-8514
Gail.Sloane@/Thomas.Seal@DEP.STATE.FL.US
Evaluation of Sediment Chemistry Results

- Analysis of Chemical Concentrations in Sediment and Pore Water
- Comparison to Sediment Quality Guidelines (Screening Purposes Only)
- Comparison to Regulatory Guidelines
- Use in Human Health and Ecological Risk Assessments
- Simultaneously Extracted Metals (SEM) minus Acid Volatile Sulfide (AVS) Analysis
Sediment Chemistry - Advantages

- Provides direct information on presence of contaminants of concern
- Standard Methods available for many chemicals
- Useful in tracking down and eliminating source of contamination
Sediment Chemistry - Disadvantages

- Does NOT provide direct information regarding impacts and effects of contaminated sediments.
- Can be fairly expensive
- Matrix interferences may impact detection limits and usability of data
- Lack of Standard Methods for Emerging Chemicals
- Important chemicals may be missed
Whole Sediment Toxicity Tests

- Exposure of benthic organisms to sediment samples in the laboratory and response endpoints are evaluated.
- 2 different species (e.g., Hyallea, Chironomus, Daphnia, etc) and two different endpoint (e.g., growth, survival, reproduction, etc.) are recommended.
- Comparison of results to reference site or control sediments.
Sediment Toxicity - Advantages

- Direct indication of impact and effects on aquatic organisms
- Standard methods and evaluation procedures available
- Sensitivity to impact of mixtures and/or unmeasured chemicals
Sediment Toxicity - Disadvantages

- Field collected sediments are manipulated which may impact their integrity and toxicity
- Results may be less relevant than in situ type tests
- Can’t discriminate impacts of individual chemicals (causality)
- Organism sensitivity varies on organism and contaminant class
- Long-term and inter-generational effect tests can be expensive
- Results influenced by physical properties of sediments in additional to chemical composition
Benthic Community Assessments

- An evaluation of the number and diversity of sediment-dwelling organisms
- Test sites compared to reference sites
- Evaluation of the identity, abundance, and distribution of species present in a sediment sample
- Variety of metrics are available for evaluation data from these assessments
Benthic Community Assessments - Advantages

- Direct evaluation of in situ effects of contaminated sediments
- Benthic Organisms are “continuous monitors” of sediment health
- Assessments focus on indigenous populations with direct impact to overall health of the aquatic ecosystem
Benthic Community Assessments - Disadvantages

- Lack of standardized methods for collecting and processing samples
- Benthic Communities are influenced by chemical, physical, and hydrologic properties of the sediments and sampling site
- High variance in samples requires large number of samples and large volumes to be collected
- Can’t discriminate impacts of individual chemicals (causality)
- Numerous metrics available, which makes interpretation of data complex
Bioaccumulation Assessments

- In-situ and/or Ex-situ tests to determine contaminant uptake by organisms (benthic organisms, fish, birds, etc.)
- Used at sites where contamination by bioaccumulative chemicals (PAHs, PCBs, mercury, dioxins/furans, etc.)
- Used in conjunction with sediment chemistry and bioaccumulation models
- Results compared to reference sites and/or regulatory benchmarks
Bioaccumulation Assessments - Advantages

- Availability of standard methods
- Measurement of contaminants uptake by organisms.
- Can include in situ and/or ex-situ tests
- Can target site-specific contaminants
- Useful in tracking down and eliminating source of contamination
Bioaccumulation Assessments

Disadvantages

- Very Expensive
- Collection of required mass of tissue from in-situ organisms is cumbersome
- Field collected sediments for laboratory tests are manipulated which may impact their integrity and bioaccumulation potential
- Few benchmarks exist for decision making based on tissue concentrations