2020 Integrated Water Quality Assessment for Florida: Sections 303(d), 305(b), and 314 Report and Listing Update

Division of Environmental Assessment and Restoration Florida Department of Environmental Protection

June 2020

This Page Intentionally Blank.

Letter to Floridians

FLORIDA DEPARTMENT OF Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, FL 32399-2400 Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Noah Valenstein Secretary

June 16, 2020

Dear Floridians:

It is with great pleasure that we present to you the 2020 Integrated Water Quality Assessment for Florida. This report meets the Federal Clean Water Act reporting requirements; more importantly, it presents a comprehensive analysis of the quality of our waters. This report would not be possible without the monitoring efforts of organizations throughout the state, including state and local governments, universities, and volunteer groups who agree that our waters are a central part of our state's culture, heritage, and way of life.

In Florida, monitoring efforts at all levels result in substantially more monitoring stations and water quality data than most other states in the nation. These water quality data are used annually for the assessment of waterbody health by means of a comprehensive approach. Hundreds of assessments of individual waterbodies are conducted each year. Additionally, as part of this report, a statewide water quality condition is presented using an unbiased random monitoring design. These efforts allow us to understand the state's water conditions, make decisions that further enhance our waterways, and focus our efforts on addressing problems.

The department implements a wide range of programs to protect and restore Florida's surface waters. At the heart of these efforts, particularly in identifying water quality problems and establishing restoration objectives, is the Division of Environmental Assessment and Restoration. Throughout this report you will find links to resources such as interactive maps that present information on water quality trends and strategies and activities underway to benefit water quality.

Florida's rivers, streams, lakes, estuaries, and coastal waters are spectacularly beautiful. More than that, they are essential natural resources, supplying the water necessary for aquatic life, both large and microscopic; drinking water; recreation; industry; fishing and shellfish harvesting; and agriculture. Protecting these abundant water resources, supporting restoration efforts, and preserving them for the future is your responsibility and ours.

We encourage all those interested in Florida's waterways to read this report, gain a better understanding of Florida's water quality conditions, and engage in local efforts to protect and restore water quality. It has been a pleasure for us to compile this information for your use.

Regards,

Julie Espy, Director Division of Environmental Assessment and Restoration

Table of Contents

Letter to Floridians	3
List of Acronyms and Abbreviations	10
Executive Summary	14
Introduction	19
Chapter 1: Issues of Environmental Interest and Water Quality Initiativ	ves21
Monitoring of Emerging Contaminants (ECs) and Pesticides	
Testing for Pesticides in Surface Waters	
Implementing and Expanding Microbial Source Tracking (MST)	24
Using Chemical Wastewater Tracers to Identify Pollutant Sources	25
Monitoring of Harmful Algal Blooms (HABs)	
Monitoring of Per and Polyfluoroalkyl Substances (PFAS)	28
Revising Florida's Water Quality Standards	29
Revisions to Human Health–Based Criteria (HHC) for Surface Water Quality .	29
New Surface Water Quality Classification (Class I-Treated)	29
Triennial Review (TR) of Florida's Water Quality Standards	30
Completing the South Florida Canal Aquatic Life Study	30
Chapter 2: Statewide Probabilistic and Trend Assessments	32
Background	32
Water Resources Monitored	32
Summary of Status Network Surface Water Results	33
Introduction	33
Results for Rivers, Streams, Canals, Large Lakes, and Small Lakes	38
Sediment Quality Evaluation	44
Discussion of Rivers, Streams, Canals, Large Lakes, and Small Lakes	47
Summary of Status Network Groundwater Results	47
Discussion of Confined and Unconfined Aquifers	51
Water Quality Trend Detection	51
Periods of Record	51
Monotonic and Step Trends	51
Seasonality	52
Surface and Groundwater Trends for Individual Stations	53
Surface Water Results	
Indicators that May Be Exhibiting Statewide Trends	61
Statewide Surface and Groundwater Trends	
Introduction	64

Overview of Change Analysis	64
Change Analysis Test Results	66
Synthesis of Trend Analyses Results	68
Chapter 3: Designated Use Support in Surface Waters	70
Background	
303(d) Listed Waters	71
Assessment Results	72
Impairment Summary	76
Biological Assessment	80
Delisting	81
Drinking Water Use Support	81
Overlap of Source Water Areas and Impaired Surface Waters	83
Chapter 4: TMDL Program and Priorities	85
Chapter 5: BMAP Program	88
Chapter 6: Groundwater Monitoring and Assessment	92
Groundwater Quality Issues and Contaminants of Concern, Including	
Potable Water Issues	
<i>VOCs</i>	
SOCs	
Nitrate	
Primary Metals	
Saline Water (Sodium)	
Radionuclides	
Summary of Groundwater Contaminant Sources	
Petroleum Facilities	
Drycleaning Solvent Facilities Waste Cleanup and Monitoring Sites	
Nonpoint Sources	
Groundwater–Surface Water Interaction	
Setting and Pathways	
Groundwater Influence on Impaired Surface Waters	
References	
Appendices	
Appendix A: Selected Pesticide Analyte Detections and Exceedances	
Appendix B: Change Analysis Results Output	
Appendix C: Water Quality Classifications	
Appendix D: Section 314 (CWA) Impaired Lakes in Florida, Group 1–5 B	asins116

Lake Trends for Nutrients	116
Appendix E: Strategic Monitoring and Assessment Methodology for Surface	Water 133
FWRA	133
IWR	133
Watershed Management Approach	133
Tracking Improvements Through Time	136
Determination of Use Support	136
Data Management	140
Use and Interpretation of Biological Results	142
Appendix F: IWR Methodology for Evaluating Impairment	146
Evaluation of Aquatic Life–Based Use Support	146
Evaluation of Primary Contact and Recreation Use Support	147
Evaluation of Fish and Shellfish Consumption Use Support	147
Evaluation of Drinking Water Use Attainment	148
Evaluation and Determination of Use Attainment	148
Delisting	154
Appendix G: IWR Guidance for Delisting WBIDs for Nutrients	155

List of Tables

Table 2.1. Summary of surface water resources assessed by the Status Network's probabilistic monitoring, 2016–18	34
Table 2.2a. Nutrient indicators used to assess river, stream, and canal resources	
Table 2.2b. Nutrient indicators used to assess lake resources	
Table 2.2c. DO thresholds used to assess surface water resources	36
Table 2.2d. Additional indicators for aquatic life and recreation use with water quality thresholds	
Table 2.3a. Explanation of terms used in Tables 2.3b through 2.3f	38
Table 2.3b. Statewide percentage of rivers meeting threshold values for indicators calculated using probabilistic monitoring design	
Table 2.3c. Statewide percentage of streams meeting threshold values for indicators calculated using probabilistic monitoring design	40
Table 2.3d. Statewide percentage of canals meeting threshold values for indicators calculated using probabilistic monitoring design	41
Table 2.3e. Statewide percentage of large lakes meeting threshold values for indicators calculated using probabilistic monitoring design	42
Table 2.3f. Statewide percentage of small lakes meeting threshold values for indicators calculated using probabilistic monitoring design	43
Table 2.4a. DEP freshwater lake sediment contaminant thresholds for metals	45
Table 2.4b. Statewide percentage of large lakes meeting sediment contaminant threshold values, 2016–18	46
Table 2.4c. Statewide percentage of small lakes meeting sediment contaminant threshold values, 2016–18	46
Table 2.5. Status Network physical/other indicators for potable water supply for groundwater with water quality thresholds	48
Table 2.6a. Legend for terms used in Tables 2.6b and 2.6c	49
Table 2.6b. Statewide percentage of confined aquifer wells expected to meet threshold values for indicators calculated using probabilistic monitoring design	50
Table 2.6c. Statewide percentage of unconfined aquifer wells expected to meet threshold values for indicators	51
Table 2.7a. Trends for specified analytes for 37 stations from the Surface Water Trend Monitoring Network associated with a USGS gauging station and adjusted for river flow	55
Table 2.7b. Trends for specified analytes for 39 stations from the Surface Water Trend Monitoring Network for which flow adjustment was not done	56
Table 2.8a. Trends for specified analytes for 22 stations in the Groundwater Trend Monitoring Network, Confined Aquifers	59
Table 2.8b. Trends for specified analytes for 27 stations in the Groundwater Trend Monitoring Network, Unconfined Aquifers	60

Table 2.9. Surface water trend summary (1999–2018)	61
Table 2.10. Groundwater trend summary (2009–19)	62
Table 2.11. Statewide significant change analysis results	
Table 3.1a. Distribution of assessment results by waterbody type and assessment category (number of WBIDs)	71
Table 3.1b. Fifteen most frequently identified impairments by waterbody type	72
Table 3.2a. Assessment results for fecal indicator bacteria by waterbody type and assessment category (number of WBIDs)	73
Table 3.2b. Assessment results for nutrients by waterbody type and assessment category (number of WBIDs)	74
Table 3.3a. Miles of rivers/streams impaired by cause	
Table 3.3b. Acres of lakes impaired by cause	78
Table 3.3c. Acres of estuaries impaired by cause	79
Table 3.3d. Miles of coastal waters impaired by cause	
Table 3.4. Distribution of biological assessment results by bioassessment method	81
Table 3.5. Waterbodies designated for drinking water use by assessment category (results for assessments including criteria for all use support)	82
Table 3.6. Summary of river/stream miles and lake/reservoir acres identified as impaired for fecal coliform, <i>E. coli</i> , or <i>Enterococci</i> overlapping source water areas of community water systems	84
Table 4.1. Overall timeline for long-term vision priorities (Fiscal Year [FY] 2016–FY 2022)	87
Table 5.1. Summary of BMAPs	
Table 6.1. Summary of recent exceedances of primary groundwater standards in treated and untreated samples from groundwater systems	95
Table B.1. Flowing water output	
Table B.2. Lakes output	
Table B.3. Confined aquifer output	
Table B.4. Unconfined aquifer output	
Table D.1. Impaired lakes of Florida	
Table E.1. Basin groups for the implementation of the watershed management approach, by DEP district	
-) =	
Table E.2. Periods for the development of the Planning, Study, and Verified Lists by cycle and basin group	. 135
cycle and basin group	
cycle and basin group Table E.3. Designated use support categories for surface waters in Florida Table E.4. Categories for waterbodies or waterbody segments DEP used in the 2020	. 137
cycle and basin group Table E.3. Designated use support categories for surface waters in Florida	. 137 . 137

Table E.7. Data excluded from IWR assessments	143
Table F.1. Sample counts for analytes having numeric criteria in the Florida Standards	149
Table F.2. SCI metrics for the Northeast, Big Bend, Panhandle, and Peninsula regions of Florida	153
Table F.3. BioRecon metrics for the Northeast, Panhandle, and Peninsula regions of Florida	154
Table F.4. BioRecon sample size and index range	154

List of Figures

Figure 2.1. Nutrient regions for river, stream, and canal resources	35
Figure 2.2. Bioregions for lake, river, and stream resources	37
Figure 2.3. Statewide Status Network river sample locations	39
Figure 2.4. Statewide Status Network stream sample locations	40
Figure 2.5. Statewide Status Network canal sample locations	41
Figure 2.6. Statewide Status Network large lake sample locations	42
Figure 2.7. Statewide Status Network small lake sample locations	43
Figure 2.8. Statewide Status Network confined aquifer well locations	49
Figure 2.9. Statewide Status Network unconfined aquifer well locations	50
Figure 2.10. Surface Water Trend Network sites	54
Figure 2.11. Groundwater Trend Network sites	58
Figure 2.12. Florida mean annual precipitation, 1998–2019	63
Figure 2.13. Florida mean annual air temperature, 1998–2019	64
Figure 3.1a. Results of Florida's surface water quality assessment: EPA assessment categories for fecal indicator bacteria	75
Figure 3.1b. Results of Florida's surface water quality assessment: EPA assessment categories for nutrients	76
Figure 6.1. Statewide summary of PWS with primary MCL exceedances reported in the recent two-year period	94

List of Charts

Chart G.1. NNC delisting process for algal mats and macrophytes	155
Chart G.2. NNC delisting process for chlorophyll <i>a</i> , TN, TP, and nitrate-nitrite	156
Chart G.3. NNC delisting process for historic chlorophyll a	157
Chart G.4. NNC delisting process for nutrients-other information	158
Chart G.5. NNC delisting process for TSI/historic TSI	159
Chart G.6. Study List (303[d] list) removals for Assessment Category 4d DO assessments	160

List of Acronyms and Abbreviations

μg/L	Micrograms Per Liter
μg/kg	Micrograms Per Kilogram
μS/cm	MicroSiemens Per Centimeter
AEQA	Aquatic Ecology and Quality Assurance (Section)
AFFF	Aqueous Film Forming Foams
AGM	Annual Geometric Mean
ALK	Total Alkalinity
ATAC	Allocation Technical Advisory Committee
BDL	Below Detection Limit
BioRecon	Biological Reconnaissance
BMAP	Basin Management Action Plan
BMP	Best Management Practice
BOD	Biochemical Oxygen Demand
BRL	Banana River Lagoon
Ca	Calcium
CaCO ₃	Calcium Carbonate
Cb	Confidence Bounds
CERCLA	Comprehensive Environmental Response Compensation and Liability Act
CFU	Colony-Forming Unit
CHAN	Change Analysis
CHNEP	Charlotte Harbor National Estuary Program
Chl-a	Chlorophyll <i>a</i>
Cl	Chloride
cm	Centimeter
CO_2	Carbon Dioxide
CWA	Clean Water Act
dbHydro	Database Hydrologic (South Florida Water Management District Database)
DEAR	Division of Environmental Assessment and Restoration
DEP	Florida Department of Environmental Protection
Diff.	Difference
DO	Dissolved Oxygen
DOC	Dissolved Organic Carbon
DWRA NPS	Division of Water Restoration Assistance Nonpoint Source Section
Е	Early
EC	Emerging Contaminant
E. coli	Escherichia coli
Entero	Enterococci
EPA	U.S. Environmental Protection Agency

ERC	Environmental Regulation Commission
Est.	Estimate
F.A.C.	Florida Administrative Code
FC	Fecal Coliform
FDACS	Florida Department of Agriculture and Consumer Services
FDOH	Florida Department of Health
FIB	Fecal Indicator Bacteria
F.S.	Florida Statutes
FWC	Florida Fish and Wildlife Conservation Commission
FWRA	Florida Watershed Restoration Act
FWRI	Fish and Wildlife Research Institute
FY	Fiscal Year
GIS	Geographic Information System
НА	Habitat Assessment
HAB	Harmful Algal Bloom
HAL	Health Advisory Levels
HDG	Human Disturbance Gradient
HHC	Human Health–Based Criteria
HUC	Hydrologic Unit Code
IRL	Indian River Lagoon
ISD	Insufficient Data
ISE	Insufficient Evidence
IWR	Impaired Surface Waters Rule
Κ	Potassium
L	Late
LVI	Lake Vegetation Index
LVS	Linear Vegetation Survey
MCL	Maximum Contaminant Level
MDL	Method Detection Limit
Mg	Magnesium
mg/kg	Milligrams Per Kilogram
mg/L	Milligrams Per Liter
mL	Milliliter
MPN	Most Probable Number
MS4	Municipal Separate Storm Sewer System
MST	Microbial Source Tracking
Ν	Nitrogen
n	Number
NA	Not Applicable
Na	Sodium

NEEPP	Northern Everglades and Estuaries Protection Program
NELAC	National Environmental Laboratory Accreditation Conference
ng/L	Nanograms Per Liter
NHD	National Hydrography Dataset
NNC	Numeric Nutrient Criteria
NO ₃	Nitrate
NO ₃ -NO ₂	Nitrate-Nitrite
NPDES	National Pollutant Discharge Elimination System
Nt	No Trend
OAWP	Office of Agricultural Water Policy (FDACS)
OC	Organochlorine
OFS	Outstanding Florida Spring
OPO ₄	Orthophosphate
Р	Phosphorus
p Value	Probability Value
PAHs	Polycyclic Aromatic Hydrocarbons
PCBs	Polychlorinated Biphenyls
PCU	Platinum Cobalt Unit
PEC	Probable Effects Concentration
PFAS	Per and Polyfluoroalkyl Substances
PFOA	Perfluorooctanoic Acid
PFOS	Perfluorosulfonic Acid
ppb	Parts Per Billion
PQL	Practical Quantitation Limit
PRC	Performance Reference Compound
PRP	Potentially Responsible Parties
PWS	Public Water System
QA	Quality Assurance
QC	Quality Control
qPCR	Quantitative Polymerase Chain Reaction
RAP	Reasonable Assurance Plan
ROC	Regional Operations Center
RPS	Rapid Periphyton Survey
SBIO	Statewide Biological Database
SC	Specific Conductance
SCI	Stream Condition Index
SERCC	Southeast Regional Climate Center
SEAS	Shellfish Environmental Assessment Section
SFY	State Fiscal Year
SK	Seasonal Kendall

SMP	Strategic Monitoring Plan
SO_4	Sulfate
SOC	Synthetic Organic Chemical
SOP	Standard Operating Procedure
spp.	Species
SS	Sen Slope
SSAC	Site-Specific Alternative Criterion
STCM	Storage Tank Contamination Monitoring
STORET	Storage and Retrieval (Database)
SWAPP	Source Water Assessment and Protection Program
TDS	Total Dissolved Solids
TEC	Threshold Effects Concentration
Temp	Temperature
Th-232	Thorium 232
TKN	Total Kjeldahl Nitrogen
TMDL	Total Maximum Daily Load
TN	Total Nitrogen
TOC	Total Organic Carbon
ТР	Total Phosphorus
TR	Triennial Review
TSI	Trophic State Index
U-238	Uranium 238
USGS	U.S. Geological Survey
VOC	Volatile Organic Compound
WAS	Watershed Assessment Section
WBID	Waterbody Identification (Number)
WET	Watershed Evaluation and TMDL (Section)
WIN	Watershed Information Network
WL	Water Level
WMD	Water Management District
WPCS	Watershed Planning and Coordination Section
WQETP	Water Quality Evaluation and Total Maximum Daily Load Program
ZOD	Zone of Discharge

Executive Summary

Contents

- The **Introduction** describes the federal assessment and reporting requirements met by this report.
- Chapter 1 summarizes current issues of environmental interest and ongoing water quality initiatives.
- Chapter 2 summarizes the 2016–18 water quality results from the Status and Trend Monitoring Networks and describes long-term trends in surface water and groundwater quality.
- **Chapter 3** summarizes significant surface water quality findings for strategic monitoring, including the attainment of designated uses.
- **Chapter 4** discusses the state's Total Maximum Daily Load (TMDL) Program and priorities.
- Chapter 5 discusses the state's Basin Management Action Plan (BMAP) Program.
- **Chapter 6** presents significant groundwater quality findings, summarizes groundwater contaminant sources, and characterizes groundwater–surface water interaction.
- The **Appendices** contain important background information and supporting data.

Purpose

This report provides an overview of the status and overall conditions of Florida's surface water and groundwater quality. It also addresses the Section 303(d), 305(b) and 314 reporting requirements of the federal Clean Water Act (CWA). Section 305(b) requires each state to report every two years to the U.S. Environmental Protection Agency (EPA) on the condition of its surface waters, Section 303(d) requires each state to report on its impaired waterbodies (those not meeting water quality standards), and Section 314 requires states to report on the status and trends of significant publicly owned lakes. Using the information from all the states, EPA provides the U.S. Congress with a national inventory of water quality conditions and develops priorities for future federal actions to protect and restore aquatic resources.

Issues of Environmental Interest and Water Quality Initiatives

Chapter 1 discusses current issues of environmental interest and ongoing water quality initiatives, including the following:

- Carried out a pilot project designed to examine the presence of priority emerging contaminants (ECs).
- Estimated the extent of Florida's surface waters potentially affected by pesticides. **Appendix A** includes a table summarizing detections and exceedances of 108 pesticides and degradants in a project jointly implemented by the Florida Department of Environmental Protection (DEP) and Florida Department of Agriculture and Consumer Services (FDACS).

- Continued the implementation of microbial source tracking (MST) to investigate and identify potential sources of elevated fecal indicator bacteria in waterbodies.
- Continued the use of chemical wastewater tracers, such as sucralose, to identify pollutant sources and trends in the environment, and to differentiate between natural and man-made sources.
- Continued the monitoring of freshwater harmful algal blooms (HABs).
- Assessed per and polyfluoroalkyl substances (PFAS) around Florida's fire college sites and nearby drinking water wells.
- Initiated a statewide fish consumption survey under contract with the University of Florida's Bureau of Economic and Business Research Survey Research Center. When completed, the results of the survey will be used to revise human health-based water quality criteria.
- Formally initiated the Triennial Review (TR) of Florida's water quality standards on March 29, 2019, through the publication of Notices of Rule Development; held three public hearings to solicit input on the scope of the TR in May 2019; and presented proposed revisions at four public workshops held in November 2019.
- Held public meetings on the preliminary results from the South Florida Canal Aquatic Life Study in Ft. Myers and West Palm Beach in February 2020.

Statewide Probabilistic and Trend Monitoring Results

The Status Monitoring Network uses an EPA-designed probabilistic strategy to estimate, with known confidence, the quality of fresh water in Florida, including rivers, streams, canals, lakes, and groundwater resources. DEP collects standard physical/chemical and biological data in these waters and assesses the water quality health of each resource throughout the state each year. Analyses in this report are provided for data collected from 2016 to 2018. Additionally, analyses are provided for surface and groundwater data collected from 2000 to 2003, compared with those collected from 2015 to 2017 for surface water, and from 2016 to 2018 for groundwater.

The Trend Monitoring Network consists of 76 flowing surface water stations (e.g., rivers and streams) and 49 groundwater stations (47 wells and 2 springs) located throughout Florida that are sampled either monthly or quarterly. These data are used to identify water quality changes over time (i.e., trends). DEP collects a suite of physical/chemical and biological data similar to that collected at the Status Monitoring Network at these trend stations. Trend analyses for surface

water stations were conducted on data collected from 1998 to 2018, and for groundwater on data collected from 2009 to 2019.

These analyses indicate that the main impacts to Florida's ground and surface waters are from nutrients and fecal indicator bacteria (FIB). Probabilistic analyses of the state's lake and flowing water resources using 2016 to 2018 data indicate that nutrient enrichment is most prevalent in lakes and canals, while the FIB *Escherichia coli (E. coli)* is most prevalent in streams, with 28 % of the state's stream miles failing the threshold for this indicator. The probabilistic analyses for groundwater for the same period show total coliform bacteria, in both confined and unconfined aquifers, as the potable water indicator with the highest failure rate, with 14 % of wells expected to have failures of the threshold.

Data analyses of trends show that while nutrient loads may be decreasing in flowing surface waters, lakes were found to have slightly increasing total phosphorus (TP) and a more pronounced increase in chlorophyll *a*. No significant statewide FIB trends were found for the surface water resources. Groundwater trend analyses, in association with a review of climate data for the periods of record, provide additional insight into these nutrient results. While groundwater showed no change in nutrients, pH decreases were observed. For surface water, pH decreased in flowing waters, yet increased in lakes.

A likely driver for the surface and groundwater pH changes is the documented increase in rainfall over the periods of record. The interaction of precipitation with atmospheric carbon dioxide (CO₂) produces carbonic acid, a known rock-weathering agent. As limestone dissolves, the buffering capacity and pH of associated waters are known to increase. Because of the interconnection between surface and groundwater in Florida lakes and the relatively long residence time of water, increased limestone dissolution may be leading to the observed increase in lake pH. Also, limestone dissolution may liberate TP from the rock matrix, thus explaining the observed increase in lakes.

Designated Use Support in Surface Waters

Chapter 3 summarizes the state's designated use support determinations and results based on surface water quality assessments performed under the Impaired Surface Waters Rule (IWR), Chapter 62-303, Florida Administrative Code (F.A.C.). **Appendix C** lists the state's water quality classifications. This report summarizes results for those assessments performed through 2019, including the third cycle for Basin Groups 2 through 5 and the fourth cycle for Basin Group 1.

Based on the assessments performed, DEP assessed 4,209 waterbody segments and found 1,841 were impaired. Of these impairments, 1,136 segments required a TMDL. The most frequently identified causes of impairment included DO, bacteria, and nutrients.

Appendix D lists over 187 publicly owned lakes identified as impaired, for which TMDLs will be required or are under development. **Appendices E** and **F** contain more information on biological assessment methodologies. **Appendix G** outlines the delisting process under the IWR.

TMDL Program and Priorities

TMDLs, discussed in **Chapter 4**, must be developed for waterbody segments placed on DEP's Verified List of Impaired Waters. They establish the maximum amount of a pollutant that a waterbody can assimilate without causing exceedances of water quality standards. In Florida, most nutrient TMDLs are adopted as site-specific Hierarchy 1 water quality criteria, as defined in the numeric nutrient criteria (NNC) implementation document (DEP 2013a).

As of January 10, 2020, DEP has adopted a total of 447 TMDLs. Of these, 262 were developed for DO, nutrients, and/or un-ionized ammonia, 179 were developed for bacteria, and 5 were for other parameters such as iron, lead, and turbidity. In addition, the state has adopted a statewide TMDL for mercury, based on fish consumption advisories affecting over 1,100 waterbody segments.

Basin Management Action Plan (BMAP) Program

Chapter 5 provides information on adopted BMAPs. A BMAP is a framework for water quality restoration, containing local and state commitments to reduce pollutant loading through current and future projects and strategies. BMAPs contain a comprehensive set of solutions, such as permit limits on wastewater facilities, urban and agricultural best management practices (BMPs), and conservation programs designed to implement pollutant reductions established by a TMDL. These broad-based plans are developed with local stakeholders and rely on local input and commitment for development and successful implementation. BMAPs are adopted by DEP Secretarial Order and are legally enforceable. DEP's Florida Basin Management Action Plans website provides more information on BMAP restoration activities, including locations, status, and specifics on restoration projects.

Groundwater Monitoring and Assessment

Chapter 6 summarizes groundwater monitoring results for public water systems (PWS) from 2017 to 2019 and frequently monitored springs from 2018 through 2019. Overall, the water quality of the evaluated potable aquifers is good for the parameters monitored by DEP. Spring monitoring showed nitrate levels below the established drinking water standard but in excess of developed TMDLs.

DEP evaluated groundwater contaminants of concern using recent sampling data from PWS wells. Data from August 2017 through August 2019 showed that radionuclides (a natural condition), salinity (as sodium), and primary metals (mostly arsenic and lead) exceeded primary drinking water standards most often in untreated water (but not the water that is delivered to

customers, which meets drinking water standards). Nitrate remains the biggest issue in surface waters that receive significant inputs of groundwater, since it can cause excessive algal growth and can impair clear water systems, particularly springs.

Introduction

This report provides an overview of the status and overall conditions of Florida's surface water and groundwater quality. Under the federal Clean Water Act (CWA), the U.S. Environmental Protection Agency (EPA) and its state partners have developed an integrated assessment to address water quality monitoring strategies, data quality and quantity needs, and data interpretation methodologies. Florida uses this Integrated Report to report on whether water quality standards are being attained, document the availability of data for each waterbody segment, identify water quality trends, and provide management information for setting priorities to protect and restore Florida's aquatic resources. The report must be submitted to EPA every two years and meet the following requirements:

- Section 305(b) of the CWA requires states and other jurisdictions to submit water quality reports to the EPA. These 305(b) reports describe surface water and groundwater quality and trends, the extent to which these waters are attaining their designated uses (such as drinking water and recreation), and any major impacts to these water resources.
- Section 303(d) of the CWA also requires states to identify waters that are not supporting their designated uses, submit to EPA a list of these impaired waters (referred to as the 303[d] list), and develop total maximum daily loads (TMDLs) for them. A TMDL represents the maximum amount of a given pollutant that a waterbody can assimilate and still meet its designated uses.
- Section 314 of the CWA requires states to report on the status and trends of significant publicly owned lakes.

Federal guidance and requirements state that the following information should be provided:

- The extent to which the water quality of the state's waters provides for the protection and propagation of a balanced population of shellfish, fish, and wildlife and allows for recreational activities in and on the water.
- An estimate of the extent to which CWA control programs have improved or will improve water quality and recommendations for future actions.
- An estimate of the environmental, economic, and social costs and benefits needed to achieve CWA objectives and an estimate of the date for such achievements.
- A description of the nature and extent of nonpoint source pollution and recommendations needed to control each category of nonpoint sources.

• An assessment of the water quality of all publicly owned lakes, including lake trends, pollution control measures, and publicly owned lakes with impaired uses.

DEP's 2016 document, *Elements of Florida's Water Monitoring and Assessment Programs,* contains background information on Florida's water resources, monitoring and assessment approach, and water resource management programs.

Chapter 1: Issues of Environmental Interest and Water Quality Initiatives

The Florida Department of Environmental Protection (DEP) works with many different programs and agencies throughout the state to address issues and problems affecting surface water and groundwater quality and quantity. These responsibilities are implemented through a variety of activities, including planning, regulation, watershed management, the assessment and application of water quality standards, nonpoint source pollution management, ambient water quality monitoring, groundwater protection, educational programs, and land management. This chapter describes some major issues of environmental interest and ongoing water quality initiatives being undertaken primarily by DEP.

Monitoring of Emerging Contaminants (ECs) and Pesticides

There is public concern that unregulated contaminants, and their degradants, may be causing human health and ecological impacts as low levels of these compounds increasingly are being detected in water resources throughout the world. Commonly referred to as ECs, these contaminants include pharmaceuticals, personal care products, hormones, pesticides, detergents, plasticizers, and flame retardants. Some are introduced into the aquatic environment through discharges of treated wastewater, as standard wastewater treatment technologies do not remove many of these types of contaminants.

Based on recommendations from an internal workgroup, in 2009 DEP began developing lab methodologies for ultratrace-level analyses of compounds to be used as indicators for wastewater and pesticides. They include the artificial sweetener sucralose; the pharmaceuticals acetaminophen, carbamazepine, and primidone; and the pesticide imidacloprid. These compounds are hydrophilic, or attracted to water, and therefore may be highly mobile in the freshwater environment.

DEP's Division of Environmental Assessment and Restoration (DEAR) added wastewater tracers and imidacloprid to its Status and Trends Monitoring Networks (discussed in **Chapter 2**) to investigate the levels of ECs in Florida's fresh waters. DEAR sampled statewide for sucralose from both monitoring networks in 2012, and for sucralose, acetaminophen, carbamazepine, primidone, and imidacloprid from the Status Monitoring Network in 2015, 2016, and 2017. Results from these sampling events are provided in <u>Seal et al. (2016)</u> and <u>Silvanima et al. (2018)</u>.

In 2013, a DEP workgroup recommended a study to determine the potential biological effects of ECs on aquatic organisms by employing screening assays to detect ecological effects, such as estrogenic activity. The priority ECs were selected based on factors such as global presence, exposure to humans and wildlife, bioaccumulative and toxic effects, persistence in the environment, and suspected endocrine disruption. The main objective of the study was to evaluate novel sampling techniques and technologies, analytical methods, and toxicological

assays for ECs in Florida rivers. A complete writeup, including results, is found in <u>Hogue et al.</u> (2019).

The findings of the study are as follows:

- Sampling and chemical analyses for ECs are sensitive processes, in part because of the low laboratory detection limits, commonly less than 10 nanograms per liter (ng/L), used to determine the presence of these compounds. For this reason, chemical analyses are accompanied by lengthy quality control (QC) reports that must be carefully reviewed to determine data usability.
- For passive sampling devices, time-weighted averages of analyte concentrations are sufficient for determining biological exposure rates. To determine time-weighted average concentrations for these devices, the sampling rates (the uptake rate of a compound onto passive sampling material adjusted for flow dynamics) of individual compounds should be determined. Furthermore, performance reference compounds (PRCs) should be deployed with passive samplers so that site-specific uptake distributions can be determined for individual compounds.
- For test protocols that measure estrogenicity and androgenicity, the high level of color in Florida waters caused interference in detections. An increased understanding of site-specific sampling rates for estrogenic and androgenic compounds and further refinement of the laboratory methods used to determine estrogenicity and androgenicity are recommended for future studies.
- Future studies of ECs in Florida's waterbodies should focus on waterbodies directly affected by known sources of these substances (e.g., river segments continually impacted by wastewater overflows). This approach would reduce the burden of collecting and processing data by focusing on known contaminant sources.

Testing for Pesticides in Surface Waters

As part of a project jointly implemented by DEP and the Florida Department of Agriculture and Consumer Services (FDACS), 42 surface waterbodies were selected for pesticide sampling in 2018 based on land use criteria. A total of 254 samples were collected and tested for 108 pesticides and pesticide degradants (**Appendix A**). As in previous years, there were frequent detections of numerous pesticides. In 2017, very few detections approached the EPA aquatic life benchmarks. However, in 2018, 3

insecticides—aldicarb, imidacloprid and malathion—were detected above EPA aquatic life benchmarks for invertebrates, with imidacloprid frequently found above the chronic aquatic life benchmark for invertebrates. These findings resulted from, in part, EPA's 2017 lowering of imidacloprid's aquatic life benchmark for invertebrates from 34,500 to 385 ng/L for acute effects and from 1,050 to10 ng/L for chronic effects. Additionally, in 2018, detections of the herbicides atrazine and imazapyr exceeded EPA's aquatic life benchmarks.

Of 47 herbicides and 2 herbicide degradants under analysis, 2,4-D, atrazine, bentazone, dithiopyr, fluridone, imazapyr, metolachlor and oxadiazon were found in 50 % or more of the samples. Six other herbicides (bromacil, diuron, glyphosphate and its degradants, hexazinone, norflurazon, and simazine) were detected in more than 25 % of the samples. Of 39 insecticides and 14 insecticide degradants analyzed, imidacloprid (62 % of 230 samples), fipronil and its 3 degradants (35 % of 208 samples), chlordane (14 % of 208 samples), chlorpyrifos ethyl (9 % of 208 samples), and malathion (8 % of 208 samples) had the highest detection rates.

Ten other insecticides (aldicarb, carbaryl, diazinon, dieldrin, disulfoton, ethion, ethoprop, methomyl, oxamyl, and terbufos) were detected in less than 5 % of the samples. Aldicarb and malathion were detected above EPA's chronic aquatic life benchmark once each. Imidacloprid was detected in 26 waterbodies above EPA aquatic life benchmarks. Eleven imidacloprid samples (5 %) had concentrations above the acute aquatic life benchmark, and 108 samples (47 %) had concentrations above the chronic aquatic life benchmark. Three of four fungicides were detected: metalaxyl (35 % of 208 samples), tebuconazole (20 % of 30 samples), and pyraclostrobin (4 % of 227 samples). None of these fungicide detected in previous years.

Overall, 33 herbicides or their degradants, 22 insecticides or their degradants, and 3 fungicides were detected. There were no detections for 50 of the 108 analytes. Sixty-three percent of samples had detectable levels of imidacloprid, and 47 % of all samples contained imidacloprid concentrations above EPA aquatic life benchmarks. These findings indicate imidacloprid is a widely used insecticide, and residues from its use often are found in the environment at levels exceeding benchmarks for aquatic invertebrates.

The herbicide atrazine was detected in 179 of 208 samples (86 % detection rate), and the herbicide imazapyr was detected in 149 of 193 samples (77 % detection rate). The high detection rates indicate that these herbicides are used widely, and their residues frequently are found in the environment, although typically at low levels. Atrazine and imazapyr were found to exceed EPA's aquatic life benchmarks in 2 of 208 and 1 of 193 samples collected, respectively.

In 2019, DEP's laboratory developed analytical methodologies for several recently developed pesticides, including the neonicotinoid insecticides acetamiprid, clothianidin, dinotefuran, and thiamethoxam. In August 2019, DEP added these insecticides to the analyte lists used for (1) the joint DEP–FDACS project, (2) the resampling of surface water Status and Trend Network stations (**Chapter 2**) with imidacloprid exceedances of EPA aquatic life benchmarks for invertebrates, and (3) strategic monitoring for determining impairment (**Chapter 3**).

Implementing and Expanding Microbial Source Tracking (MST)

Human and animal waste can enter surface waters through various means. Sources include combined sewer overflows, aged or leaking sewer lines, septic system overflow, urban runoff, and feces from livestock, wildlife, and pets. MST is a set of techniques used to investigate and identify potential sources of elevated levels of fecal indicator bacteria in a waterbody. Indicator bacteria such as fecal coliforms, *Escherichia coli (E. coli)*, and *Enterococci* commonly are found in the feces of humans and warm-blooded animals but also can grow freely in the environment. Standard microbiological culture–based methods cannot discriminate between enteric bacteria (from the gut of a host animal) and environmental bacteria (free-living and not associated with fecal waste or elevated health risks). MST is employed to distinguish between the many sources of fecal contamination, particularly to differentiate human from animal waste.

Listing a waterbody as impaired on the 303(d) list when there is no increased risk to human health creates unnecessary burdens for the Total Maximum Daily Load (TMDL) Program and others, including economic costs for local governments responsible for implementing those TMDLs. Knowing the potential source of contamination and origin of the bacteria allows everyone to focus their resources on solving the right problem more quickly.

To do that, DEP has devised a multipronged approach that fully uses the latest technologies available. These include the DEP Biology Program's development of a Molecular Biology Laboratory and the DEP Chemistry Program's development and validation of methods for chemical tracers. The Molecular Biology Laboratory offers real-time, quantitative polymerase chain reaction (qPCR) source marker analysis–based assays for humans, dogs, shorebirds, other birds, and ruminants. The molecular toolbox also includes EPA-patented qPCR markers for humans, cattle, and canines.

In addition, the laboratory implemented a method to distinguish DNA from live bacteria versus dead bacteria in a water sample. DEP will continue to evaluate additional source-specific markers and pathogen detection methods. The Molecular Biology group is working closely with other DEP programs to standardize the interpretation of qPCR results and establish meaningful thresholds for marker concentration in the context of human health risk. The improved and consistent interpretation of results will better inform stakeholders on mitigation and restoration strategies.

Using Chemical Wastewater Tracers to Identify Pollutant Sources

Monitoring for chemical tracers in the environment is a powerful tool for characterizing potential anthropogenic pollutants and helping to identify sources. As instrument technology and the scientific understanding of chemical tracers continue to improve, it is now possible in many situations to use laboratory techniques to help detect unique chemical tracers present in certain types of waste streams. Based on a weight-of-evidence approach, these tracers can help identify or eliminate potential pollutant sources and thus provide a "toolbox" for developing a preponderance of evidence for environmental investigations.

DEP currently uses a number of chemical tracers with uniquely desirable characteristics for identifying sources of industrial, agricultural, pharmaceutical, hydraulic fracturing, and other ECs. By analyzing samples for tracer compounds and other known environmental pollutants, the combined information has proven extremely useful in identifying specific sources and pollution trends. Commonly used human wastewater tracers include artificial sweeteners (sucralose) and pharmaceuticals (acetaminophen, ibuprofen, naproxen, carbamazepine, and primidone).

The compound sucralose (trade name Splenda[®]) is almost ideal as a tracer. It is present in virtually every domestic wastewater discharge at detectable levels (10 to 40 parts per billion [ppb]), does not occur naturally, has low toxicity, is highly soluble in water, is not effectively metabolized or removed by wastewater treatment processes, and persists in the environment (with a 1- to 2-year environmental half-life). DEP's monitoring of sucralose has helped identify sites for more intensive study, track contaminant migration routes in surface water and groundwater, and distinguish between natural and human sources of bacteria.

To obtain the greatest value from chemical tracer data, it is important to collect samples over time and under varying hydrologic or flow conditions. Multiple samples collected over time can help to establish trends and correct sampling site or process variability. The usefulness of chemical tracers can be amplified by monitoring for more than one tracer simultaneously—e.g., where investigators take advantage of half-life, treatment survivability, or other unique qualities of multiple tracer compounds. The presence of short-lived tracer compounds may provide temporal information, while the presence of tracer compounds known to be destroyed by wastewater treatment may indicate a raw wastewater source. Ultimately, all the chemical tracer data can be used together to render a decision based on the weight of evidence.

Although sucralose has proven to be a useful tracer of human wastewater, it also has limitations in some applications. For lakes with low water turnover rates, for example, sucralose's long environmental half-life means that concentrations can build up over time, making it difficult to identify specific areas of wastewater inputs. Additionally, because sucralose survives wastewater treatment processes, it is not useful for differentiating treated municipal wastewater from untreated wastewater derived from leaking sewer lines or even aggregate septic tank leachate. In such cases, acetaminophen and/or carbamazepine have proven useful. Both have shorter

environmental half-lives and may be effectively removed by treatment processes. Using tracers with different characteristics in conjunction with one another has allowed for better differentiation among sources.

In most cases chemical tracers are used as broad aggregate wastewater indicators rather than as an individual source identification tool. However, by using multiple tracers and trend data, coupled with MST tools, it may be feasible to identify specific sources. More generally, employing chemical tracers allows environmental investigators to better focus attention on specific areas of interest, without committing finite resources to remediate naturally occurring conditions.

Monitoring of Harmful Algal Blooms (HABs)

A HAB is a rapidly forming, dense concentration of algae, diatoms, or cyanobacteria (blue-green algae) that may pose a risk to human health through direct exposure, the ingestion of contaminated drinking water, or the consumption of contaminated fish or shellfish. Cyanobacteria pose a potential risk to aquatic ecosystems when present in large quantities, as their decomposition contributes to oxygen depletion, or hypoxia, which can lead to increased mortality in local populations. In addition, some toxins may be harmful to domestic animals, wildlife, and fishes. Even nontoxic blooms can create low oxygen levels in the water column and/or reduce the amount of light reaching submerged plants.

It is currently impossible to predict when a bloom will occur and whether it will be toxic, making response, monitoring, and communication on a bloom complicated. There are federal guidelines for cyanobacteria toxins in recreational waters, but blooms can change quickly, making the guideline thresholds difficult to use for bloom management decisions. By the time toxin results are available, they may no longer be representative of the current bloom conditions in the waterbody. Therefore, public outreach regarding cyanobacteria blooms uses a precautionary approach that minimizes risk by taking the most conservative action early, rather than waiting for more detailed information.

For example, if the water is green or otherwise highly discolored, assume it is unsafe: keep people, pets, and livestock out of the water, and do not use bloom water for spray irrigation. While this approach may result in some lost recreational opportunities, DEP believes it is better to err on the side of protecting the public from adverse health impacts, rather than basing action levels on results that may no longer be representative of the actual risk.

Some HAB species are condensed by wind and current to form a thick layer of surface scum along the shoreline. Other species fill the entire water column rather than floating at the surface. Still others move throughout the water column to take advantage of varying levels of nutrients and light. Changes in the weather can cause blooms either to rise to the surface or to drop lower in the water column and out of sight. Although it is well-known that elevated nutrients can cause HABs, other factors may exacerbate or mitigate the effects of those nutrients on algal growth. For instance, warm temperatures, reduced flow, wind-driven mixing of the water column and sediments, the absence of animals that eat algae, aquatic resource management practices (e.g., vegetation control on canal banks), and previous occurrences of blooms in an area may help to promote HABs where nutrients alone would not cause a bloom. Likewise, factors such as strong flow and heavy shading can prevent an algal bloom from occurring even where nutrients are elevated. Therefore, it is difficult to determine one single cause of all HABs.

Because most freshwater HABs are ephemeral and unpredictable, the state does not have a longterm freshwater HAB monitoring program that routinely samples fixed stations. Instead, DEP, the five water management districts (WMDs), Florida Department of Health (FDOH), Florida Fish and Wildlife Conservation Commission (FWC), and FDACS respond to HABs as soon as they are reported or observed. Nevertheless, DEP has implemented standard operating procedures (SOPs) for sampling cyanobacteria blooms and standardized forms for recording important information when investigating a bloom.

HAB response is coordinated in a manner that is complementary rather than duplicative. Each agency has identified staff to act as HAB contacts and as agency resources on issues related to bloom events. These contacts are referred to collectively as the <u>Algal Bloom Response Team</u>. When blooms are reported online, by phone or in person, or observed during normal fieldwork, staff contact one or more of the team members by email or phone to coordinate the appropriate follow-up actions.

Common ways to report HABs include DEP's online <u>Algal Bloom Reporting Form</u> and DEP's Algal Bloom Reporting Hotline ([1] 855–305–3903). For bloom response, DEP laboratory staff quickly identify the bloom species and determine whether the algae have the potential to produce toxins. DEP posts information on species composition and the level of toxins being produced to the DEP <u>Algal Bloom Dashboard</u>. This communication tool provides information on freshwater HABs and allows Algal Bloom Response Team members, other state and federal agencies, local governments, and the public to easily track bloom events, activities, and results.

Often, other water quality samples are collected along with the bloom identification sample, including chlorophyll and nutrient samples. The toxin, chlorophyll, and nutrient data are entered into DEP's <u>Watershed Information Network</u> (WIN) Database, and are publicly available. These water quality data also are used in the assessment and determination of impairment based on the Impaired Surface Waters Rule (IWR) (Chapter 62-303, Florida Administrative Code [F.A.C.]). Waterbodies deemed impaired are restored through the implementation of TMDLs and basin management action plans (BMAPs) (discussed in **Chapters 4** and **5**).

Because FDOH focuses on protecting public health, it takes a lead role when reported health incidents are associated with a bloom. When blooms affect waters permitted as public bathing

beaches or other areas where there is the risk of human exposure, the agency may post the waterbody with warning signs. These actions typically are directed out of the local county health department, most often after consultation with staff from FDOH's Aquatic Toxins Program. FDOH also follows up on reports of sick or dead pets that may have been exposed to a bloom, since these events may predict potential human health threats. In 2009, the FWC's Florida Wildlife Research Institute (FWRI) and FDOH published a *Resource Guide for Public Health Response to Harmful Algal Blooms in Florida*, which provides recommendations on the materials needed to develop plans for local public health response to HABs. In addition, FDOH's Caspio web tool contains historical bloom response documentation through July 2019, after which the agency began using DEP's Algal Bloom Dashboard as its primary source of bloom response information.

The FWC's <u>Fish Kill Hotline</u> is used for reporting all types of fish kills and can identify when an algal bloom is suspected to be the cause. FWC predominantly documents and, when possible, determines the cause(s) of fish and wildlife deaths. The agency focuses on managing the living resources. It also maintains a red tide monitoring program that provides weekly updates on current red tide conditions in Florida's coastal waters. FWC and FDACS share responsibilities for the management of shellfish harvesting waters. DEP coordinates with the FWRI HAB research team on estuarine bloom response.

Monitoring of Per and Polyfluoroalkyl Substances (PFAS)

PFAS comprises a group of synthetic chemicals in use since the 1940s. There is evidence that continued exposure to certain PFAS may lead to adverse health effects, including an increased risk of cancer. PFAS occurrence in the environment and detection in drinking water has been a concern for various states for many years, particularly in areas where these chemicals are manufactured. More recently, PFAS contamination has been found to be much more widespread than was originally understood. PFAS became a national environmental concern in 2018, evidenced by an increased number of meetings and conferences around the U.S. that were either dedicated to PFAS or had sessions devoted to PFAS, and by increased local and national press coverage. In February 2019, EPA announced a PFAS Action Plan as a response to the concerns of environmental scientists and the public about these persistent chemicals.

PFAS became a concern in Florida when monitoring indicated there could be groundwater contamination around sites where aqueous film–forming foams (AFFFs) have been used. AFFFs are firefighting foams that contain PFAS as major ingredients. Firefighting training facilities are heavy users of such foams, and their use could threaten the drinking water of nearby residences. The assessment of Florida's fire college sites for PFAS contamination, particularly for perfluorooctanoic acid (PFOA) and perfluorosulfonic acid (PFOS), began in the second half of 2018. DEP has developed and validated methods for the analysis of PFAS in water and soils. DEP and FDOH are targeting drinking water wells in the vicinity of impacted sites and providing

filters for wells with PFOA/PFOS concentrations at or above the health advisory level (HAL) of a combined total of 70 ng/L.

Revising Florida's Water Quality Standards

DEP made a number of revisions to Florida's water quality standards from 2016 to 2019, including those described below.

Revisions to Human Health–Based Criteria (HHC) for Surface Water Quality

In 2016, DEP initiated rulemaking to revise Florida's HHC. The rulemaking included updates to the current HHC and new criteria for 39 priority pollutants that did not previously have criteria. DEP conducted public workshops in May 2016 and received written comments from a wide variety of stakeholders. The Florida Environmental Regulation Commission (ERC) approved the HHC at a public hearing on July 26, 2016, in Tallahassee, but the rule revisions were administratively challenged by four parties. After an administrative hearing, the administrative law judge upheld DEP's proposed revisions, but three of the parties then appealed the judge's decision to a Florida District Court of Appeals.

Subsequently, on February 9, 2018, DEP formally withdrew the revisions to the HHC and simultaneously initiated rule development to update the criteria. Staff are working with the University of Florida's Bureau of Economic and Business Research Survey Research Center to conduct a statewide survey of fish consumption rates by Floridians. The results of the survey will be used to determine the amount and types of fish commonly eaten by Floridians to ensure the criteria will protect all citizens.

New Surface Water Quality Classification (Class I-Treated)

The 2016 Florida Legislature directed DEP to establish a new surface water classification for "treated potable water supplies" and reclassify certain waters to the new classification. As directed, DEP proposed the establishment of the new Class I-Treated, Treated Potable Water Supplies classification under Rule 62-302.400, F.A.C. DEP also revised the reclassification of the following six waterbodies from their existing Class III classification to the new category:

- Port St. Joe Canal (Gulf County).
- Alafia River (lower part) (Hillsborough County).
- Tampa Bypass Canal (Hillsborough County).
- Peace River (middle segment) (DeSoto County).
- Caloosahatchee River (middle segment) (Hendry County).

• Marco Lakes (Collier County).

Because the new classification includes potable water consumption as a designated use, this approach resulted in the new Class I-Treated classification having the same water quality criteria as Class I waters, except for fluorides, chlorides, dissolved solids, and nitrate, which are not derived using the risk-based targets used for other human health–based criteria. In addition to reclassifying these six waters in Rule 62-302.400, F.A.C., DEP incorporated maps of the reclassified waterbodies into the rule by reference.

DEP conducted rulemaking for the new surface water classification and reclassification of these waterbodies concurrently with the proposed revisions to HHC. Both were approved by the ERC during the July 26, 2016 hearing. However, the new classification and reclassifications are not yet in effect because the HHC criteria were withdrawn. Once revised HHC are adopted, DEP will submit the new HHC and the new Class I-Treated classification to EPA for review.

Triennial Review (TR) of Florida's Water Quality Standards

DEP formally initiated the TR on March 29, 2019, through the publication of Notices of Rule Development. DEP held public hearings to solicit input on the scope of the TR in Tallahassee (May 14), Hobe Sound (May 15), and Orlando (May 16), and presented proposed revisions at public workshops held in Tallahassee (November 4), Ft. Myers (November 5), Ft. Lauderdale (November 6), and Jacksonville (November 7).

Some of the proposed revisions include the following: (1) revision of the freshwater and marine cadmium criteria, (2) addition of cyanotoxin criteria, (3) revision of the turbidity criterion to include a narrative provision that better protects coral reef and hardbottom communities, (4) adoption of site-specific alternative criteria (SSAC) for dissolved oxygen (DO) for 11 waters previously listed as impaired because of natural conditions, (5) incorporation of compliance authorization provisions into Florida's water quality standards, and (6) revision of the document *Implementation of Florida's Numeric Nutrient Standards* (DEP 2013a).

Completing the South Florida Canal Aquatic Life Study

In 2016, DEP completed the South Florida Canal Aquatic Life Study, a comprehensive assessment of south Florida canals and their associated aquatic life. Numerous analyses of study data described existing canal conditions and evaluated factors influencing the aquatic life present. Initial analyses indicated that (1) the canals frequently did not meet Class III water quality criteria for DO and chlorophyll/nutrients, and (2) there was no consistent relationship between the biological communities and expected influencing factors (e.g., habitat quality and quantity, DO, nutrients, and flow). Subsequent analyses showed the canals had significant differences in water quality and biology, both locally and regionally, and provided additional insight into the more localized/site-specific nature of factors influencing the biological communities. DEP reported on the results in the document <u>Preliminary Results of the South</u>

Florida Canal Aquatic Life Study (Payne 2019). DEP held public workshops in Ft. Myers (February 19, 2020) and West Palm Beach (February 20, 2020) to present the study results to the public and take public comments.

Chapter 2: Statewide Probabilistic and Trend Assessments

Background

Initiated in 2000, DEP's probabilistic <u>Status Monitoring Network</u> (Status Network) provides an unbiased, cost-effective sampling of the state's water resources. Florida has adopted a probabilistic design so that the condition of the state's surface and groundwater resources can be estimated with known statistical confidence. Data produced by the Status Network fulfill CWA 305(b) reporting needs and complement CWA 303(d) reporting.

In addition, DEP has designed a <u>Trend Monitoring Network</u> (Trend Network) to monitor water quality changes over time in rivers, streams, canals, and aquifers (via wells). To achieve this goal, fixed locations are sampled at fixed intervals (monthly or quarterly). The Trend Network complements the Status Network by providing spatial and temporal information about water resources and potential changes from anthropogenic or natural influences, including extreme events (e.g., droughts and hurricanes).

Taking guidance from the EPA document, <u>Elements of a State Monitoring and Assessment</u> <u>Program (EPA 2003)</u>, DEP developed and annually updates the <u>Florida Watershed Monitoring</u> <u>Status and Trend Program Design Document</u> (DEP 2018a), which provides details of both monitoring networks.

Water Resources Monitored

The Status and/or Trend Monitoring Networks include the following four water resource categories (the *Design Document* [DEP 2018a] provides additional details on each of these resources):

- **Groundwater (confined and unconfined aquifers):** Groundwater includes those portions of Florida's aquifers that have the potential for supplying potable water or affecting the quality of current potable water supplies. However, this does not include groundwater that lies directly within or beneath a permitted facility's zone of discharge (ZOD) and water influenced by deep well injection (Class I and II wells).
- **Rivers and streams:** Rivers and streams include linear waterbodies with perennial flow, defined as waters of the state under Chapters 373 and 403, Florida Statutes (F.S.).
- **Canals (excluding drainage and irrigation ditches as defined below):** Canals include man-made linear waterbodies that are waters of the state. Chapter 312.020, F.A.C., provides the following definitions: A canal is a trench, the bottom of which is normally covered by water, with the upper

edges of its two sides normally above water. A channel is a trench, the bottom of which is normally covered entirely by water, with the upper edges of its sides normally below water. Drainage and irrigation ditches are man-made trenches dug for the purpose of draining water from the land, or for transporting water for use on the land, and are not built for navigational purposes.

• Lakes (Status Monitoring Network only): Lakes include natural bodies of standing water and reservoirs that are waters of the state and are designated as lakes and ponds on the U.S. Geological Survey (USGS) National Hydrography Dataset (NHD). This category does not include many types of artificially created waterbodies, or streams/rivers impounded for agricultural use or private water supply.

DEP does not use the Status or Trend Monitoring Network to monitor estuaries, wetlands, or marine waters.

Summary of Status Network Surface Water Results

Introduction

DEP uses the Status Network to report on surface water resource conditions for the entire state. This section summarizes the statewide results of the combined 2016 through 2018 assessments. Three years of data provide a larger sample size and increased confidence in statewide water resource assessments and data sufficiency for regional water resource assessments. The analysis protocols for the Status Network are provided in the <u>Status Network Data Analysis Protocols</u> document (DEP 2018b).

DEP used the Status Network to assess rivers, streams, canals, large lakes, and small lakes. **Table 2.1** summarizes the miles of rivers, streams, and canals, and acres and numbers of large and small lakes, for the waters assessed. The measurements for these resources are specific to the Status Network and may vary from those identified in other sections of this report. From 2016 through 2018, approximately 15 samples were collected annually from each resource, in each of 6 zones. The zones correspond to the state's 5 water management district (WMD) boundaries, with the South Florida WMD divided into eastern and western regions.¹

¹ See p. 14 of the *Florida Watershed Monitoring Status and Trend Program Design Document* (DEP 2018) for zone locations.

Table 2.1. Summary of surface water resources assessed by the Status Network's
probabilistic monitoring, 2016–18

The estimates in the table do not include coastal or estuarine waters. These calculations are from the 1:24,000 NHD.				
Assessed				
2,621 miles/4,218 kilometers				
15,465 miles/24,888 kilometers				
2,480 miles/3,990 kilometers				
Large Lakes1,739 lakes (959,339 acres/388,231 hectares)				
1,813 lakes (28,107 acres/11,374 hectares)				

Note: The estimates in the table do not include coastal or estuarine waters. These calculations are from the 1:24,000 NHD

The indicators selected for surface water reporting include *E. coli* bacteria, DO, total nitrogen (TN), total phosphorus (TP) and chlorophyll *a*. **Tables 2.2a** through **2.2d** summarize the indicators and their threshold values. See the <u>Design Document</u> (DEP 2018a) for a complete list of indicators used in the Status Monitoring Network.

The main source of information for these indicators is Chapter 62-302, F.A.C., which contains the surface water quality standards for Florida. DEP derived the water quality thresholds from the following:

- Rule 62-302.530, F.A.C., Criteria for Surface Water Classifications.
- Chapter 62-550, F.A.C., Drinking Water Standards.
- Implementation of Florida's Numeric Nutrient Standards (DEP 2013a).
- Technical Support Document: *Derivation of Dissolved Oxygen Criteria to Protect Aquatic Life in Florida's Fresh and Marine Waters* (DEP 2013b; modified 2019).
- Chapter 62-303, F.A.C., Identification of Impaired Surface Waters.
- Rule 62-520.420, F.A.C., Standards for Class G-I and Class G-II Ground Water.

It is important to note that the diversity of Florida's aquatic ecosystems results from a large natural variation in some water quality parameters. For example, surface waters dominated by groundwater inflows or flows from wetland areas may naturally have lower DO levels (see **Chapter 6**).

Table 2.2a. Nutrient indicators used to assess river, stream, and canal resources

mg/L = Milligrams per liter

NA = Not applicable; no numeric threshold. The narrative criterion in Paragraph 62-302.530(47)(b), F.A.C., applies.

¹ Not applied as criteria, but rather as a threshold used to estimate the impairment of state waters. These thresholds are used in the analysis of Status Monitoring Network data, based on single samples. The analysis and representation of these data are not intended to infer verified impairment, as defined in Chapter 62-303, F.A.C.

	TP Threshold ¹	TN Threshold ¹	
Nutrient Region ²	(mg/L)	(mg/L)	Designated Use
Panhandle West	≤ 0.06	≤ 0.67	Aquatic Life
Panhandle East	≤ 0.18	≤ 1.03	Aquatic Life
North Central	≤ 0.30	≤ 1.87	Aquatic Life
Peninsula	≤ 0.12	≤ 1.54	Aquatic Life
West Central	≤ 0.49	≤ 1.65	Aquatic Life
South Florida	NA	NA	Aquatic Life

Panhandle West Panhandle East North Central Peninsula West Central DEPA 50 South EZ Miles Created August 15, 2019 by Andy Woeber of the Watershed Monitoring Section, DEAR, DEP. 0 NMENTA The map content is a cartographic representation and is not intended for further analysis.

Figure 2.1. Nutrient regions for river, stream, and canal resources

Table 2.2b. Nutrient indicators used to assess lake resources

 $PCU = Platinum cobalt units; CaCO_3 = Calcium carbonate; \mu g/L = Micrograms per liter; mg/L = Milligrams per liter ¹ Not applied as criteria, but rather as a threshold used to estimate the impairment of state waters. These thresholds are used in the analysis of$ Status Monitoring Network data, based on single samples. The analysis and representation of these data are not intended to infer verified impairment, as defined in Rule 62-303, F.A.C. ¹ ² For lakes with color > 40 PCU in the West Central Nutrient Region (**Figure 2.1**), the TP threshold is 0.49 mg/L

Lake Color and Alkalinity	Chlorophyll <i>a</i> Threshold ¹ (µg/L)	TP Threshold ¹ (mg/L)	TN Threshold ¹ (mg/L)	Designated Use
Color > 40 PCU	≤ 20	$\leq 0.16^{2}$	≤ 2.23	Aquatic Life
Color ≤ 40 PCU and Alkalinity > 20 mg/L CaCO₃	≤ 20	≤ 0.09	≤ 1.91	Aquatic Life
Color ≤ 40 PCU and Alkalinity ≤ 20 mg/L CaCO ₃	≤6	≤ 0.03	≤ 0.93	Aquatic Life

Table 2.2c. DO thresholds used to assess surface water resources

¹Not applied as criteria, but rather as a threshold used to estimate the impairment of state waters. These thresholds are used in the analysis of Status Monitoring Network data, based on single samples. The analysis and representation of these data are not intended to infer verified impairment, as defined in Chapter 62-303, F.A.C.

² The DO threshold for lakes, rivers, streams, and canals depends on the bioregion (Figure 2.2).

	DO Threshold ¹	
Bioregion ²	(% saturation)	Designated Use
Panhandle	≥ 67	Aquatic Life
Big Bend	≥ 3 4	Aquatic Life
Northeast	≥ 3 4	Aquatic Life
Peninsula	≥ 3 8	Aquatic Life
Everglades	≥ 38	Aquatic Life

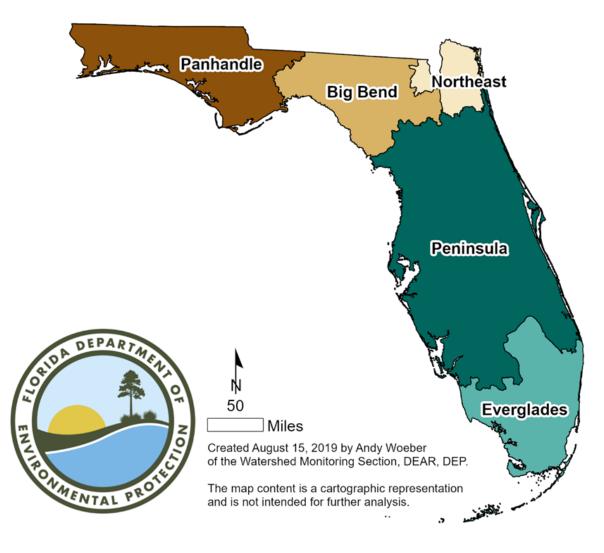


Figure 2.2. Bioregions for lake, river, and stream resources

Table 2.2d. Additional indicators for aquatic life and recreation use with water quality thresholds

 $\mu g/L =$ Micrograms per liter; Ml = Milliliters ¹ Not criteria, but rather a threshold used to estimate the impairment of state waters. These thresholds are used in the analysis of Status Monitoring Network data, based on single samples. The analysis and representation of these data are not intended to infer verified impairment, as defined in Chapter 62-303, F.A.C. The chlorophyll thresholds apply to rivers, streams, and canals only. Table 2.2b lists chlorophyll criteria for lakes.

Indicator/	
Aquatic Life and Recreational Use	
(Surface Water)	Threshold
Chlorophyll <i>a</i> ¹	\leq 20 μ g/L
E. coli	< 410 colonies/100mL

Results for Rivers, Streams, Canals, Large Lakes, and Small Lakes

The following pages present the statewide surface water Status Network results for rivers, streams, large lakes, and small lakes. For each resource, there is a map showing the sample site locations (**Figures 2.3** through **2.7**) and a table of the statewide results for each indicator for a particular resource (**Tables 2.3b** through **2.3f**). **Table 2.3a** explains the terms used in the statewide summary tables. These results, in addition to the regional results for each zone, are also available through an interactive ArcGIS online web application, <u>Status Network Report Card</u>.

Term	Explanation		
Analyte	Indicators chosen to assess condition of waters of state.		
Target Population	Estimate of actual extent of resource from which threshold results were calculated. Excludes percent of waters determined not to fit definition of resource type.		
Number of Samples	Number of samples used for statistical analysis.		
% Meeting Threshold	Percent estimate of target population that meets specific indicator threshold value.		
Meeting Threshold 95 % Confidence Bounds (CB)	Upper and lower bounds for 95 % confidence of percent meeting specific indicator threshold value.		
Assessment Period	Duration of probabilistic survey sampling event.		

Table 2.3a. Explanation of terms used in	n Tables 2.3b through 2.3f
--	----------------------------

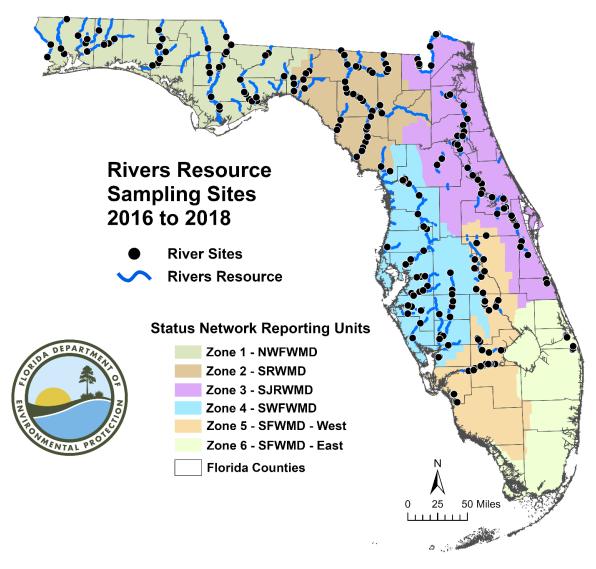


Figure 2.3. Statewide Status Network river sample locations

Table 2.3b. Statewide percentage of rivers meeting threshold values for indicators
calculated using probabilistic monitoring design

	Target			Meeting	
	Population	Number of	% Meeting	Threshold 95 %	Assessment
Analyte	(miles)	Samples	Threshold	СВ	Period
TN	2,621	265	75.4	71.4–79.4	2016-18
ТР	2,621	266	85.5	82.5-88.5	2016–18
Chlorophyll a	2,621	266	90.9	88.4–93.4	2016–18
<i>E. coli</i> Bacteria	2,621	263	92.1	88.9–95.4	2016–18
DO	2,621	266	93.9	91.2–96.6	2016-18

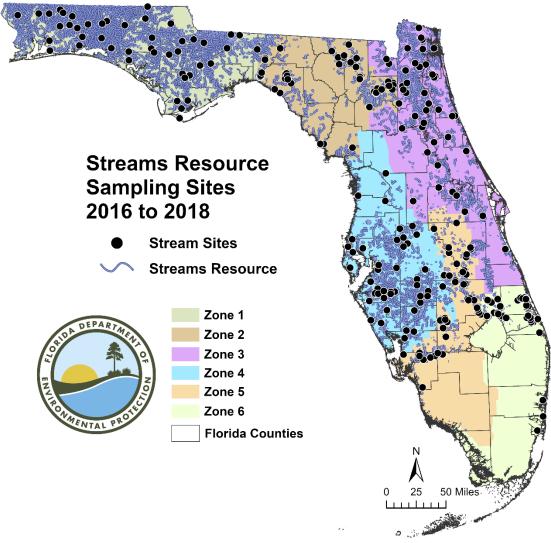


Figure 2.4. Statewide Status Network stream sample locations

Table 2.3c. Statewide percentage of streams meeting threshold values for indicators
calculated using probabilistic monitoring design

CB = Confidence bounds	The state of the s			3.6.1	
Analyte	Target Population (miles)	Number of Samples	% Meeting Threshold	Meeting Threshold 95 % CB	Assessment Period
TN	15,465	262	72.4	66.4-78.3	2016–18
ТР	15,465	262	87.0	84.1-89.9	2016–18
Chlorophyll a	15,465	264	98.0	96.8–99.3	2016–18
E. coli Bacteria	15,465	263	72.0	65.5–78.5	2016–18
DO	15,465	266	76.2	70.4-82.1	2016–18

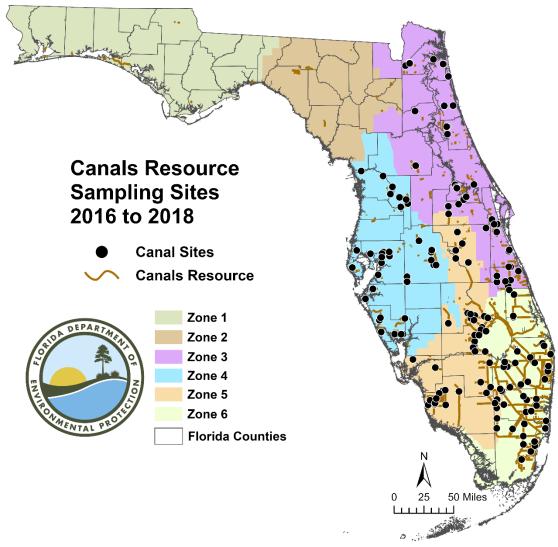


Figure 2.5. Statewide Status Network canal sample locations

Table 2.3d. Statewide percentage of canals meeting threshold values for indicators
calculated using probabilistic monitoring design

	Target			Meeting	
	Population	Number of	% Meeting	Threshold 95 %	Assessment
Analyte	(miles)	Samples	Threshold	СВ	Period
TN	2,480	122	73.6	59.7-87.5	2016–18
ТР	2,480	122	62.3	48.5-76.1	2016-18
Chlorophyll a	2,480	178	82.7	77.2-88.1	2016–18
E. coli Bacteria	2,480	177	91.3	88.4–94.2	2016–18
DO	2,480	179	93.8	90.5–97.1	2016–18

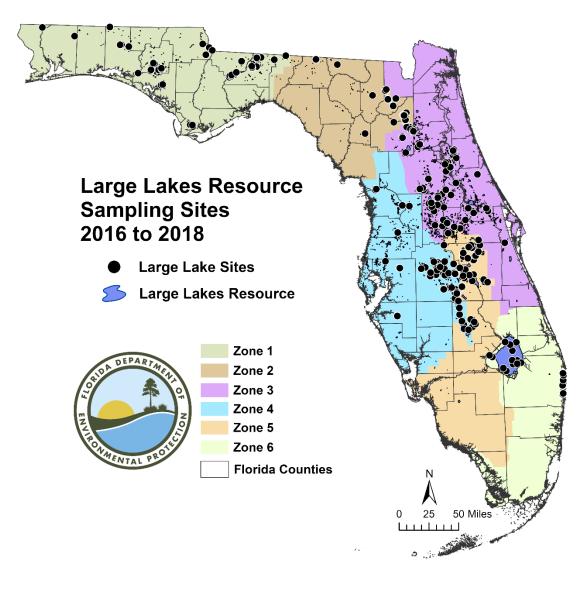


Figure 2.6. Statewide Status Network large lake sample locations

Table 2.3e. Statewide percentage of large lakes meeting threshold values for indicators
calculated using probabilistic monitoring design

CB = Confidence bounds						
	Analyte	Target Population (acres)	Number of Samples	% Meeting Threshold	Meeting Threshold 95 % CB	Assessment Period
	TN	959,339	270	81.4	74.6–88.3	2016–18
	ТР	959,339	270	73.0	65.9-80.1	2016-18
	Chlorophyll a	959,339	269	63.5	57.1–69.8	2016-18
	E. coli Bacteria	959,339	270	100.0	100.0	2016–18
	DO	959,339	270	98.2	97.0–99.3	2016–18

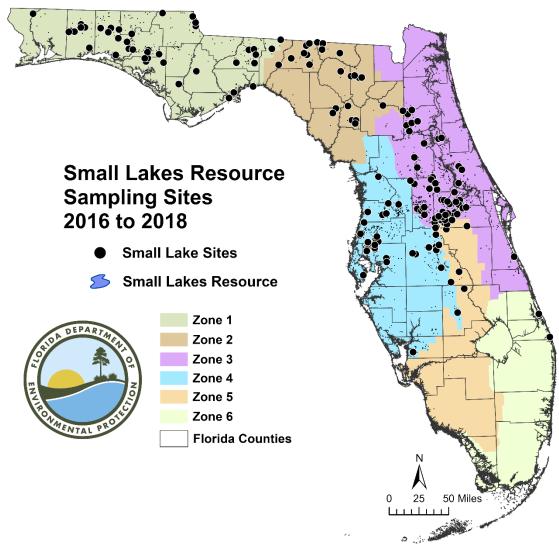


Figure 2.7. Statewide Status Network small lake sample locations

Table 2.3f. Statewide percentage of small lakes meeting threshold values for indicators
calculated using probabilistic monitoring design

CB = Confidence bounds					
	Target Population	Number of	% Meeting	Meeting Threshold 95 %	Assessment
Analyte	(acres)	Samples	Threshold	СВ	Period
TN	28,107	233	97.1	94.6–99.6	2016–18
ТР	28,107	232	93.2	90.7–95.7	2016-18
Chlorophyll a	28,107	231	69.7	63.5-76.0	2016-18
E. coli Bacteria	28,107	232	100.0	100.0	2016–18
DO	28,107	233	80.1	74.7–85.5	2016–18

Sediment Quality Evaluation

Background

In aquatic environments, sediments provide many essential ecological functions, but at the same time may be a source of contamination and recycled nutrients. Sediment contaminants, such as trace metals, pesticides, and excess nutrients, accumulate over time from upland discharges, the decomposition of organic material, and even atmospheric deposition. The results of periodic water quality monitoring alone cannot be used to fully evaluate aquatic ecosystems. DEP has no sediment standards (criteria) and no statutory authority to establish these criteria. Therefore, it is important to use scientifically defensible thresholds to estimate the condition of sediments.

The interpretation of marine and freshwater sediment trace metals data, which can vary naturally by two orders of magnitude in Florida, is not straightforward because metallic elements are natural sediment constituents. Sediment quality is an important variable for environmental managers to evaluate in restoration and dredging projects. For sediment metals data analysis, DEP uses two interpretive tools, available in two publications: <u>A Guide to the Interpretation of Metals Concentrations in Estuarine Sediments</u> (Schropp and Windom 1988) and <u>Development of an Interpretive Tool for the Assessment of Metal Enrichment in Florida Freshwater Sediment</u> (Carvalho et al. 2002). These tools use a statistical normalization technique to predict background concentrations of metals in sediments, regardless of sediment composition.

During the 1990s, several state and federal agencies developed concentration-based sediment guidelines to evaluate biological effects from sediment contaminants. To develop its sediment guidelines, DEP selected the weight-of-evidence approach to evaluate a database of studies containing paired sediment chemistry and associated biological responses from benthic organisms. For interpreting sediment contaminant data, DEP uses the guidelines in *Approach to the Assessment of Sediment Quality in Florida Coastal Waters* (MacDonald 1994) and *Development and Evaluation of Numerical Sediment Quality Assessment Guidelines for Florida Inland Waters* (MacDonald Environmental Sciences and USGS 2003).

Rather than using traditional pass/fail criteria, DEP's weight-of-evidence approach created two guidelines for each sediment contaminant: the lower guideline is the threshold effects concentration (TEC), and the higher guideline is the probable effects concentration (PEC). A value below the TEC indicates a low probability of harm to sediment-dwelling organisms. Conversely, sediment values above the PEC have a high probability of biological harm.

Sediment Evaluation for Large and Small Lakes

Of the Status Network surface water resource categories, DEP selected large and small lakes for sediment contaminant evaluation, since lakes integrate runoff within watersheds. Staff collected a total of 477 samples from the state's 2 lake resources from 2016 to 2018: 232 from small lakes and 245 from large lakes. Samples were analyzed for certain abundant metals (aluminum and

iron), a suite of trace metals, and 3 sediment nutrients (nitrogen, phosphorus, and total carbon). To ensure accurate metals data, samples were prepared for chemical analysis using EPA Method 3052 (the total digestion method) rather than EPA 200.2 method (the total recoverable method). DEP used the freshwater geochemical metals tool and the freshwater biological effects guidance values in tandem to evaluate lake sediment chemistry data (**Table 2.4a**).

When the concentration of a metal exceeded the TEC and was less than or equal to the PEC, staff evaluated the metal concentration using the sediment statistical normalization tool. If a metal concentration was within the predicted natural range, the sediment sample did not exceed the TEC because of natural metal concentrations. If a metal concentration was greater than the predicted natural range, the sediment sample exceeded Florida's sediment guidelines for that metal. **Tables 2.4b** and **2.4c** list the results.

Most sites that appear to exceed the TEC in fact exhibit expected sediment metal concentrations. Lead, zinc, chromium, and copper, which is still employed widely as an aquatic herbicide, have the most elevated concentrations in the dataset compared with natural areas. Elevated lead and zinc concentrations often are caused by stormwater input, and not surprisingly sediment metals are highest in lakes in urbanized areas. The largest number of lake sites with elevated metals occurs in peninsular Florida. Arsenic, chromium, and mercury rarely exceed the sediment guidelines. Silver, cadmium, and nickel met 100 % of the TEC threshold concentration and had no exceedances.

	TEC	PEC
Metal	(mg/kg)	(mg/kg)
Arsenic	9.8	33
Cadmium	1.00	5
Chromium	43.4	111
Copper	32	149
Silver	1	2.2
Nickel	23	48
Lead	36	128
Mercury	0.18	1.06
Zinc	121	459

 Table 2.4a. DEP freshwater lake sediment contaminant thresholds for metals

 mg/kg = Milligrams per kilogram

Table 2.4b. Statewide percentage of large lakes meeting sediment contaminant threshold values, 2016–18

Metal	% Meeting TEC Threshold	% Not Meeting TEC Threshold	% Not Meeting PEC Threshold	% of Stations > TEC Because of Natural Metal Concentrations
Arsenic	92.3	0.8	0.0	6.9
Cadmium	95.9	0.0	0.0	4.1
Chromium	81.6	9.8	0.0	8.6
Copper	89.3	7.4	0.8	2.5
Silver	100.0	0.0	0.0	0.0
Nickel	95.1	0.0	0.0	4.9
Lead	78.8	13.5	0.8	6.9
Mercury	70.6	4.1	0.0	25.3
Zinc	90.6	6.9	0.0	2.5

Note: All table values reflect results after applying metals normalization analysis.

Table 2.4c. Statewide percentage of small lakes meeting sediment contaminant thresholdvalues, 2016–18

Metal	% Meeting TEC Threshold	% Not Meeting TEC Threshold	% Not Meeting PEC Threshold	% of Stations > TEC Because of Natural Metal Concentrations
Arsenic	78.5	2.6	0.4	18.5
Cadmium	82.7	0.9	0.0	16.4
Chromium	71.6	0.9	0.8	26.7
Copper	72.0	13.8	9.5	4.7
Silver	99.6	0.4	0.0	0.0
Nickel	96.6	0.0	0.4	3.0
Lead	57.3	20.7	9.5	12.5
Mercury	50.3	8.5	0.4	40.8
Zinc	72.5	13.3	5.6	8.6

Note: All table values reflect results after applying metals normalization analysis.

In 2018, DEP's Central Laboratory analyzed sediment samples for a suite of organic contaminants in 72 small lake and 80 large lake samples. Sediment samples were analyzed for 20 polycyclic aromatic hydrocarbons (PAHs), 7 polychlorinated biphenyls (PCBs), and 73 pesticides (organochlorine [OC] and organophosphate insecticides and herbicides). PAHs were detected in 7 % of the small lake samples and 10 % of the large lake samples. PCBs, banned from use since 1979, were detected in only 2 small lake samples.

Pesticides were detected more frequently. Even DDT, banned in 1987, was detected in 2 small lake samples, but the 2 DDT degradants, DDD and DDE, were detected in 24 % and 55 % of the small lake samples, and 10 % and 59 % of the large lake samples, respectively. Although banned

in 1988, the widely used termiticide chlordane and its degradants were detected in 8 % of small lake and 5 % of large lake samples. Other pesticides rarely detected included dieldrin, aldrin, heptachlor, mirex, permethrin, and diuron.

The relatively high rates of detection for the legacy OC pesticides is a testament to their persistence in aquatic systems and reflects the recent ability of DEP's Central Laboratory to detect these compounds at levels below a single part per billion (micrograms per kilogram $[\mu g/kg]$). DEP has freshwater sediment guidelines for some of these legacy OC pesticides. For most of the samples with OC detections, the TEC guideline is often exceeded but rarely is the PEC guideline exceeded. Of the 14 lakes with chlordane detections, 7 small lake samples exceeded the PEC.

For those lake sediments with high PAH concentrations, the source is usually stormwater runoff from transportation corridors and commercial property. Four small lakes had significant PAH detections above the PEC guidelines.

Discussion of Rivers, Streams, Canals, Large Lakes, and Small Lakes

The water quality results indicate that, for recreational use and aquatic life support, Florida's flowing waters and lakes are in relatively good health. However, an inspection of the indicators listed in **Tables 2.3b** through **2.3f** reveals the following: 28 % of stream miles, 26 % of canal miles, and 25 % of river miles failed the TN threshold; 38 % of canal miles failed for TP; and 17 % of canal miles failed for chlorophyll *a*. In streams, failures for *E. coli* were 28 %. In lakes, the nutrient response indicator, chlorophyll *a*, had the highest threshold failure percentage for aquatic life support, with greater than 30 % of both large and small lakes above the chlorophyll *a* threshold. DEP has developed numerous TMDLs and BMAPs, as well as designated priority restoration areas, to address both TN and TP inputs (see **Chapters 4** and **5**).

The results for lakes indicate that, for aquatic life support, the sediment quality of Florida's lakes is generally good. However, an inspection of the indicators listed in **Tables 2.4b** and **2.4c** shows generally lower sediment contamination levels in large lakes compared with small lakes. The sediment metals copper, lead, and zinc are a concern in small lakes, which have the highest exceedances of the TEC and PEC for these metals. Also, of the organic contaminants examined in 2018, the legacy OC pesticides were the most commonly detected compounds, and several small lakes were found to have chlordane and PAHs above the PEC. Not surprisingly, small lakes have worse sediment quality than large lakes, as small lakes may be affected more by sedimentation simply because of the higher lake-shore-to-lake-area ratio.

Summary of Status Network Groundwater Results

DEP has monitored groundwater quality since 1986 in both confined and unconfined aquifers. The Status Network groundwater monitoring program uses a probabilistic monitoring design to estimate confined and unconfined aquifer water quality across the state. This estimate, by necessity, is based on the sampling of wells and springs representing both the confined and unconfined aquifers. The wells and springs used in this evaluation include private, public, monitoring, and agricultural irrigation wells.

The assessment period for this report is January 2016 through December 2018. **Table 2.5** describes the groundwater indicators used in the analyses and lists drinking water standards (thresholds). Some of the more important analytes include total coliform bacteria, nitrate-nitrite, trace metals such as arsenic and lead, and sodium (salinity), all of which are threats to drinking water quality.

Table 2.5. Status Network physical/other indicators for potable water supply for groundwater with water quality thresholds

d as colony-forming units (CFU) or most probable number (MPN), depending on the analytica Threshold for Potable Water Supply Indicator (groundwater) Fluoride $\leq 4 \text{ mg/L}$ Arsenic $\leq 10 \text{ µg/L}$ Cadmium $\leq 5 \text{ µg/L}$ Chromium $\leq 100 \text{ µg/L}$ Lead $\leq 15 \text{ µg/L}$							
	Threshold for						
	Potable Water Supply						
Indicator	(groundwater)						
Fluoride	\leq 4 mg/L						
Arsenic	$\leq 10 \ \mu g/L$						
Cadmium	\leq 5 μ g/L						
Chromium	$\leq 100 \ \mu g/L$						
Lead	\leq 15 μ g/L						
Nitrate-Nitrite	\leq 10 mg/L as N						
Sodium	\leq 160 mg/L						
Fecal Coliform Bacteria	< 2 counts ¹ /100mL						
Total Coliform Bacteria	\leq 4 counts ¹ /100mL						

mg/L = Milligrams per liter; μ g/L = Micrograms per liter; mL = Milliliter

¹ Counts may be expressed as colony-forming units (CFU) or most probable number (MPN), depending on the analytical method used.

For each Status Network groundwater resource (confined aquifers and unconfined aquifers), this chapter contains a map showing the sample site locations (**Figures 2.8** and **2.9**) and a table listing the statewide results for each indicator by aquifer resource (**Tables 2.6b** and **2.6c**). **Table 2.6a** contains the legend for the terms used in **Tables 2.6b** and **2.6c**. **Tables 2.6b** and **2.6c** provide an estimate of the quality of Florida's confined and unconfined aquifers by listing the percentage of the resource that meets a potable water threshold. These results, in addition to regional results for each zone, are also available through an interactive ArcGIS Online web application, <u>Status Network Report Card</u>.

Term	Explanation					
Analyte	Indicators chosen to base assessment of condition of					
Analyte	waters of state.					
	Total number of wells in list frames from which inferences were					
Target Population	calculated. Excludes percent of wells that were determined to					
	not fit definition of resource.					
Number of Samples	Number of samples used for statistical analysis.					
% Meeting Threshold	Percent estimate of target population that meets specific					
76 Wreeting Timeshold	indicator threshold value.					
Meeting Threshold 95%	Upper and lower bounds for 95 % confidence of percent					
Confidence Bounds (CB)	meeting specific indicator threshold value.					
Assessment Period	Duration of probabilistic survey sampling event.					

Table 2.6a. Legend	for terms used in	Tables 2.6b and 2.6c
--------------------	-------------------	----------------------

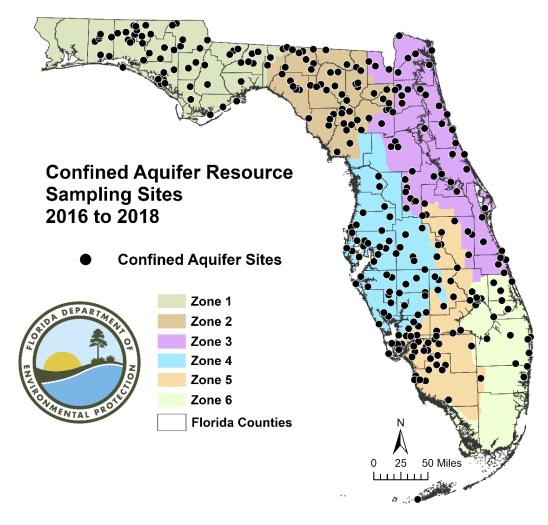


Figure 2.8. Statewide Status Network confined aquifer well locations

Table 2.6b. Statewide percentage of confined aquifer wells expected to meet threshold values for indicators calculated using probabilistic monitoring design

CB = Confidence bounds					
	Target			Meeting	
	Population	Number of	% Meeting	Threshold 95 %	Assessment
Analyte	(wells)	Samples	Threshold	СВ	Period
Arsenic	14,944	319	98.4	96.7–100.0	2016–18
Cadmium	14,944	319	100.0	100.0	2016–18
Chromium	14,944	319	99.1	97.6-100.0	2016–18
Lead	14,944	319	99.0	97.5-100.0	2016–18
Nitrate-Nitrite	14,944	319	99.3	98.7–99.9	2016–18
Sodium	14,944	319	95.8	94.9–96.8	2016–18
Fluoride	14,944	319	100.0	100.0	2016–18
Fecal Coliform Bacteria	14,944	316	96.2	92.4–100.0	2016–18
Total Coliform Bacteria	14,944	316	85.2	79.1–91.3	2016–18

Inconfined Aquifer Resources
Inconfined Aquifer Sites
Onconfined Aquifer Sites
Onconfined Aquifer Sites
Zone 1
Zone 2
Zone 3
Zone 6
Torida Counties

Figure 2.9. Statewide Status Network unconfined aquifer well locations

Table 2.6c. Statewide percentage of unconfined aquifer wells expected to meet thresholdvalues for indicators calculated using probabilistic monitoring design

CB = Confidence bounds					
	Target			Meeting	
	Population	Number of	% Meeting	Threshold 95 %	Assessment
Analyte	(wells)	Samples	Threshold	СВ	Period
Arsenic	19,270	321	98.4	96.6-100.0	2016–18
Cadmium	19,270	321	100.0	100.0	2016–18
Chromium	19,270	321	100.0	100.0	2016–18
Lead	19,270	321	97.4	94.7-100.0	2016–18
Nitrate-Nitrite	19,270	321	99.0	98.1-100.0	2016–18
Sodium	19,270	321	98.2	96.8–99.6	2016–18
Fluoride	19,270	321	100.0	100.0	2016–18
Fecal Coliform Bacteria	19,270	311	98.7	98.1–99.4	2016–18
Total Coliform Bacteria	19,270	309	87.7	82.9–92.5	2016–18

Discussion of Confined and Unconfined Aquifers

Water quality results indicate that Florida's potable groundwater is in generally good condition. All drinking water indicators showed greater than 90 % passing values, except for total coliform bacteria (< 90 %). Florida's ground and surface waters are highly interconnected. Therefore, groundwater entering surface water systems may trigger failures of aquatic life support indicators, especially for DO and the nutrients TN and TP. DEP has developed BMAPs and targeted restoration areas to address these issues, which are discussed in more detail in **Chapter 5**.

Water Quality Trend Detection

Periods of Record

In this report, the periods of record differ between the surface water and groundwater trend analyses. For surface water, laboratory analyses were conducted on raw (total) rather than dissolved constituents from 1998 to 2018. In contrast, prior to 2009, groundwater samples were filtered, and analyses were conducted on dissolved constituents. Beginning in 2009, groundwater sample analyses changed from dissolved to total constituents. To be consistent with surface water, groundwater trend analyses in this report are based on raw water data collected from 2009 to 2019.

Monotonic and Step Trends

Helsel and Hirsch (2002) categorize trend tests into those using data collected throughout a single period (monotonic trends) and those comparing data collected in two or more nonoverlapping periods (step trends). DEP used Trend Network (monotonic) data for trend

determination at individual stations and for statewide trends. Additionally, Status Network data collected in the early and late periods (steps) were evaluated to determine statewide trends.

The following methods were used to identify water quality changes over time (trend detection):

- 1. Seasonal Kendall (SK) test for individual station water quality indicator trend detection.
- 2. Change Analysis (CHAN) for statewide water quality indicator trend detection.

For all trend analyses run, statistical significance is defined as the probability of accepting the null hypothesis of no change (probability value [p-value] is < 5 %).

Seasonality

Gilbert (1987) stated that when testing for trends using time series data, variations added by regularly spaced cycles make it more difficult to detect trends if they exist. Regarding environmental data, Gilbert mentioned that major cycles are often referred to as seasonality. To address this issue, <u>Hirsch and Slack (1984)</u> developed the SK test. It removes the effect of the seasonal cycles. DEP used the SK test to look for trends for each indicator at each surface water and groundwater Trend Network site. R software (R Core Team 2017) and the kendallSeasonalTrendTest function in the EnvStats R package (Millard 2013) were used to perform these analyses.

As with seasonal cyclicity, in flowing surface waters highly variable flow rates make it more difficult to detect trends. Where available, data on flow rates from associated USGS gauging stations were collected at the same time as surface water samples. DEP adjusted surface water quality data for flow before conducting the SK trend analyses. In contrast, groundwater flow rates generally are much slower, and DEP did not need to make flow adjustments prior to performing the SK analyses for groundwater.

If a trend existed for either flow-adjusted or nonflow-adjusted data, DEP determined the corresponding slope by using the Sen Slope (SS) estimator, which measures the median difference between all observations over the time series (Gilbert 1987). The SS provides an estimate of the magnitude of change for a water quality indicator over the period of record. Reporting a trend as increasing or decreasing indicates the direction of the slope and does not necessarily indicate impairment or improvement of the analyte being measured. For a detailed explanation of the information goals of the Trend Monitoring Network, including data sufficiency and analysis methods, see Appendix C of the *Design Document* (DEP 2018a).

Surface and Groundwater Trends for Individual Stations

Surface Water Results

The Surface Water Trend Network consists of 78 fixed sites sampled monthly (**Figure 2.10**); however, as of June 2019, only 76 stations had sufficient data for analysis. Thirty-seven surface water stations were adjusted for flow, while the remaining 39 stations were not flow adjusted. Trend analyses, using the SK test, were conducted for the period from November 1998 through December 2018. Water quality indicators examined include total nitrate-nitrite (NO₃-NO₂), total Kjeldahl nitrogen (TKN), TN, TP, total organic carbon (TOC), specific conductance (SC), chlorophyll *a* (Chl-*a*), *Enterococci* (Entero), *E. coli*, pH, and DO. For flow-adjusted sites, **Table 2.7b** does the same for nonflow-adjusted sites.

Graphics showing the surface water trend results are available through an interactive ArcGIS Online web application, the <u>Surface Water Trend Report Card</u> map. This application presents a series of statewide indicator maps showing the trends, or the lack of them, found at each of the 76 sites for each indicator tested.

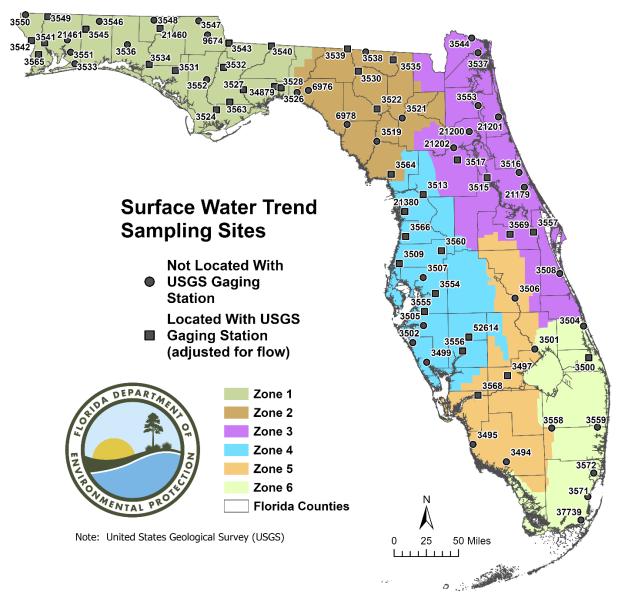


Figure 2.10. Surface Water Trend Network sites

Table 2.7a. Trends for specified analytes for 37 stations from the Surface Water Trend Monitoring Network associated with a USGS gauging station and adjusted for river flow

Note: A positive trend is indicated with a plus sign (+), a negative trend is indicated with a minus sign (-), no trend is indicated by a lower-case letter "o," insufficient data to determine a trend is indicated by (ISD), and insufficient evidence to determine a trend is indicated by (ISE). Unless otherwise noted, analyses are based on data collected between November 1998 and December 2018.

	analyses are based on data collected between November 1998 and December 2018.								<i>E</i> .			
Station	River/Stream	NO ₂	TKN	TN	ТР	TOC	SC	Chl-a	Entero	coli	pН	DO
3554	Alafia	-	0	-	-	0	+	+	-	0	+	+
3509	Anclote	-	-	-	-	0	-	-	+	0	-	+
3524	Apalachicola	+	0	+	-	0	+	+	0	0	0	0
3543	Apalachicola	+	0	+	-	0	0	+	-	0	0	0
3545	Blackwater	+	0	0	-	0	0	-	-	0	-	0
3568	Caloosahatchee	-	-	-	-	0	-	+	0	0	+	+
3561/52614	Charlie Creek	0	0	0	0	0	0	0	0	+	0	+
3534	Choctawhatchee	+	0	+	-	0	+	+	-	0	-	0
3531	Econfina Creek	+	0	+	0	0	+	-	-	0	+	+
3565	Eleven-Mile Creek	-	-	-	-	-	-	0	+	+	-	+
3541	Escambia	+	+	+	+	0	0	+	-	0	-	+
3549	Escambia	+	+	+	+	0	0	+	0	0	-	0
3497	Fisheating Creek	0	-	-	0	0	-	+	о	о	+	+
21380	Homosassa	+	-	+	0	-	0	ISE	0	ISE	0	+
3569	Little Econ	0	-	-	-	-	+	+	0	0	+	+
3555	Little Manatee	0	0	0	-	0	-	-	0	0	0	0
3563	New	+	0	0	+	0	0	+	0	0	0	0
3527	Ochlockonee	0	+	+	0	+	0	+	0	0	-	0
3540	Ocklocknee	0	-	0	-	0	0	0	0	0	0	-
3517	Oklawaha	+	0	+	0	+	+	0	0	0	0	0
3556	Peace	0	0	-	-	0	0	+	0	+	-	0
3542	Perdido	-	0	-	-	+	-	-	-	0	-	0
3515	St. Johns	0	-	-	0	0	0	0	0	0	0	0
3557	St. Johns	0	-	-	0	-	-	+	-	0	0	0
3500	St. Lucie	0	-	-	-	0	-	+	-	0	+	+
3528	St. Marks	0	+	+	+	0	0	-	-	0	0	-
34879	St. Marks	-	0	-	0	0	0	0	0	0	-	-
3522	Suwannee	+	0	+	-	0	+	0	-	0	+	0
3530	Suwannee	+	0	+	0	0	+	+	-	+	0	0
3535	Suwannee	0	+	+	+	0	0	+	+	0	+	0
3532	Telogia Creek	+	0	+	0	0	0	-	0	0	-	0
3564	Waccasassa	+	+	+	0	+	0	0	0	0	0	0
3566	Weeki Wachee	+	+	+	-	ISE	+	ISE	0	+	-	0
3513	Withlacoochee	+	0	0	0	0	0	0	-	0	-	0
3539	Withlacoochee	+	0	0	0	0	+	+	0	+	+	0
3560	Withlacoochee	0	-	-	0	-	0	0	-	0	0	+
21460	Wright's Creek	0	0	-	0	0	0	0	-	0	-	-

Table 2.7b. Trends for specified analytes for 39 stations from the Surface Water Trend Monitoring Network for which flow adjustment was not done

Note: A positive trend is indicated with a plus sign (+), a negative trend is indicated with a minus sign (-), no trend is indicated by a lower-case letter "o," insufficient data to determine a trend is indicated by (ISD), and insufficient evidence to determine a trend is indicated by (ISE). Unless otherwise noted, analyses are based on data collected between November 1998 and December 2018.

ourier wise note	d, analyses are based on dat	NO ₃ -						0.		Е.		
Station	River/Stream	NO ₂	TKN	TN	ТР	тос	SC	Chl-a	Entero	coli	pН	DO
3570/37739	Aerojet Canal	+	+	0	-	0	+	+	+	0	+	+
3538	Alapaha	0	0	0	-	+	0	0	-	0	0	0
3536	Alaqua Creek	-	0	0	-	0	+	-	-	0	-	0
3526	Aucilla	+	+	+	0	0	0	-	-	0	+	0
3494	Barron	0	+	+	0	+	0	+	0	0	-	+
21461	Big Coldwater Creek	+	0	0	-	0	+	-	-	0	-	-
3571	Black Creek Canal	+	0	+	0	-	0	+	+	0	0	+
3550	Brushy Creek	-	-	-	-	0	-	-	-	+	-	+
3504	C-25 Canal	0	0	0	+	+	0	+	+	0	0	0
3506	C-38 Canal	0	0	0	0	-	0	+	0	0	-	-
3552	Chipola	+	0	+	-	0	+	0	-	0	0	0
3548	Choctawhatchee	+	0	+	0	0	0	+	0	0	-	0
3547	Cowarts Creek	+	+	+	+	0	0	0	0	0	0	0
3533	East Bay	-	-	-	-	0	0	-	0	0	-	0
6976	Econfina	0	+	+	0	+	-	-	0	0	0	0
3495	Golden Gate Canal	+	0	0	-	-	0	+	0	0	+	+
3559	Hillsboro Canal	0	-	-	-	-	0	0	-	0	+	+
3507	Hillsborough	0	0	-	0	0	0	+	0	0	-	0
3508	Indian River Lagoon	+	-	-	-	0	0	+	-	+	+	+
9674	Jackson Blue	+	+	+	0	0	+	ISD	0	ISD	-	0
3501	Kissimmee	0	-	0	0	-	0	+	-	0	0	+
3505	Manatee	+	+	+	0	+	0	+	-	0	0	+
3572	Miami	0	-	-	-	-	-	+	0	0	0	+
3558	Miami Canal	-	-	-	-	-	-	0	0	0	0	0
21201	Moultrie Creek	+	0	0	0	+	+	+	0	+	+	0
3499	Myakka	0	+	+	0	0	+	+	-	+	0	+
3537	Nassau	0	-	-	0	+	0	+	0	0	0	-
21202	Orange Creek	0	0	+	0	0	-	0	-	0	0	-
3502	Phillippe Creek	0	+	+	0	0	0	+	+	0	-	0
21200	Rice Creek	0	0	0	0	0	0	0	-	0	0	0
3521	Santa Fe	+	+	+	0	0	0	-	0	+	0	+
21179	Spruce Creek	+	0	0	-	0	0	0	0	0	0	0
3553	St. Johns	0	-	-	-	0	-	+	0	0	0	-
3544	St. Marys	-	-	-	0	0	-	-	0	0	0	-
6978	Steinhatchee	+	+	+	+	+	-	-	0	+	0	0
3519	Suwannee	+	+	+	0	+	0	-	0	0	0	0
3516	Tomoka	+	0	0	0	0	0	0	+	0	+	0
3546	Yellow	+	0	+	0	0	0	+	0	0	-	0
3551	Yellow	+	0	+	0	0	+	0	0	0	-	0

Groundwater Results

The Groundwater Trend Network currently consists of 49 fixed sites used to obtain chemistry and field data in confined and unconfined aquifers (**Figure 2.11**). Trend analyses, using the SK test, were conducted for the period from January 2009 through June 2019. Of the 49 groundwater sites, 22 wells were used to sample confined aquifers, while 25 wells and 2 springs were used to sample unconfined aquifers. At some locations, multiple wells tapped either different aquifers or different depths of the same aquifer. These are shown in **Figure 2.11** as bubble groupings.

Water quality indicators examined include temperature (Temp), SC, DO, pH, water level (WL), total dissolved solids (TDS), TOC, NO₃-NO₂, TKN, TN, orthophosphate (OPO₄), TP, total potassium (K), total sulfate (SO₄), total sodium (Na), total chloride (Cl), total calcium (Ca), total magnesium (Mg), and total alkalinity (ALK). For confined aquifers, **Table 2.8a** displays trends as a result of the SK test for each parameter at each trend site. **Table 2.8b** does the same for unconfined aquifers.

Groundwater trend results are available through an interactive ArcGIS Online web application, the <u>Groundwater Trend Report Card</u> map. This application presents a series of statewide indicator maps showing the trends, or the lack of them, found at each of the wells and springs for each indicator tested.

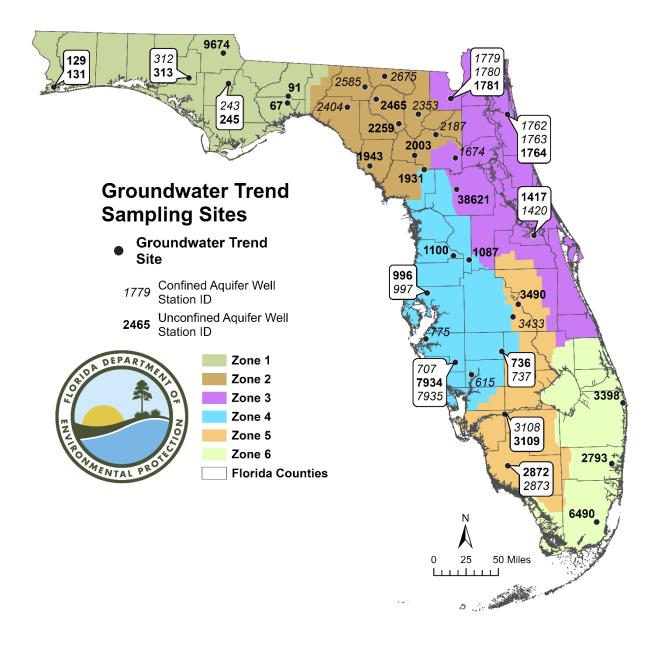


Figure 2.11. Groundwater Trend Network sites

Table 2.8a. Trends for specified analytes for 22 stations in the Groundwater Trend Monitoring Network, Confined Aquifers

Note: A positive trend is indicated with a plus sign (+), a negative trend is indicated with a minus sign (-), insufficient evidence of a trend is indicated by the lower-case letter "o," and insufficient data to determine a trend is indicated by (ISD). Unless otherwise noted, analyses are based on data collected between January 2009 and June 2019.

Station	Temp	SC	DO	нa	WL	TDS	тос	NO ₃ - NO ₂	TKN	TN	OPO ₄	Р	К	SO ₄	Na	Cl	Ca	Mg	ALK
243	-	+	+	-	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0
312	0	-	+	-	+	-	0	0	0	0	0	0	0	-	0	0	-	+	-
615	+	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
707	0	+	0	-	+	+	0	0	0	0	0	0	0	+	0	0	+	+	-
737	-	0	-	-	0	0	0	0	0	-	-	-	0	0	0	0	-	+	+
775	0	+	0	-	+	0	0	0	0	0	-	0	0	0	0	0	0	0	0
997	0	+	0	0	0	0	0	0	0	0	0	0	0	0	+	+	+	+	0
1420	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
1674	+	-	+	0	0	-	0	0	0	0	+	0	0	0	+	-	0	0	0
1762	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1763	+	0	0	0	0	+	0	0	0	0	0	0	0	-	0	0	0	0	+
1779	+	0	0	0	+	0	0	0	0	0	0	0	0	-	0	-	0	0	0
1780	+	0	0	0	+	0	0	0	0	0	-	-	0	-	-	-	0	0	0
2187	0	0	0	-	+	0	0	0	0	0	-	0	0	+	0	-	+	0	0
2353	+	+	0	+	0	+	0	0	0	0	+	+	+	0	+	+	+	0	+
2404	0	0	0	0	0	0	-	0	0	0	0	-	-	-	0	0	0	0	0
2585	0	0	0	0	0	0	0	0	0	0	+	0	0	-	0	0	0	0	+
2675	+	-	0	+	+	0	0	0	0	0	+	0	0	-	0	0	0	0	0
2873	-	0	0	0	+	0	-	-	0	0	-	-	0	0	-	-	0	0	0
3108	-	-	-	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	+
3433	+	+	-	-	ISD	0	0	0	0	0	0	+	0	0	0	+	+	0	0
7935	0	0	0	0	+	0	0	0	0	0	-	0	0	0	0	-	+	0	0

Table 2.8b. Trends for specified analytes for 27 stations in the Groundwater Trend Monitoring Network, Unconfined Aquifers

Note: A positive trend is indicated with a plus sign (+), a negative trend is indicated with a minus sign (-), insufficient evidence of trend is indicated a lower-case letter "o," and insufficient data to determine a trend is indicated by (ISD). Unless otherwise noted, analyses are based on data collected between January 2009 and June 2019.

	tion	Temp	SC	DO	рН	WL	TDS	TOC	NO ₃ - NO ₂	TKN	Total N	OPO ₄	Р	K	SO ₄	Na	Cl	Ca	Mg	ALK
-	57	0	<u> </u>	0	-	ISD	0	0	-	0	-	-	-	0	0	0	0	0 0	0	
-	91	+	0	-	-	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0
1	29	0	+	0	-	+	0	0	0	0	0	0	0	-	0	0	0	+	+	0
1	31	+	+	+	-	0	0	0	0	0	0	0	0	0	-	0	0	0	-	0
2	45	0	+	+	-	+	0	0	+	0	+	о	0	0	0	0	0	0	+	0
3	13	+	+	-	-	+	0	0	0	0	0	0	0	0	+	+	+	0	+	0
7	36	-	-	-	-	0	-	-	-	0	-	-	-	-	-	+	+	-	0	-
9	96	0	+	-	+	0	+	+	0	+	0	0	0	0	-	0	-	+	-	+
1()87	-	0	-	0	+	0	0	0	0	0	0	0	0	-	0	0	0	0	0
11	100	-	-	0	-	+	0	0	0	0	0	0	+	0	-	0	-	0	0	0
14	417	+	0	0	+	0	0	0	-	0	-	+	+	0	-	-	0	0	0	0
17	764	+	+	0	-	0	+	+	0	+	0	-	0	+	+	+	+	0	+	0
17	781	+	-	-	-	+	-	0	0	0	0	-	0	0	-	-	0	-	-	-
19	931	+	+	0	-	+	+	0	0	0	+	+	0	0	+	+	+	+	+	+
- 19	943	+	+	-	0	0	0	0	0	0	0	0	0	0	-	-	1	0	+	0
20	003	+	+	+	-	+	+	-	+	-	+	-	-	-	0	+	0	+	+	+
22	259	+	0	0	0	+	0	0	+	+	+	+	+	+	+	+	+	0	0	-
24	465	+	-	0	+	0	-	0	-	0	-	0	0	0	-	-	-	-	-	-
27	793	+	+	+	0	0	0	-	0	-	0	0	0	0	-	+	0	0	0	+
28	872	-	-	-	0	+	0	-	-	-	-	0	-	-	-	+	0	0	0	0
31	109	+	-	-	0	0	-	+	0	-	0	0	-	-	-	-	-	-	-	0
33	398	+	0	+	0	0	0	-	0	0	0	-	-	0	0	+	+	0	0	0
34	490	+	-	-	-	0	0	0	0	0	0	0	0	0	0	0	-	0	-	+
64	490	+	+	+	0	-	0	0	0	+	0	0	0	0	-	+	+	0	-	0
79	934	0	0	-	-	+	0	+	+	+	+	0	0	0	-	+	+	0	-	+
90	574	0	+	0	0	ISD	+	0	+	0	+	0	0	0	0	0	+	0	0	0
38	621	+	+	0	-	+	+	0	0	0	0	0	0	0	0	+	+	+	0	+

Indicators that May Be Exhibiting Statewide Trends

DEP used the following methodology to identify indicators that may be exhibiting statewide trends. All surface water and groundwater stations were analyzed for trends. Only those analytes displaying significant trends in at least half of the surface or groundwater stations analyzed were included in the statewide trend analysis. Once this was determined, for each remaining analyte, the percentage of stations with increasing trends was compared with the percentage of stations with decreasing trends, and the greater percentage was noted. The number of stations with the greater percentage was divided by the total number of stations displaying trends, and a subjective cutoff was set at 67 %. If the percentage of stations with trends was less than 67 %, the analyte was eliminated from further analyses.

Discussion of Surface Water Trends

Table 2.9 reveals that several indicators changed over the 1998 to 2018 period. The concentrations of NO_3 - NO_2 for both flow-adjusted and nonflow-adjusted sites increased during this period, and the concentration of TP decreased. Chlorophyll *a* increased at the flow-adjusted sites only.

Table 2.9. Surface water trend summary (1999–2018)

Note: Percentages are calculated by number of trends (increasing, decreasing, or no trend), divided by the total number of stations. Flow-adjusted site percentages were calculated based on a sample size of 37 stations that are associated with a USGS gauging station and adjusted for water flow. Nonflow-adjusted site percentages were calculated based on a sample size of 39 stations.

Indicator	Increasing Trend (%)	Decreasing Trend (%)	No Trend (%)
NO ₃ -NO ₂	45.9	16.3	37.8
ТР	13.6	43.2	43.2
Chlorophyll a	48.6	20.0	31.4

% Flow-Adjusted Sites

% Nonflow-Adjusted Sites

Indicator	Increasing Trend (%)	Decreasing Trend (%)	No Trend (%)
NO ₃ -NO ₂	48.7	12.8	38.5
ТР	7.6	36.0	56.4
Chlorophyll a	47.4	26.3	26.3

A large percentage of sites had increasing NO₃-NO₂ concentrations. These nutrients are essential for living organisms. However, an overabundance of nutrients in surface water can cause adverse health and ecological effects, including excessive plant and algal growth. Sources for these nutrients include animal waste, decaying plant debris, fertilizers, and urban drainage. Although many management and restoration efforts are under way to reduce NO₃-NO₂ concentrations

entering surface waters, most of these efforts are relatively new and improvements that may be occurring are not yet apparent at the scale of this analysis.

TP concentrations decreased at a large percentage of sites when adjusted for flow. This reduction may indicate that the amount of phosphorus entering Florida's surface waters is being reduced through the successful implementation of stormwater management plans, as well as the implementation of best management practices (BMPs) and restoration plans associated with waters found to be impaired for nutrients.

Groundwater Trends Discussion

Table 2.10 shows that several indicators changed over the 2009 to 2019 period. For confined aquifers, Temp increased. For unconfined aquifers, Temp and WL increased and pH decreased, while concentrations of Na increased and SO₄ concentrations decreased.

Table 2.10. Groundwater trend summary (2009–19)

Note: Percentages were based on sample sizes of 22 confined stations and 27 unconfined stations for all of the analytes with the exception of WL. Percentages were based on 21 confined stations and 25 unconfined stations, as 1 confined and 2 unconfined stations had insufficient data for analyses.

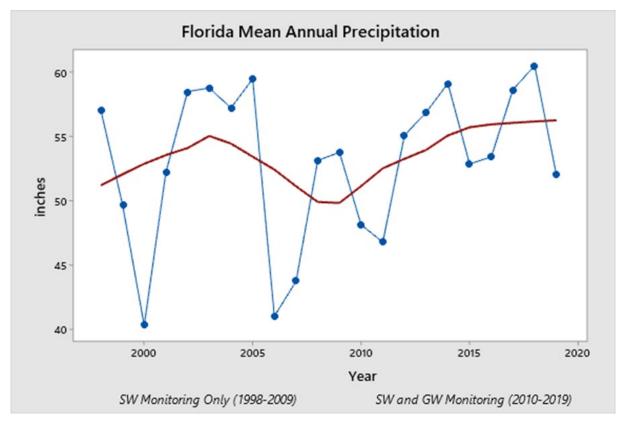
Coi	Confined Stations										
	Indicator	Increasing Trend (%)	Decreasing Trend (%)	No Trend (%)							
	Temp	45	18	36							
	WL	48	0	52							
	рН	9	32	59							
	Na	14	14	73							

9

%

% Unconfined Stations

SO₄

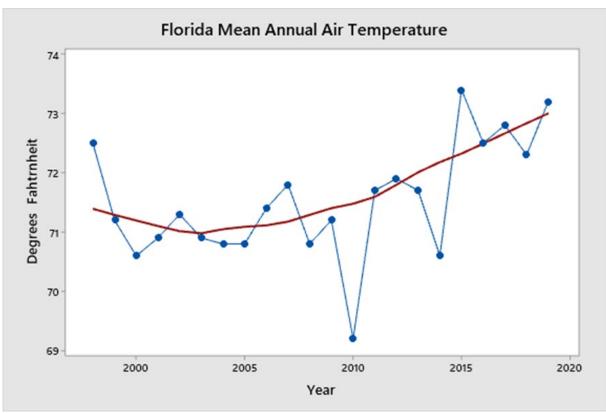

Indicator	Increasing Trend (%)	Decreasing Trend (%)	No Trend (%)
Тетр	63	15	22
WL	44	8	48
pН	11	56	33
Na	44	19	37
SO ₄	15	52	33

36

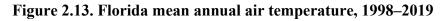
55

For groundwater, the analytes are classified into groups. The rock matrix analytes, Ca, Mg, and Alk, along with and to a lesser extent sulfate, are representative of the rocks (limestones and dolostones) making up the major aquifers in Florida. None of these analytes changed. The analytes Na, Cl, SC, and K, along with sulfate, are considered saline indicators. Of the saline indicators, Na and SO₄ changed over the period of record. Temperature, pH, and WL are a group of miscellaneous indicators, and all three changed.

One plausible driver of the observed changes is rainfall. Annual mean Florida precipitation data are available from the Southeast Regional Climate Center (SERCC 2020a). **Figure 2.12** shows a plot for the period from 1998 to 2019. The figure also displays a LOWESS smoothing curve. Note the period of record differences for surface and groundwater.



Thick solid line = LOWESS moving average. Data from SERCC (2020a).


Figure 2.12. Florida mean annual precipitation, 1998–2019

<u>Verdi et al. (2006)</u> indicated that from 1999 to 2000, Florida experienced a severe drought. Data from SERCC (2020a) also reveal below-normal rainfall for the same period. However, since the end of the drought, the state has received more precipitation, which is more acidic than groundwater in Florida's aquifers. With the increase in precipitation, recharge to unconfined aquifers has increased, resulting in the observed WL increases and pH decreases.

For annual Florida mean temperature, using data available from SERCC (2020b), **Figure 2.13** shows a plot for the period from 1999 to 2019, with a LOWESS smoothing curve. The state's air temperature increased during the period of record, potentially warming rainfall temperatures. Warmer aquifer recharge water may explain the observed Temp increases in unconfined aquifers, which subsequently could lead to Temp increases in confined aquifers.

Thick solid line = LOWESS moving average. Data from SERCC (2020a).

Statewide Surface and Groundwater Trends

Introduction

The SK test was used to analyze for trends at individual Trend Network surface water and groundwater monitoring sites primarily because it is a nonparametric test (no underlying data distribution assumptions) and addresses serial correlation effects. For the examination of regional trends, the effects of both serial and spatial correlation must be addressed. To accommodate this need, the randomly selected status stations, generally sampled only once within separate periods, were used for a comparison of regional data collected between an early and a late period. For this report, region is defined as the entire state of Florida. The analysis methodology chosen is a type of two-sample (step) trend test (Helsel and Hirsch 2002, pp. 348–351).

Overview of Change Analysis

In addition to providing analyses for a specific contiguous period, Status Network monitoring data may be used to compare summarized data from one period with those from another period. The methodology is referred to as change analysis (CHAN), as described in Kincaid and Olsen (2019). This test accounts for both serial and areal/spatial autocorrelation. CHAN analyses used

the Change Analysis function in R software's (R Core Team 2017) package spsurvey (Kincaid and Olsen 2019). Individual R scripts were written for each water resource analyzed.

Status Network surface water monitoring data collected from flowing waters and lakes from 2000 to 2003 were compared with flowing waters and lakes data collected from 2015 to 2017, while Status Network confined and unconfined aquifer data collected from 2009 to 2011 were compared with confined and unconfined aquifer data collected from 2016 to 2018. These periods were selected to generally correspond with the period of record used for the SK test analyses provided above. Prior to running CHAN, several data preparatory steps were necessary, as follows:

- ESRI's ArcGIS was used to determine site locations from the early period's sampled sites that did not fall onto the extent of resource coverages used for either the 2017 surface water resource site selections or the 2018 groundwater site/well selections. Sites that did not fall on the more current resource coverages were removed from the sampled sites' list for the early period.
- 2. As flowing waters and lake target populations differed between the early and late periods, the three current flowing water resources and two lake resources were combined into two datasets: flowing waters and lakes. This also increased the sample sizes of the respective datasets, as a relatively large number of sites were removed from the early period because they were in locations excluded from the 2018 coverages. This was unnecessary for confined and unconfined aquifer wells, as their target population definitions did not change significantly between periods.
- 3. An R software project was created for each of the four resources (flowing waters, lakes, and confined and unconfined aquifers) defined in Step 2, and data from the remaining early period sites that were not excluded by Step 1 were then imported from the production Oracle database into four respective R dataframes.
- 4. Data from the combined more current period for each of the four water resources were then imported into each of the dataframes created in Step 3. A factor column defining the period then was added to each of the dataframes and populated.
- 5. Analyte/indicator value distributions were then examined for missing, below detection limit (BDL), and outlier values by running a statistical summary using the R package EnvStats (Millard 2013). Unusual values were tagged as "points in need of examination" and provided to the data manager and quality assurance (QA) officer for review.

6. R scripts were written for each of the four water resources to provide graphics of the data distributions, run the change analyses, and export the results into a tab delimited text file that was used to provide graphics of the results.

Next, the CHAN test was used to generate spatial-weight matrices for each water resource by using the extent of each respective water resource in each of the six Status Network reporting units. Once this was done, the change analysis function then generated statewide spatially weighted mean values, plus upper and lower CBs for water quality indicators from both the early and late periods.

For surface water, the subset of indicators examined included Chl-*a*, pH, DO, SC, Temp, NO₃-NO₂, TKN, TN, TP, and TOC. Except for Chl-*a* and Temp, the subset of indicators for confined and unconfined aquifers was the same as those for surface water.

The CHAN test calculates the difference in spatially weighted means for each indicator between the early (E) and late (L) periods and a 95 % confidence interval for the difference. These values are referred to as difference estimates. If the CBs for the estimate of the difference of the means between the 2 periods (L minus E) does not include 0, there is statistical evidence that the values differ. Note that CHAN does not calculate p-values. However, if 0 does not lie within the 95 % CBs for the difference estimate, the p-value is known to be < 0.05.

Change Analysis Test Results

Appendix B contains the results of the CHAN tests for each analyte. For flowing waters, DO increased, while SC, pH, and concentrations of TKN, TN, and TP decreased from 1998 to 2017. For lakes, DO, Temp, pH, and concentrations of Chl-*a* and TP increased from 1998 to 2018, while TOC concentrations decreased. For both confined and unconfined aquifers, DO and pH decreased for the more recent period of record (2009–18).

Table 2.11 summarizes the indicator results displaying statewide change based on the CHAN trend tests. Most indicators provided significant results with very little difference between the spatially adjusted means. Notable exceptions include (1) flowing waters, with SC decreasing 92.84 microSiemens per centimeter (μ S/cm) over the 20-year period; (2) lakes, with Chl-*a* increasing 14.08 μ g/L and TOC decreasing 1.62 mg/L over the 20-year period; and (3) unconfined and confined aquifers, with DO increasing 1.27 and 0.91 mg/L, respectively over the 20-year period.

Table 2.11. Statewide significant change analysis results

 $E = Early; L = Late; N = Number of samples; Diff. = Difference; Est. = Estimate; CB = Confidence bounds; mg/L = Milligrams per liter; SU = Standard units; <math>\mu$ S/cm = MicroSiemens per centimeter; C = Degrees Celsius DO = Dissolved oxygen; SC = Specific conductance; TKN = Total Kjeldahl nitrogen; TN = Total nitrogen; TP = Total phosphorus; Chl-*a* = Chlorophyll *a*; Temp = Temperature; TOC = Total organic carbon

Resource	Indicator	E Mean & N	L Mean & N	Diff. Est.	СВ	Direction
Flowing Surface Waters	DO	5.51 (767)	5.88 (710)	0.37 mg/L	0.14 to 0.59 mg/L	Up
Flowing Surface Waters	рН	6.55 (767)	6.09 (710)	-0.46 SU	-0.59 to -0.33 SU	Down
Flowing Surface Waters	SC	471.81 (767)	378.97 (711)	-92.84 µS/cm	-180.44 to -5.24 µS/cm	Down
Flowing Surface Waters	TKN	1.00 (767)	0.83 (707)	-0.17 mg/L	-0.25 to -0.10 mg/L	Down
Flowing Surface Waters	TN	1.25 (765)	1.04 (707)	-0.21 mg/L	-0.31 to -0.05 mg/L	Down
Flowing Surface Waters	TP	0.22 (768)	0.13 (709)	-0.080 µg/L	-0.105 to -0.057 µg/L	Down
Lakes	Chl-a	18.37 (491)	32.46 (500)	14.08 µg/L	5.60 to 22.56 µg/L	Up
Lakes	DO	8.00 (491)	8.38 (501)	0.37 mg/L	0.11 to 0.64 mg/L	Up
Lakes	pН	7.38 (491)	7.77 (501)	0.38 SU	0.23 to 0.54 SU	Up
Lakes	Temp	24.26 (491)	25.00 (501)	0.79 C	0.19 to 1.39 C	Up
Lakes	TOC	16.46 (491)	14.84 (501)	-1.62 mg/L	-2.65 to -0.59 mg/L	Down
Lakes	ТР	0.083 (491)	0.093 (500)	0.010 µg/L	0.001 to 0.020 $\mu g/L$	Up
Unconfined Aquifers	DO	3.98 (300)	2.71 (321)	-1.27 mg/L	-1.87 to -0.68 mg/L	Down
Unconfined Aquifers	pН	6.58 (300)	5.92 (321)	-0.66 SU	-0.82 to -0.51 SU	Down
Confined Aquifers	DO	2.92 (303)	2.01 (319)	-0.91 mg/L	-1.48 to -0.33 mg/L	Down
Confined Aquifers	pН	7.55 (303)	7.44 (319)	-0.12 SU	-0.22 to -0.01 SU	Down

For each test, p-value ≤ 0.05 .

Synthesis of Trend Analyses Results

This section compares the CHAN indicator results, which used randomly selected status stations, with SK indicator results, which used individual trend stations. For flowing waters, TP decreased on a statewide basis over the periods of record for both CHAN and many SK sites. However, the nitrogen species indicators showed differing results between the two analyses. In the CHAN analysis, TN and TKN decreased statewide over the period of record, while the SK analyses showed no statewide change for either indicator. In contrast, the SK analysis showed an increase in NO₃-NO₂ at many surface water trend sites, while the CHAN analysis found no significant changes for NO₃-NO₂ at these sites (**Appendix B**).

These dichotomies can be explained by the fact that most trend sites used in the SK analyses were on rivers. The CHAN analyses, on the other hand, included a roughly equal number of river, stream, and canal sites, to better assess all flowing waters. Therefore, while the SK analyses found increasing NO₃-NO₂ for rivers, any river increases in the CHAN analyses may have been offset by the inclusion of canals and streams with neutral or decreasing trends.

With a population currently growing at a rate of nearly 800 people per day (U.S. Census Bureau 2020), Florida has the potential for increasing amounts of NO₃-NO₂ and TP originating from human sources. Although nutrient management through agricultural BMPs and environmental restoration plans are providing reductions of TP and NO₃-NO₂, the contributions from human wastewater and lawn fertilization are still present. In response, Florida is taking measures to decrease nitrogen loading from septic systems in highly vulnerable groundwater basins, such as those associated with Outstanding Florida Springs (Section 373.807, F.S.) by providing incentives for homeowners to upgrade existing septic systems where central sewer is unavailable. The Florida Statutes require the reduction of fertilizer runoff from residential properties through the adoption of DEP's "Model Ordinance for Florida-Friendly Fertilizer Use on Urban Landscapes" for municipalities located within the watershed of a waterbody, or waterbody segment, that is listed as impaired by nutrients (Section 403.9337, F.S.).

For confined and unconfined aquifers, pH decreased over the period of record for both the CHAN and many SK site analyses. One possible cause of this decrease is the increase in rainfall over the period of record. Precipitation interacts with atmospheric CO₂ and creates carbonic acid, leading to rainfall with a lower pH. With the increase in atmospheric CO₂ over the period of record (<u>2 Degrees Institute 2020</u>), in association with the increase in precipitation, the pH of rainfall likely decreased over of the period of record. Extrapolating from the rainfall data in **Figure 2.12**, it appears that precipitation from 2009 to 2019 provided significant groundwater recharge. Furthermore, Florida went into an active hurricane/precipitation period from 2012 to 2018. These events could lead to pH decreases in unconfined aquifers and eventually may decrease pH in confined aquifers.

As Florida trend monitoring does not include lakes, the only lake data available are from the Status Network, and only CHAN can be used for analysis. CHAN shows the lakes have (1) no change for NO_3 - NO_2 , (2) no change for TN (as opposed to a decrease in flowing waters), (3) a slight increase in TP (as opposed to a decrease in flowing waters), (4) increases in DO, pH, Temp, and Chl-*a* (as opposed to no change in flowing waters), and (5) a decrease in TOC (as opposed to no change in flowing waters).

A disparity was found between pH results in flowing waters and groundwater, and those found for lakes. Increased amounts of carbonic acid, as noted above, in association with the longer residence times of lakes (versus flowing waters), may be increasing the dissolution rate of limestones. As limestone dissolves, the buffering capacity and pH of associated waters increase. Because of the interconnection between surface and groundwater, plus the relatively long residence time of water in lakes, increased limestone dissolution may be leading to the observed pH increase in lakes.

Additionally, limestone dissolution may liberate TP from the rock matrix, which explains the observed TP increase in lakes. Increased TP and temperature, along with increased precipitation in recent years (**Figure 2.12**), are potential drivers for regional algal blooms throughout the state; these may then be responsible for the decrease in TOC.

Chapter 3: Designated Use Support in Surface Waters

Background

Florida's surface waters are protected for the designated use classifications listed in **Appendix C**. DEP's Watershed Assessment Section (WAS) assesses the health of surface waters through the implementation of the Impaired Surface Waters Rule (IWR) (Chapter 62-303, F.A.C.). The rule contains a legislatively authorized methodology for DEP to assess water quality and determine whether individual surface waters are impaired (i.e., do not attain water quality standards) under ambient conditions. The IWR is used in conjunction with the state's Water Quality Standards (Chapter 62-302, F.A.C.) and Quality Assurance Rule (Chapter 62-160, F.A.C.). The latter governs sample collection and analysis procedures.

The IWR is implemented using DEP's watershed management approach. Under this approach, which is based on a 5-year basin rotation, Florida's 52 hydrologic unit code (HUC) basins (51 HUCs plus the Florida Keys) are distributed among 29 <u>drainage basins</u>, which are then placed in 1 of the 5 basin groups located in the 5 DEP regulatory districts. There are 4 drainage basins in the Northeast District and 5 drainage basins each in the Northwest, Central, Southwest, South, and Southeast Districts. One drainage basin in each district is assessed each year (except for the Northeast). One complete rotation through each of the five basin groups is referred to as a cycle. This chapter summarizes the results of the assessments performed through 2019, including the third cycle for Basin Groups 2 through 5 and the fourth cycle for Basin Group 1 waters. These assessments reflect water quality criteria changes for nutrients and DO (as percent saturation) for Groups 1 through 5, and recreational bacteria and total ammonia for Groups 1, 4, and 5.

As part of the assessment process, DEP uses all available data in Florida's Storage and Retrieval (STORET) Database and Watershed Information Network (WIN), the successor to Florida STORET. As of November 2019, WIN contains data from 67 providers, including data collected under the Strategic Monitoring Plan (SMP). The SMP goal is to ensure that segments with waterbody identification (WBID) numbers have sufficient data to verify whether potentially impaired waters are in fact impaired and, to the extent possible, determine the causative pollutant for waters listed as not meeting the applicable criteria for DO or biological health. SMP monitoring typically occurs over multiple years and includes the collection of chemical and biological data. These data are combined with any other available data at the time of the assessment.

Because of limited resources, monitoring is prioritized based on the EPA's Integrated Report assessment categories, listed in **Table 3.1a**. Waterbodies in **Table 3.1a** are counted only once using the following hierarchical approach:

- Category 5 If there is at least one assessment in Category 5.
- Category 4e If there is at least one assessment in Category 4e, and none in 5.

- Category 4b If there is at least one assessment in Category 4b, and none of the above.
- Category 4a If there is at least one assessment in Category 4a, and none of the above.
- Category 4c If there is at least one assessment in Category 4c, and none of the above.
- Category 2 If there is at least one assessment in Category 2, and none of the above.
- Category 3c If there is at least one assessment in Category 3c, and none of the above.
- Category 3b If there is at least one assessment in Category 3b, and none of the above.

Table 3.1a. Distribution of assessment results by waterbody type and assessment category (number of WBIDs)

Note: There are no waters in EPA Category 1 (attaining all designated uses) because DEP does not sample for all uses. Category 2 comprises waters attaining all the uses that are sampled for.

The EPA Integrated Report categories are as follows:

1-Attains all designated uses.

2—Attains some designated uses.

3a-No data and information are available to determine if any designated use is attained.

3b—Some data and information are available, but they are insufficient for determining if any designated use is attained.

3c-Meets Planning List criteria and is potentially impaired for one or more designated uses.

4a—Impaired for one or more designated uses and a TMDL has been completed.

4b—Impaired for one or more designated uses, but no TMDL is required because an existing or proposed pollutant control mechanism provides reasonable assurance that the water will attain standards in the future.

4c-Impaired for one or more designated uses but no TMDL is required because the impairment is not caused by a pollutant.

4d—Waterbody indicates nonattainment of water quality standards, but DEP does not have enough information to determine a causative pollutant; or current data show a potentially adverse trend in nutrients or nutrient response variables; or there are exceedances of stream nutrient thresholds, but DEP does not have enough information to fully assess nonattainment of the stream nutrient standard.

4e—Waterbody indicates nonattainment of water quality standards and pollution control mechanisms, or restoration activities are in progress or planned to address nonattainment of water quality standards, but DEP does not have enough information to fully evaluate whether proposed pollution mechanisms will result in attainment of water quality standards. 5—Water quality standards are not attained and a TMDL is required.

Waterbody	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	Number of Waterbody Segments
Туре	Cat. 2	Cat. 3b	Cat. 3c	Cat. 4a	Cat. 4b	Cat. 4c	Cat. 4d	Cat. 4e	Cat. 5	Assessed
Beach	295			1					59	355
Coastal	95	4			12		1	3	30	145
Estuary	164	38	7	27	2	17	33	19	316	623
Lake	586	164	68	43	1	40	99	13	185	1,199
Spring	4	11	1	31		31	1	30	20	129
Stream	307	303	97	99		136	272	18	526	1,758
Total	1,451	520	173	201	15	224	406	83	1,136	4,209

303(d) Listed Waters

Only those WBID/analyte combinations placed in EPA Category 5 as a result of IWR assessments are included on the state's Verified List of Impaired Waters adopted by Secretarial Order. For these listings, water quality standards are not being met, and the development of a TMDL is required. The list of these waters subsequently is submitted to EPA as the annual update to Florida's 303(d) list.

Although water quality standards are not met for EPA Category 4, these waterbodies are not included on the state's Verified List because a TMDL currently is not required. Nevertheless, for Subcategories 4d or 4e, TMDLs may be required later, and these waterbodies are included on the 303(d) list.

Assessment Results

Lakes are a particular focus of EPA's Integrated Report guidance, under Section 314 of the CWA. **Appendix D** lists 187 publicly owned lakes identified as impaired, for which a TMDL will be needed. Many of these lakes have mercury in fish tissue impairments that are covered by the statewide TMDL. Currently, 68 of these lakes are on DEP's priority list for TMDL development through 2022. Forty-five of the lakes already have a TMDL adopted into state rule, and 14 have a TMDL alternative approved or in progress.

In Florida, the most frequently identified causes of impairment for rivers and streams, and for lakes and estuarine segments, include DO, fecal coliform, nutrients, and chlorophyll *a*. **Table 3.1b** lists the 15 most frequently identified impairments by waterbody type.

Note: Counts exclude assessments in Ca							Total Impairments
Identified Cause	Lake	Stream	Coastal	Estuary	Spring	Beach	Identified
DO (percent saturation)	55	455	2	132	9		653
Fecal Coliform	12	423		131			566
Nutrients (TN)	146	114	15	88			363
Nutrients (TP)	158	151	1	43	1		354
Nutrients (chlorophyll a)	167	55	4	117	1		344
Biology	102	80					182
Fecal Coliform (SEAS classification)		3	10	106			119
Iron	6	52	1	40			99
Nutrients (nitrate-nitrite)		10	1	1	75		87
Nutrients (macrophytes)		68					68
Nutrients (algal mats)	1	27		2	37		67
Bacteria (beach advisories)						61	61
Enterococci				55			55
Copper	2	4	10	37	1		54
E. coli		49					49

Table 3.1b. Fifteen most frequently identified impairments by waterbody type

SEAS = DEP Shellfish Environmental Assessment Section **Note:** Counts exclude assessments in Category 4c.

Tables 3.2a and **3.2b** and **Figures 3.1a and 3.1b** present the distribution of the impairmentspecific subgroup summary assessments for fecal indicator bacteria and nutrients by waterbody type and EPA reporting category.

Table 3.2a. Assessment results for fecal indicator bacteria by waterbody type and assessment category (number of WBIDs)

Note: There are no waters in EPA Category 1 (attaining all designated uses) because DEP does not sample for all uses. Category 2 comprises waters attaining all the uses that are sampled for.

The EPA Integrated Report categories are as follows:

1-Attains all designated uses.

2-Attains some designated uses.

3a-No data and information are available to determine if any designated use is attained (not displayed).

3b—Some data and information are available, but they are insufficient for determining if any designated use is attained.

3c-Meets Planning List criteria and is potentially impaired for one or more designated uses.

4a—Impaired for one or more designated uses and a TMDL has been completed.

4b—Impaired for one or more designated uses, but no TMDL is required because an existing or proposed pollutant control mechanism provides reasonable assurance that the water will attain standards in the future.

4c-Impaired for one or more designated uses but no TMDL is required because the impairment is not caused by a pollutant.

4d—Waterbody indicates nonattainment of water quality standards, but DEP does not have enough information to determine a causative pollutant; or current data show a potentially adverse trend in nutrients or nutrient response variables; or there are exceedances of stream nutrient thresholds, but DEP does not have enough information to fully assess nonattainment of the stream nutrient standard.

4e—Waterbody indicates nonattainment of water quality standards and pollution control mechanisms, or restoration activities are in progress or planned to address nonattainment of water quality standards, but DEP does not have enough information to fully evaluate whether proposed pollution mechanisms will result in attainment of water quality standards.

5—Water quality standards are not attained and a TMDL is required.

											Total
1	Waterbody	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	Number of
	Туре	Cat. 2	Cat. 3b	Cat. 3c	Cat. 4a	Cat. 4b	Cat. 4c	Cat. 4d	Cat. 4e	Cat. 5	Assessments
	Coastal	83	11							10	104
	Estuary	187	61	14	33			3	5	217	520
	Lake	378	404	15						12	809
	Spring	53	34								87
	Stream	350	572	77	110		1	7	6	339	1,462
	Beach	295			2					59	356
	Total	1,346	1,082	106	145	0	1	10	11	637	3,338

Table 3.2b. Assessment results for nutrients by waterbody type and assessment category (number of WBIDs)

Note: There are no waters in EPA Category 1 (attaining all designated uses) because DEP does not sample for all uses. Category 2 comprises waters attaining all the uses that are sampled for.

The EPA Integrated Report categories are as follows:

- 1-Attains all designated uses.
- 2-Attains some designated uses.

3a-No data and information are available to determine if any designated use is attained (not displayed)

3b—Some data and information are available, but they are insufficient for determining if any designated use is attained.

3c-Meets Planning List criteria and is potentially impaired for one or more designated uses.

4a-Impaired for one or more designated uses and a TMDL has been completed.

4b—Impaired for one or more designated uses, but no TMDL is required because an existing or proposed pollutant control mechanism provides reasonable assurance that the water will attain standards in the future.

4c—Impaired for one or more designated uses but no TMDL is required because the impairment is not caused by a pollutant.

4d—Waterbody indicates nonattainment of water quality standards, but DEP does not have enough information to determine a causative pollutant; or current data show a potentially adverse trend in nutrients or nutrient response variables; or there are exceedances of stream nutrient thresholds, but DEP does not have enough information to fully assess nonattainment of the stream nutrient standard.

4e—Waterbody indicates nonattainment of water quality standards and pollution control mechanisms, or restoration activities are in progress or planned to address nonattainment of water quality standards, but DEP does not have enough information to fully evaluate whether proposed pollution mechanisms will result in attainment of water quality standards.

		EPA			EPA		EPA			Total
Waterbody	EPA	Cat.	EPA	EPA	Cat.	EPA	Cat.	EPA	EPA	Number of
Туре	Cat. 2	3b	Cat. 3c	Cat. 4a	4b	Cat. 4c	4d	Cat. 4e	Cat. 5	Assessments
Estuary	310	77	25	46	2			25	93	578
Coastal	37	21	3		23			4	12	100
Lake	550	367	42	54	1		1	9	153	1,177
Spring	18	27	2	31				30	19	127
Stream	873	426	59	36			133	15	112	1,654
Total	1,788	918	131	167	26		134	83	389	3,636

5—Water quality standards are not attained and a TMDL is required.

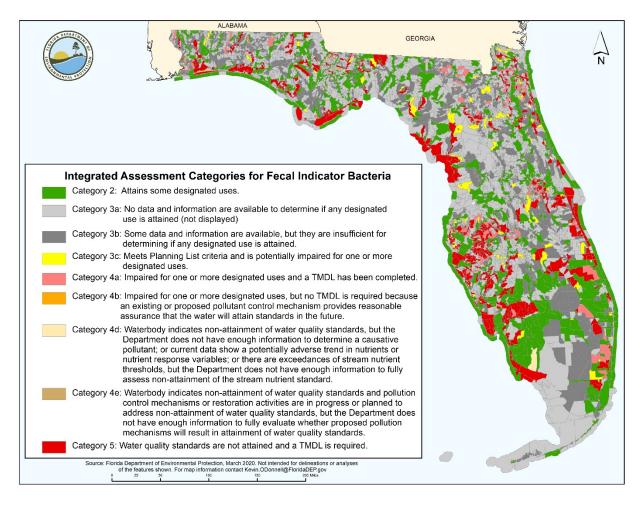


Figure 3.1a. Results of Florida's surface water quality assessment: EPA assessment categories for fecal indicator bacteria

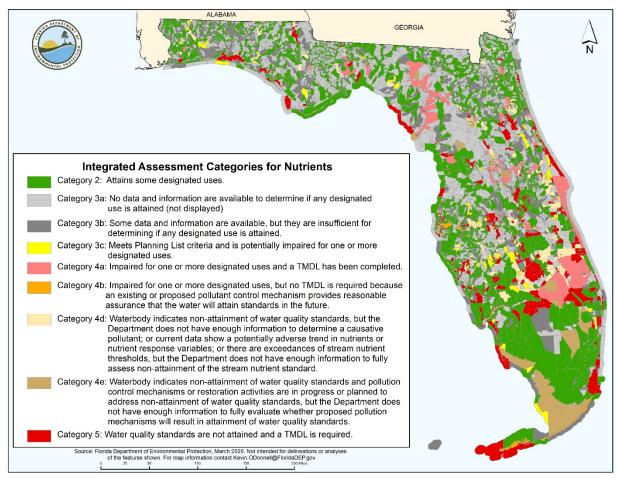


Figure 3.1b. Results of Florida's surface water quality assessment: EPA assessment categories for nutrients

Impairment Summary

Tables 3.3a through **3.3d** summarize the number and size of waterbody segments/analyte combinations identified as impaired for which a TMDL may be required (i.e., in Subcategories 4d, 4e, or 5) by the specific impairment identified. **Chapter 4** contains more information on developing TMDLs in Florida. Since a single WBID may be impaired for multiple analytes, the totals presented do not necessarily reflect the total size of waterbodies identified as impaired, but rather the total of all waterbody segment/analyte combinations.

The number of acres identified as impaired for lakes includes and is influenced largely by the assessment results for Lake Okeechobee. Covering an area of 320,331 acres, Lake Okeechobee is the largest lake in the state and is included among the Category 5 waters.

In addition, all fresh waters listed as impaired for mercury in fish tissue prior to 2013 were addressed by a statewide TMDL completed in 2012. These segments have been delisted and placed in EPA Category 4a. As new assessments are carried out, if data indicate additional

impairments in new WBIDs not originally included in the TMDL the listings are included on the basin's draft Verified List for review and comment by the public. DEP then reviews these listings to confirm they are caused by the same sources identified in the existing TMDL, and once confirmed they are added to the TMDL and placed instead in EPA Category 4a.

Identified Cause	Waterbody Type	Units	Number of Stream Segments Identified as Impaired	Total Number of Stream Miles
DO (percent saturation)	Stream	Miles	428	20,437
Fecal Coliform	Stream	Miles	302	8,272
Nutrients (TP)	Stream	Miles	136	8,948
Nutrients (TN)	Stream	Miles	97	5,757
Biology	Stream	Miles	77	2,674
Nutrients (macrophytes)	Stream	Miles	64	5,263
Iron	Stream	Miles	51	2,702
E. coli	Stream	Miles	49	851
Nutrients (chlorophyll a)	Stream	Miles	42	3,610
Lead	Stream	Miles	23	353
Nutrients (algal mats)	Stream	Miles	15	627
Specific Conductance	Stream	Miles	7	451
DO	Stream	Miles	6	234
Un-Ionized Ammonia	Stream	Miles	4	130
Copper	Stream	Miles	4	56
Chloride	Stream	Miles	3	425
Fecal Coliform (SEAS classification)	Stream	Miles	3	139
Silver	Stream	Miles	2	29
Turbidity	Stream	Miles	1	464
Dissolved Solids	Stream	Miles	1	20
Total Ammonia	Stream	Miles	1	19
Arsenic (in fish tissue)	Stream	Miles	1	13
Nutrients (chlorophyll <i>a</i> trend)	Stream	Miles	1	11
Total			1,318	61,483

Table 3.3a. Miles of rivers/streams impaired by cause

: Some stream WBIDs previously were classified as lakes and were assessed for nutrients based on the Trophic State Index (TSI). These WBIDs

DO = Dissolved oxygen; TP = Total phosphorus = TN = Total nitrogen; SEAS = DEP Shellfish Environmental Assessment Section

TP = Total phosphorus = TN = Total nitrogen; DO = Dissolved oxygen; PCBs = Polychlorinated biphenyls				
			Number of Lake	Total Water Area for
	Waterbody		Segments Identified as	Lake Segments Identified
Identified Cause	Туре	Units	Impaired	as Impaired
Nutrients (chlorophyll a)	Lake	Acres	119	142,042
Nutrients (TP)	Lake	Acres	113	133,211
Nutrients (TN)	Lake	Acres	103	157,960
Biology	Lake	Acres	91	124,682
DO (percent saturation)	Lake	Acres	53	13,,587
Lead	Lake	Acres	12	7,557
Fecal Coliform	Lake	Acres	12	2,098
Iron	Lake	Acres	6	278,754
Silver	Lake	Acres	2	282
Copper	Lake	Acres	2	118
Pesticides (in fish tissue)	Lake	Acres	1	30,526
Un-Ionized Ammonia	Lake	Acres	1	848
рН	Lake	Acres	1	661
Nutrients (other information)	Lake	Acres	1	479
Specific Conductance	Lake	Acres	1	356
PCBs (based on fish consumption advisory)	Lake	Acres	1	245
Turbidity	Lake	Acres	1	147
Total			520	893,552

Table 3.3b. Acres of lakes impaired by cause

DO = Dissolved oxygen; SEAS = DEP Shellfish		ssment Section; TN	Number of Estuary Segments	Total Water Area for Estuary Segments
	Waterbody	T T •/	Identified as	Identified as
Identified Cause	Туре	Units	Impaired	Impaired
DO (percent saturation)	Estuary	Acres	116	69,614
Fecal Coliform (SEAS classification)	Estuary	Acres	106	799,542
Fecal Coliform	Estuary	Acres	93	135,649
Nutrients (chlorophyll a)	Estuary	Acres	81	378,856
Nutrients (TN)	Estuary	Acres	56	395,862
Enterococci	Estuary	Acres	52	18,207
Iron	Estuary	Acres	40	55,000
Copper	Estuary	Acres	37	25,871
Fecal Coliform (3)	Estuary	Acres	35	218,294
Nutrients (TP)	Estuary	Acres	10	59,016
рН	Estuary	Acres	2	26,278
Lead	Estuary	Acres	2	4,804
Dioxin (in fish tissue)	Estuary	Acres	1	0.36
Total			631	2,186,993

Table 3.3c. Acres of estuaries impaired by cause

TN = Total nitrogen; SEAS = DEP Shell	= Total nitrogen; SEAS = DEP Shellfish Environmental Assessment Section; DO = Dissolved oxygen; TP = Total phosphorus					
			Number of	Total Water Size		
			Coastal	for Coastal		
			Segments	Segments		
	Waterbody		Identified as	Identified as		
Identified Cause	Туре	Units	Impaired	Impaired		
Nutrients (other information)	Coastal	Miles	23	333		
Nutrients (TN)	Coastal	Miles	15	341		
Fecal Coliform	Coastal	Miles	10	312		
(SEAS Classification)	Coastai	Ivines	10	512		
Copper	Coastal	Miles	10	181		
Nutrients (chlorophyll	a) Coastal	Miles	4	168		
Fecal Coliform (3)	Coastal	Miles	3	85		
DO (Percent Saturatio	n) Coastal	Miles	2	45		
Nutrients (TP)	Coastal	Miles	1	42		
Iron	Coastal	Miles	1	31		
Total			69	1,539		

Table 3.3d. Miles of coastal waters impaired by cause

Biological Assessment

Under the IWR, biological assessments can provide the basis for impairment determinations, or can support assessment determinations made for other parameters (as is the case for some waterbodies with naturally low DO concentrations where it may be possible to demonstrate that aquatic life use is fully supported by using biological information). **Appendices E** and **F** contain more information on biological assessment methodologies.

Biological assessment tools consist of the Stream Condition Index (SCI), Rapid Periphyton Survey (RPS), and Linear Vegetation Survey (LVS) for rivers and streams, and the Lake Vegetation Index (LVI) for lakes. **Table 3.4** lists the distribution of biological assessment results based on the type of bioassessment (SCI and LVI).

Of the biological data examined for the Group 2, Cycle 3 to Group 1, Cycle 4 assessment period, 24 % of the SCI scores were below the average score of 40, and 17 % of the SCI scores were below the minimum score of 35 associated with a healthy, well-balanced aquatic community (however, 2 temporally independent SCI results with an average less than 40 would be required for an impairment determination).

Table 3.4. Distribution of biological assessment results by bioassessment method

SCI

N/A = Not applicable

Biological Assessment Method and Date	Assessment Result	Number of Results Not Meeting Aquatic Life Use Support	Total Number of Results
SCI_2012	\geq 40	N/A	2,481
SCI_2012	< 40	775	775
Total SCI		775	3,256

LVI

Biological Assessment Method and Date	Assessment Result	Number of Results Not Meeting Aquatic Life Use Support	Total Number of Results
LVI_2012	≥43	N/A	1,480
LVI_2012	< 43	769	769
Total LVI		769	2,249

Delisting

Appendix G discusses the delisting process.

Drinking Water Use Support

While earlier sections of this chapter summarized all assessment results, this section focuses on assessment results for waterbodies designated as Class I (potable water supply). Of Florida's public drinking water systems, 13 % receive some or all of their water from a surface water source.

For Class I waters, the nonattainment of criteria unrelated to drinking water use does not necessarily affect a waterbody's suitability as a potable water supply. In fact, those Class I impairments identified in the IWR assessments have been for uses other than providing safe drinking water. **Table 3.5** lists the status of rivers/streams, lakes/reservoirs, and springs designated for drinking water use in each of EPA's 5 reporting categories. Note that Lake Okeechobee is a Class I waterbody and comprises 320,331 acres of the 337,520 total acres of Class I lakes.

Table 3.5. Waterbodies designated for drinking water use by assessment category (results for assessments including criteria for all use support)

Note: The EPA Integrated Report categories are as follows:

- 1-Attains all designated uses.
- 2-Attains some designated uses.
- 3a—No data and information are available to determine if any designated use is attained.
- 3b—Some data and information are available, but they are insufficient for determining if any designated use is attained.
- 3c-Meets Planning List criteria and is potentially impaired for one or more designated uses.
- 4a-Impaired for one or more designated uses and a TMDL has been completed.

4b—Impaired for one or more designated uses, but no TMDL is required because an existing or proposed pollutant control mechanism provides reasonable assurance that the water will attain standards in the future.

4c-Impaired for one or more designated uses but no TMDL is required because the impairment is not caused by a pollutant.

4d— Waterbody indicates non-attainment of water quality standards, but DEP does not have enough information to determine a causative pollutant; or current data show a potentially adverse trend in nutrients or nutrient response variables; or there are exceedances of stream nutrient thresholds, but DEP does not have enough information to fully assess nonattainment of the stream nutrient standard.

4e—Waterbody indicates nonattainment of water quality standards and pollution control mechanisms, or restoration activities are in progress or planned to address nonattainment of water quality standards, but DEP does not have enough information to fully evaluate whether proposed pollution mechanisms will result in attainment of water quality standards.

5-Water quality standards are not attained and a TMDL is required.

* These impairments are not related to criteria specifically designed to protect drinking water supplies.

Rivers/Streams

Waterbody Type	Assessment Category	Assessment Status	Number of WBIDs
Rivers/Streams	2	Not Impaired	9
Rivers/Streams	3a	No Data	25
Rivers/Streams	3b	Insufficient Data	8
Rivers/Streams	3c	Planning List	2
Rivers/Streams	4a	TMDL Complete	7
Rivers/Streams	4b	Reasonable Assurance	0
Rivers/Streams	4c	Natural Condition	4
Rivers/Streams	4d	No Causative Pollutant	11
Rivers/Streams	Rivers/Streams 4e		0
Rivers/Streams	5*	Impaired	21

Waterbody Type	Assessment Category	Assessment Status	Number of WBIDs
Lakes/Reservoirs	2	Not Impaired	5
Lakes/Reservoirs	3a	No Data	2
Lakes/Reservoirs	3b	Insufficient Data	0
Lakes/Reservoirs	3c	Planning List	1
Lakes/Reservoirs	4a	TMDL Complete	4
Lakes/Reservoirs	4b	Reasonable Assurance	0
Lakes/Reservoirs	4c	Natural Condition	0
Lakes/Reservoirs	4d	No Causative Pollutant	3
Lakes/Reservoirs	5*	Impaired	11

Lakes/Reservoirs

Springs

Waterbody Type	Assessment Category	Assessment Status	Number of WBIDs
Springs	2	Not Impaired	0
Springs	3a	No Data	0
Springs	3b	Insufficient Data	0
Springs	3c	Planning List	0
Springs	4a	TMDL Complete	0
Springs	4b	Reasonable Assurance	0
Springs	4c	Natural Condition	4
Springs 4d		No Causative Pollutant	0
Springs	5*	Impaired	0

Overlap of Source Water Areas and Impaired Surface Waters

In 2019, there were 5,100 public drinking water systems statewide, 18 of which obtain their supplies from surface water. An additional 56 systems wholly or partially purchase water from these 18 systems.

DEP compared the adopted Verified List of Impaired Waters with the coverage of the source water assessment areas generated for the Source Water Assessment and Protection Program (SWAPP). The modeled source water assessment area coverage for community drinking water systems used a 3-day travel time to the intake within surface waters and their 100-year floodplains. **Table 3.6** lists the river/stream miles (including springs) and square miles of lakes/reservoirs that overlap source water areas for community water systems impaired for fecal coliform, *E. coli*, or *Enterococci*.

Table 3.6. Summary of river/stream miles and lake/reservoir acres identified as impaired for fecal coliform, *E. coli*, or *Enterococci* overlapping source water areas of community water systems

Surface Water Type	Length or Area of Impaired Surface Waters Overlapping Source Water Areas in Basin Groups 1–5
Streams/Rivers	744 miles
Lakes/Reservoirs	1,187 acres

Chapter 4: TMDL Program and Priorities

DEP must develop TMDLs for waterbody segments added to DEP's Verified List of Impaired Waters per the requirements of the federal CWA and Florida Watershed Restoration Act (FWRA) (Chapter 403.067, F.S.). A TMDL establishes the maximum amount of a pollutant that a waterbody can receive without causing exceedances of water quality standards. As such, TMDL development is an important step toward restoring the state's waters to their designated uses. BMAPs and permits issued for point sources all use TMDLs as the basis for their water quality goals. In Florida, DEP adopts most nutrient TMDLs as site-specific water quality criteria as defined in the document *Implementation of Florida's Numeric Nutrient Standards* (DEP 2013a). DEP's TMDL Program website contains more detailed information on the program.

In 2014, DEP provided EPA with a priority framework document addressing how its 303(d) and TMDL Programs will achieve a long-term vision for implementing Section 303(d) of the CWA. The document focused on Florida's transition away from a pace-driven TMDL development schedule towards a new approach based on recovery potential screening. In 2015 DEP updated the approach by (1) explaining the significant changes to the its priority-setting process since 2014, and (2) expanding the planning horizon for TMDL development through 2022, in keeping with the 303(d) long-term vision.

One important change from previous TMDL priority-setting efforts is a new focus on waters where the TMDL and BMAP (**Chapter 5**) approach is the best of the available options for restoration. The resultant list of priorities is therefore best interpreted as "those impaired waters where [DEP] expects to develop a site-specific TMDL."

This process is used to select impaired waters where site-specific TMDLs are appropriate and the most effective path to successful restoration. While annual and two-year plans will need to be developed, DEP does not intend to reprioritize every year. Instead, two check-in periods will allow time to incorporate updated information from future IWR Database runs and assessment lists, reprioritize the workload, complete any TMDLs behind schedule, and prepare a new plan for 2023 and beyond (see **Table 4.1**).

The current list of <u>waters prioritized for TMDLs</u> is available online. It includes the waterbodies and the type of TMDL that will be developed between now and 2022.

The first check-in period extended from October 2018 to March 2019. DEP updated the priority list by incorporating new sampling data, updated assessment status, and public comments. More information and a story map on the new changes can be found on the <u>Site-Specific TMDL</u> <u>Prioritization web page</u>.

To date, DEP has adopted a total of 447 TMDLs. Of these, 262 were developed for DO, nutrients, and/or un-ionized ammonia; 179 were developed for bacteria; and 5 were for other

parameters such as iron, lead, and turbidity. In addition, DEP adopted a statewide TMDL for mercury, based on fish consumption advisories affecting over 1,100 waterbody segments. These TMDLs represent areas in all basin groups and cover many of the largest watersheds in the state (e.g., St. Johns River, St. Lucie Estuary). DEP has many more TMDLs in various stages of development.

State Fiscal Year (SFY)	Federal FY	Calendar Quarter	Comments
SFY 15–16	FY 15	July to Sept. 2015	Establish plan
SFY 15–16	FY 16	Oct. to Dec. 2015	Beginning of plan
SFY 15–16	FY 16	Jan to Mar. 2016	Beginning of plan
SFY 15–16	FY 16	Apr. to June 2016	
SFY 16–17	FY 16	July to Sept. 2016	Annual planning
SFY 16–17	FY 17	Oct. to Dec. 2016	
SFY 16–17	FY 17	Jan. to Mar. 2017	
SFY 16–17	FY 17	Apr. to Jun. 2017	
SFY 17–18	FY 17	July to Sept. 2017	Annual planning
SFY 17–18	FY 18	Oct. to Dec. 2017	
SFY 17–18	FY 18	Jan. to Mar. 2018	
SFY 17–18	FY 18	Apr. to Jun. 2018	
SFY 18–19	FY 18	July to Sept. 2018	Annual planning
SFY 18–19	FY 19	Oct. to Dec. 2018	Check-in Period 1 (reprioritize)
SFY 18–19	FY 19	Jan. to Mar. 2019	
SFY 18–19	FY 19	Apr. to June 2019	
SFY 19–20	FY 19	July to Sept. 2019	Annual planning
SFY 19–20	FY 20	Oct. to Dec. 2019	
SFY 19–20	FY 20	Jan. to Mar. 2020	
SFY 19–20	FY 20	Apr. to June 2020	
SFY 20–21	FY 20	July to Sept. 2020	Annual planning
SFY 20–21	FY 21	Oct. to Dec. 2020	
SFY 20–21	FY 21	Jan. to Mar. 2021	
SFY 20–21	FY 21	Apr. to June 2021	
SFY 21–22	FY 21	July to Sept. 2021	Annual planning
SFY 21–22	FY 22	Oct. to Dec. 2021	
SFY 21–22	FY 22	Jan. to Mar. 2022	
SFY 2122	FY 22	Apr. to June 2022 Check-in Per (reprioriti	
SFY 22–23	FY 22	July to Sept. 2022	
SFY 22–23	FY 23	Oct. to Dec. 2022	New plan begins

Table 4.1. Overall timeline for long-term vision priorities (Fiscal Year [FY] 2016–FY 2022)

Chapter 5: BMAP Program

Florida's primary mechanism for implementing TMDLs adopted through Section 403.067, F.S., is the <u>basin management action plan</u> (BMAP). Once the decision is made to initiate and ultimately develop a BMAP, the effort cannot be completed without significant input from all stakeholders, collaboration with local entities, and stakeholder commitment to implement BMAP restoration projects. While a BMAP is developed for a specific basin and is unique based on the basin and type of impairment, at a minimum all BMAPs include restoration projects and management strategies, implementation schedules and milestones, allocations or reduction requirements, funding strategies, and tracking mechanisms.

BMAP implementation uses an adaptive management approach that continually solicits cooperation and agreement from stakeholders on the pollutant reduction assignments. The foundation of all BMAPs is the water quality restoration projects that state and local entities commit to developing and completing. DEP, in cooperation with local stakeholders, annually reviews, updates, and assesses these projects to ensure the progression towards the established milestones. During the collaborative review process, stakeholders may update and revise projects, and DEP may require additional restoration projects. Because BMAPs are adopted by Secretarial Order, they are enforceable and DEP has the statutory authority to take enforcement actions if necessary.

To date, DEP has adopted 30 BMAPs and is working on developing or updating numerous other BMAPs statewide. **Table 5.1** summarizes the status of all BMAPs. While the majority address nutrient impairments, DEP also has adopted BMAPs that target fecal indicator bacteria contamination. To address these sources, DEP developed a guidance manual, <u>Restoring</u> <u>Bacteria-Impaired Waters</u> (DEP 2018c), based on experiences in collaborating with local stakeholders around the state. The manual provides local stakeholders with useful information on identifying sources of fecal indicator bacteria in their watersheds and examples of management actions to address these sources.

In January 2016, the Florida Legislature adopted statutes directing DEP to develop or update BMAPs for impaired <u>Outstanding Florida Springs</u> (OFS) and impaired waters that are part of the <u>Northern Everglades and Estuaries Protection Program</u> (NEEPP). Revisions to Chapter 373, F.S., outlined specific updates and actions for OFS and NEEPP BMAPs. Revisions to Chapter 403, F.S., outlined specific updates and actions for all BMAPs, along with the schedules for those updates and actions. DEP conducted well over 100 stakeholder meetings, technical workshops, and noticed public meetings in the preparation for the revised BMAPs. In June 2018, DEP adopted 13 OFS BMAPs, 8 of which are now effective (5 are pending the outcome of legal challenges). DEP has also prepared 5-year reviews for the NEEPP BMAPs and completed all technical and BMAP development work for these BMAPs by January 2020. The Lake Okeechobee, St. Lucie, and Caloosahatchee updated BMAPs were adopted in February 2020.

Beyond the requirements to update BMAPs, the 2016 legislation also directed DEP to develop a statewide annual report for all BMAPs. The report is due to the Legislature by July 1 of each year, and DEP has met this deadline in each of the last two years.

Table 5.1	. Summary	of BMAPs
-----------	-----------	----------

TN = Total nitrogen; TP = Total phosphorus; FC = Fecal coliform; DO = Dissolved oxygen; BOD = Biochemical oxygen demand; NO₃ = Nitrate; OPO₄ = Orthophosphate

$OPO_4 = Orthophosphate$	BMAP	Parameter(s)	
BMAP	Status	Addressed	Implementation Status
Upper Oklawaha River Basin	Adopted August 2017	TP	The BMAP was updated in 2014.
Orange Creek	Adopted May 2008	TN/TP/FC	The BMAP was updated in 2014.
Long Branch	Adopted May 2008	FC/DO	The BMAP, adopted in 2008, is currently being reviewed for any necessary updates as restoration efforts continue.
Lower St. Johns River Basin Main Stem	Adopted October 2008	TN/TP	The BMAP, adopted in 2008, is currently being reviewed for any necessary updates as restoration efforts continue.
Hillsborough River	Adopted September 2009	FC	The BMAP, adopted in 2009, is currently being reviewed for any necessary updates as source identification efforts continue.
Lower St. Johns River Basin Tributaries I	Adopted December 2009	FC	The BMAP, adopted in 2011, is currently being reviewed for any necessary updates as source identification efforts continue.
Lake Jesup	Adopted May 2010; amended July 2019	TN/TP/ Un-ionized ammonia	The BMAP, adopted in 2010, was revised and amended in July of 2019 to add additional information on sources and allocations.
Lower St. Johns River Basin Tributaries II	Adopted August 2010	FC	The BMAP, adopted in 2010, is currently being reviewed for any necessary updates as source identification efforts continue.
Bayou Chico (Pensacola Basin)	Adopted October 2011	FC	The BMAP, adopted in 2011, is currently being reviewed for any necessary updates as source identification efforts continue.
Santa Fe River Basin	Pending	NO ₃ /DO	The BMAP was updated and adopted in June 2018 to meet new requirements outlined in the Florida Springs and Aquifer Protection Act and is currently under administrative challenge.
Lake Harney, Lake Monroe, Middle St. Johns River, and Smith Canal	Adopted August 2012	TN/TP	The BMAP, adopted in 2012, is currently being reviewed for any necessary updates.
Caloosahatchee Estuary Basin	Adopted November 2012; updated January 2020	TN	The NEEPP BMAP, adopted in 2012, covers the Tidal Caloosahatchee Watershed. A formal 5- Year Review of the BMAP was submitted to the Florida Legislature and Governor in November 2017 and updated to meet new requirements outlined in Executive Order 19-12 in January 2020.

ВМАР	BMAP Status	Parameter(s) Addressed	Implementation Status
Everglades West Coast	Adopted November 2012	TN/DO	The BMAP, adopted in 2012, covers the impaired waterbodies Hendry Creek and Imperial River. It is being reviewed to identify whether any updates are necessary as the end of the first phase of implementation nears.
Banana River Lagoon (BRL)	Adopted February 2013	TN/TP	The BMAP was adopted in 2013, in conjunction with the Central Indian River Lagoon (IRL) and North IRL BMAPs. All three BMAPs are being reviewed to identify whether any updates are necessary as the end of the first phase of implementation nears.
Central IRL	Adopted February 2013	TN/TP	The BMAP was adopted in 2013, in conjunction with the North IRL and BRL BMAPs. All three BMAPs are being reviewed to identify whether any updates are necessary as the end of the first phase of implementation nears.
North IRL	Adopted February 2013	TN/TP	The BMAP was adopted in 2013, in conjunction with the Central IRL and BRL BMAPs. All three BMAPs are being reviewed to identify whether any updates are necessary as the end of the first phase of implementation nears.
St. Lucie River and Estuary Basin	Adopted June 2013; updated January 2020	TN/TP/BOD	The NEEPP BMAP, adopted in 2013, covers the watershed that contributes to the St. Lucie Estuary. A formal 5-Year Review of the BMAP was submitted to the Florida Legislature and Governor in June 2018. The BMAP was updated to meet new requirements outlined in Executive Order 19-12 in January 2020.
Alafia River Basin	Adopted March 2014	FC/TN/TP/DO	The BMAP, adopted in 2014 and in its third year of implementation, is currently being reviewed for any necessary updates.
Manatee River Basin	Adopted March 2014	FC/TN/TP/DO	The BMAP, adopted in 2014 and in its third year of implementation, is currently being reviewed for any necessary updates.
Orange Creek – Phase 2	Adopted July 2014; amended July 2019	TN/TP/FC	The BMAP, adopted in 2014, was revised and amended in July 2019 to add information on sources and allocations.
Upper Oklawaha River Basin – Phase 2	Adopted July 2014, amended July 2019	TP	The BMAP, adopted in 2014, was revised and amended in July 2019 to add information on sources and allocations.
Lake Okeechobee Basin	Adopted December 2014; <u>updated</u> <u>January</u> <u>2020</u>	TP	The NEEPP BMAP, adopted in 2014, covers the nine subwatersheds comprising the Lake Okeechobee Watershed. The BMAP was updated to meet new requirements outlined in Executive Order 19-12 in January 2020.

BMAP	BMAP Status	Parameter(s) Addressed	Implementation Status		
Silver Springs Group and Silver River	Status Pending	NO ₃	Implementation Status The BMAP was updated and adopted in June 2018 to meet new requirements as outlined in the Florida Springs and Aquifer Protection Act of 2016, and is currently under administrative challenge.		
Upper Wakulla River and Wakulla Springs	Adopted June 2018	NO3	The BMAP, which was revised to meet the requirements of the Florida Springs and Aquifer Protection Act of 2016, was adopted on June 30, 2018.		
Wekiva River, Rock Springs Run, and Little Wekiva Canal	Pending	NO ₃ /TP/DO	The BMAP was updated and adopted in June 2018 to meet new requirements outlined in the Florida Springs and Aquifer Protection Act of 2016, and is currently under administrative challenge.		
Rainbow Springs and Rainbow Run	Pending	NO3	The BMAP was updated and adopted in June 2018 to meet new requirements outlined in the Florida Springs and Aquifer Protection Act of 2016, and is currently under administrative challenge.		
Jackson Blue Spring	Adopted June 2018	NO3	The BMAP, which was revised to meet requirements of the Florida Springs and Aquifer Protection Act of 2016, was adopted on June 30, 2018.		
Volusia Blue Springs	Pending	NO ₃	The BMAP was developed and adopted in June 2018 to meet new requirements outlined in the Florida Springs and Aquifer Protection Act of 2016, and is currently under administrative challenge.		
Kings Bay/Crystal River	Adopted June 2018	TN/TP/NO ₃ /OPO ₄	The BMAP, which was developed to meet requirements of the Florida Springs and Aquifer Protection Act of 2016, was adopted on June 30, 2018.		
Weeki Wachee Spring and Spring Run	Adopted June 2018	NO ₃	The BMAP, which was developed to meet requirements of the Florida Springs and Aquifer Protection Act of 2016, was adopted on June 30, 2018.		
Middle and Lower Suwannee River Basin	Pending	TN	The BMAP was updated and adopted in June 2018 to meet new requirements outlined in the Florida Springs and Aquifer Protection Act of 2016, and is currently under administrative challenge.		

Chapter 6: Groundwater Monitoring and Assessment

Groundwater Quality Issues and Contaminants of Concern, Including Potable Water Issues

Information from public water system (PWS) sampling data (including both treated and untreated) is used to summarize the parameter categories most frequently above the primary maximum contaminant levels (MCLs) in Florida's potable supply aquifers. Parameter results are for wells, entry points into a water system, and composite samples. While individual sample results collected for this report may exceed an MCL, this does not translate directly into the exceedance reaching consumers because of (1) the compositing of several waters into a single result, or (2) averaging the subsequent sample results below the MCL.

The data evaluated are compiled from a two-year period of record (August 2017–August 2019). Data exceeding specific groundwater MCLs during this period were used to identify current issues and contaminants of concern.

Figure 6.1 summarizes statewide findings by contaminant category. **Table 6.1** summarizes contaminant categories listing the numbers of exceedances reported for PWS from August 2017 through July 2019. Fourteen of the 29 major basins had exceedances. The contaminants of concern categories are volatile organic compounds (VOCs), synthetic organic chemicals (SOCs) (such as pesticides), nitrate, primary metals, salinity (sodium), and radionuclides. This report is limited to contaminants with potable groundwater primary MCLs.

VOCs

Volatile organics can be highly mobile and persistent in groundwater, and incidences of groundwater contamination by VOCs historically have been widespread in mainly urban areas. Two systems had VOC exceedances during the current two-year reporting period. The only contaminant exceeding the MCL was carbon tetrachloride.

SOCs

One system had an exceedance for bis-2-ethyl-hexyl-phthalate. The detection of this phthalate ester is frequently a byproduct of sampling or analytical procedures, but without QA documentation it is difficult to determine if the contaminant was present in groundwater.

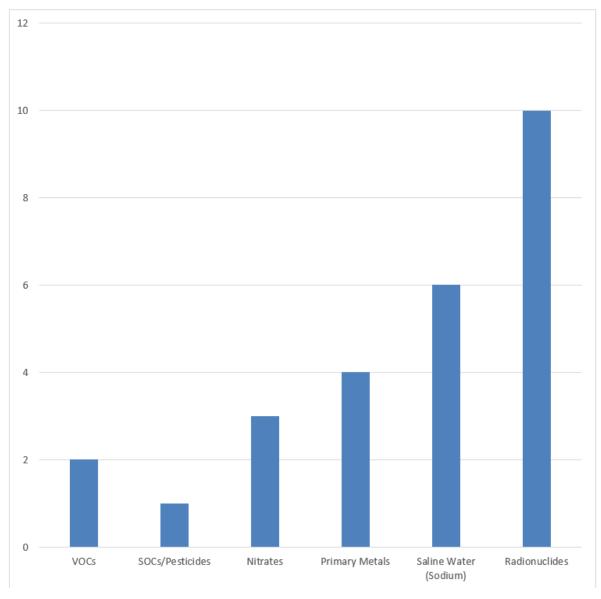
Nitrate

Elevated nitrate concentrations in groundwater are associated with inorganic fertilizers, animal waste, and domestic wastewater and residuals. Nitrate has been found at concentrations greater than the MCL of 10 mg/L in public systems. Over the past 2 years, samples from 3 systems had nitrate detections above the MCL. FDACS works with agricultural professionals to implement

BMPs in many areas of the state to reduce nitrogen loading to groundwater from agricultural operations.

Primary Metals

Four primary metal MCL exceedances were recorded in public systems during the period of record: arsenic, mercury, lead, and cadmium.


Saline Water (Sodium)

In several areas of the state, the upward seepage of brackish water from deeper zones also has been an issue. In this report, sodium MCL exceedances were used as an indicator of possible saline water impacts.

Both sodium and chloride are potential indicators of saline water. Chlorides can also be associated with anthropogenic sources such as wastewater and fertilizer. Over the recent twoyear period, a total of six sodium exceedances were documented.

Radionuclides

In Florida, most elevated radionuclide levels are caused by natural conditions, which may result in MCL exceedances and potential health concerns. Natural radionuclides occur as trace elements in bedrock and soil from radioactive decay series, including uranium-238 (U-238) and thorium-232 (Th-232). Elevated radionuclide levels in Florida occur most frequently in phosphate mineral deposits that are common in some areas of the state. Radionuclide categories with MCL exceedances in groundwater samples from PWS include combined radium-226 and 228, combined uranium, and gross alpha. A total of 10 exceedances occurred in the two-year reporting period.

Number of Exceedances (period of record August 2017–July 2019)

Figure 6.1. Statewide summary of PWS with primary MCL exceedances reported in the recent two-year period

Table 6.1. Summary of recent exceedances of primary groundwater standards in treated and untreated samples from groundwater systems

(period of record August 2017–July 2019)							
Basin–Aquifer	VOCs in PWS	SOCs/Pesticides in PWS	Nitrate in PWS	Primary Metals in PWS	Saline Water (Sodium) in PWS	Radionuclides in PWS	
Charlotte Harbor–Intermediate Aquifer	0	0	0	0	1	0	
Choctawhatchee–St. Andrew–Floridan Aquifer	0	0	0	1	0	0	
Fisheating Creek–Floridan Aquifer	0	0	1	0	0	0	
Indian River Lagoon–Floridan Aquifer	0	0	0	0	1	0	
Kissimmee River–Floridan Aquifer	0	0	1	0	0	0	
Lake Worth Lagoon–Palm Beach Coast– Surficial Aquifer	0	0	0	0	1	0	
Lower St. Johns–Floridan Aquifer	1	0	0	0	0	0	
Middle St. Johns–Floridan Aquifer	0	0	0	0	1	0	
Upper St. Johns–Floridan Aquifer	0	0	0	0	1	0	
Ocklawaha–Floridan Aquifer	0	0	1	1	0	0	
Sarasota Bay–Peace–Myakka–Surficial Aquifer, Floridan Aquifer, Intermediate Aquifer	0	0	0	0	1	5	
Springs Coast–Floridan Aquifer	0	1	0	0	0	0	
Suwannee–Floridan Aquifer	0	0	0	0	0	1	
Tampa Bay Tributaries–Floridan Aquifer	1	0	0	2	0	4	
Statewide Summary—Aug. 2017 – July 2019	2	1	3	4	6	10	

Contaminant Categories and Number of Water Systems with Samples Exceeding Primary Standards (period of record August 2017–July 2019)

Summary of Groundwater Contaminant Sources

EPA's Source Water Assessment guidance lists a range of potential groundwater contaminant sources that states may evaluate in their source water assessments. DEP's 2004 Florida Source Water Assessment identified the top five potential sources of contamination in Florida as (1) underground storage tanks (not leaking), (2) gasoline service stations (including historical gas stations), (3) municipal sanitary waste treatment and disposal (commercial, domestic, and industrial waste), (4) known contamination sites/plumes (equivalent to DEP's delineated areas), and (5) drycleaning facilities. Several of these sources commonly have been the focus of waste cleanup and monitoring activities in Florida.

However, there are also instances where groundwater has been degraded as the result of nonpoint activities. This section discusses the most significant groundwater degradation sources, based on waste cleanup, monitoring, and restoration actions undertaken by DEP and other agencies concerned with groundwater quality.

Petroleum Facilities

DEP's <u>Storage Tank Contamination Monitoring (STCM) Database</u> contains information on all storage tank facilities registered with DEP and tracks information about active storage tanks, storage tank history, and petroleum cleanup activity. Currently, the database lists approximately 37,000 registered petroleum storage tank facilities in Florida that have reported contaminant discharges. DEP has addressed almost half (18,000) of these to date. Petroleum sites and petroleum problems are concentrated in the most populated areas of the state and along major transportation corridors. The main petroleum constituents found in groundwater are benzene, toluene, ethylbenzene, xylenes, and methyl tert-butyl ether.

Florida's <u>Petroleum Cleanup Programs</u> carry out the technical oversight, management, and administrative activities necessary to prioritize, assess, and cleanup sites contaminated by petroleum and petroleum product discharges from stationary petroleum storage systems. Sites include those eligible for state-funded cleanup, as well as nonprogram or voluntary cleanup sites funded by responsible parties.

Drycleaning Solvent Facilities

Approximately 1,400 drycleaning facilities (mainly retail) have signed up for contaminant cleanup eligibility under DEP's <u>Drycleaning Solvent Cleanup Program</u> because of evidence of contamination. Of those, 236 sites are being assessed actively and may be under remedial action, while 194 sites have been cleaned up. The remaining sites await funding. Drycleaning solvent constituents (tetrachloroethene, trichloroethene, dichloroethenes, and vinyl chloride) are among the most mobile and persistent contaminants in the environment.

The Florida Legislature established a state-funded program, administered by DEP, to clean up properties contaminated by drycleaning facility or wholesale supply facility operations

(Chapter 376, F.S.). The drycleaning industry sponsored the statute to address environmental, economic, and liability issues resulting from drycleaning solvent contamination. The program limits the liability of the owner, operator, and real property owner of drycleaning or wholesale supply facilities for cleaning up drycleaning solvent contamination, if the parties meet the eligibility conditions stated in the law.

Waste Cleanup and Monitoring Sites

DEP's <u>Waste Cleanup Program</u> maintains lists of contamination sites for various programs. These include the federal Superfund Program (authorized under the Comprehensive Environmental Response Compensation and Liability Act [CERCLA]), state-funded cleanup sites, and contaminated sites that undergo cleanup by potentially responsible parties (PRPs). There are currently 103 active federal and state waste cleanup sites, including landfills, dumps, wood preserving waste, industrial solvent disposal, electroplaters, petroleum, pesticides, waste oil disposal, and drycleaners. There are approximately 1,700 sites on DEP's list of currently open PRP sites. Many of the sites have documented groundwater contamination.

Nonpoint Sources

Sometimes, degraded groundwater quality is associated with multiple sources or land use practices in an area rather than a single contaminant source. The cumulative effect of human activities through leaching from nonpoint pollution sources can create groundwater quality problems. In urban areas, groundwater may receive contaminants from a variety of sources, including residential septic systems, leaking sewer lines, urban stormwater, residential fertilizers, pesticide applications, and pet waste. In more rural areas, significant nonpoint sources can include fertilizers and pesticides used on agricultural fields, animal wastes from pastures and confined animal-feeding operations, wastewater application sites, and road and utility rights-of-way. The magnitude of the impacts depends on the vulnerability of the groundwater resource. Groundwater is particularly vulnerable in karst (limestone) areas, where discharges can have a direct, unfiltered pathway to the drinking water resource via sinkholes.

Nitrate-nitrogen is the most common nonpoint source contaminant found in Florida's groundwater at concentrations exceeding the MCL. Most nitrate exceedances occur in rural agricultural areas. Agricultural BMPs promulgated to agricultural producers by the <u>FDACS</u> <u>Office of Agricultural Water Policy (OAWP)</u> can help reduce nitrogen loading to groundwater from these activities. FDACS currently has BMP manuals for citrus, sod, nurseries, specialty fruit and nut crops, vegetable and agronomic crops, cow/calf, dairy, poultry, equine, and state-imperiled wildlife. The Florida Forest Service promulgates the BMP manual for silviculture production activities.

Groundwater–Surface Water Interaction

Setting and Pathways

Florida's surface waters depend on groundwater contributions. For example, in many areas surface water flows into groundwater through sinkholes or reversing springs. Spring-fed stream systems can depend almost entirely on groundwater discharge. Canals also can contain mostly groundwater. Other streams and lakes may receive over half of their total inflows via groundwater seepage, and natural estuaries rely on groundwater seepage as a significant source of fresh water. In areas where the Floridan aquifer system is near the surface, and in the southern parts of the state where porous limestone is present near the surface, conduit systems in carbonate aquifers efficiently deliver groundwater to streams and canals at high rates. In other areas of the state, groundwater discharge occurs as seepage from the surficial aquifer system.

Groundwater Influence on Impaired Surface Waters

Nutrients, DO, and iron are the groundwater parameters most likely to influence water quality in impaired or potentially impaired surface waters.

In contrast, nutrients and salinity are the most significant water quality concerns facing Florida's springs. **Table 6.2** lists frequently sampled springs, including Florida OFS and the recent results for some key water quality parameters.

Nutrients

Excessive nutrient enrichment causes the impairment of many surface waters, including springs. Nitrogen (N) and phosphorus (P) are the two major nutrient groups monitored. Both are essential for plant life, including the growth of algae.

Table 6.2. Median concentrations of selected parameters in frequently monitored springs (2018–19)

Notes: Nitrate concentrations shown with an asterisk and in boldface type exceed DEP's proposed nitrate criterion for spring vents; phosphorus concentrations shown with an asterisk and in boldface type are higher than the lowest algal growth-based threshold from research (Stevenson et al. 2007).

Basin	Spring Name	Associated Spring Group	Nitrate (mg/L)	TP (mg/L)	DO (mg/L)	Specific Conductance (µS/cm)	Sodium (mg/L)
Apalachicola–Chipola	Jackson Blue Spring	Spring Group	<u>3.7*</u>	0.025	7.29	278	1.8
Choctawhatchee–St. Andrew	Cypress Spring	Holmes Creek	0.36*	0.024	4.83	213	4.3
Choctawhatchee–St. Andrew	Gainer Spring #1C	Gainer	0.20	0.014	1.64	145	1.9
Choctawhatchee–St. Andrew	Morrison Spring		0.20	0.023	3.77	230	1.9
Middle St. Johns	Alexander Spring		0.038	0.049*	2.5	1,133	134
Middle St. Johns	Apopka Spring		3.30*	0.038*	2.69	285	7.0
Middle St. Johns	DeLeon Spring		0.75*	0.065*	0.98	874	86
Middle St. Johns	Fern Hammock Springs		0.11	0.027*	7.01	117	2.4
Middle St. Johns	Gemini Springs		1.38*	0.098*	0.86	2,062	268
Middle St. Johns	Juniper Spring		0.09	0.032*	6.97	121	2.4
Middle St. Johns	Rock Spring		1.27*	0.086*	0.97	283	6.1
Middle St. Johns	Salt Spring (Marion)		0.11	0.019	3.43	6,337	1054
Middle St. Johns	Silver Glen Springs		0.05	0.033*	3.31	1,871	234
Middle St. Johns	Volusia Blue Spring		0.49*	0.081*	0.87	2,294	323
Middle St. Johns	Wekiwa Spring		1.19*	0.119*	0.48	373	9.77
Ochlockonee–St. Marks	Wakulla Spring		0.40*	0.030*	1.64	309	5.6
Ocklawaha	Silver Spring Main	Silver	1.23*	0.048*	2.19	496	7.0
Springs Coast	Chassahowitzka Spring Main	Chassa- howitzka	0.55*	0.023	5.06	1306	147
Springs Coast	Homosassa Spring #1	Homosassa	0.73*	0.018	3.98	4,425	692
Springs Coast	Hunter Spring	Kings Bay	0.66*	0.023	5.15	463	41
Springs Coast	Tarpon Hole Spring	Kings Bay	0.22	0.046*	2.15	2,562	329
Springs Coast	Weeki Wachee Main Spring	Weeki Wachee	0.90*	0.007	1.82	351	5.5
Suwannee	Columbia Spring		0.38*	0.122*	2.65	290	6.2
Suwannee	Devil's Eye Spring (Gilchrist)	Ginnie–Devil's	2.2*	0.040*	4.22	406	3.9
Suwannee	Falmouth Spring		1.50*	0.064*	0.80	395	3.3
Suwannee	Fanning Springs		6.3*	0.073*	2.21	506	5.8

Basin	Spring Name	Associated Spring Group	Nitrate (mg/L)	TP (mg/L)	DO (mg/L)	Specific Conductance (µS/cm)	Sodium (mg/L)
Suwannee	Gilchrist Blue Spring		2.5*	0.033*	4.67	384	3.3
Suwannee	Hornsby Spring		0.65*	0.089*	0.53	415	6.9
Suwannee	Ichetucknee Head	Ichetucknee	0.84*	0.026*	4.35	337	2.6
Suwannee	Lafayette Blue Spring		1.8*	0.123*	2.96	282	4.8
Suwannee	Madison Blue Spring		1.95*	0.042*	2.08	279	3.1
Suwannee	Manatee Spring		2.73*	0.030*	1.43	504	4.4
Suwannee	Peacock Springs		3.39*	0.052*	2.77	390	3.1
Suwannee	Poe Spring		0.34	0.081*	0.94	414	6.2
Suwannee	Treehouse Spring		0.44*	0.117*	2.24	320	6.4
Suwannee	Troy Spring		1.47*	0.103*	2.75	261	3.4
Suwannee	Wacissa Spring #2	Wacissa	0.41*	0.042*	3.26	268	3.4
Tampa Bay Tributaries	Lithia Springs Major		2.49*	0.066*	2.22	572	18.9
Withlacoochee	Rainbow Spring #1	Rainbow	2.62*	0.028*	7.05	158	3.1

2020 Integrated Water Quality Assessment for Florida, June 2020

Nitrogen

Nitrogen forms the backbone of several ions, including nitrate and nitrite. These ions are found extensively in the environment. The nitrate ion occurs in the highest concentrations in groundwater and springs. While nitrate and nitrite are frequently analyzed and reported together as one concentration (nitrate-nitrite nitrogen), the nitrite contribution is always significantly less, generally by an order of magnitude. The majority of nitrate in groundwater and springs comes from anthropogenic sources such as inorganic fertilizer, domestic wastewater, and animal waste. Elevated nitrogen concentrations are of the greatest concern in clear surface water systems, such as springs and some rivers and estuaries, where phytoplankton in the water column and attached algae can cause biological imbalances.

Historically, nitrogen was only a minor constituent of spring water, and typical nitrate concentrations in Florida were less than 0.2 mg/L until the early 1970s. Since then, nitrate concentrations greater than 1 mg/L have been found in many springs. With sufficient phosphorus in the water column, seemingly low nitrogen concentrations can lead to the degradation of biological systems caused by the overgrowth of algae and sometimes aquatic plants.

Research into the relationship of nutrients to algal growth in springs has provided some sciencebased values that can serve as thresholds. In a DEP-funded study, Michigan State University researchers found that species reductions occurred at nitrogen concentrations below 0.591 mg/L for the algal genus *Vaucheria* spp. and below 0.250 mg/L for the more prevalent *Lyngbya wollei* (Stevenson et al. 2007). DEP's spring run–related TMDLs for the Wekiva River and Rock Springs Run identified a reference threshold of 0.286 mg/L to reduce the overall periphyton biomass concentration to an acceptable level. The TMDL developed for the Suwannee River and several springs provided a statistical analysis of the range of nitrate concentrations above which periphyton growth would occur.

Based on this combined body of research, DEP adopted a surface water standard for spring vents of 0.35 mg/L nitrate-nitrite (NO₃ + NO₂) as an annual geometric mean, not to be exceeded more than once in any three-calendar-year period (<u>Chapter 62-302.530(47)(b), F.A.C.)</u>. More than 75 % (30 out of 39) of the springs listed in **Table 6.2** have NO₃-NO₂ concentrations greater than the threshold. The springs with the highest nitrate concentrations listed in the table are located in agricultural areas of the Suwannee, Middle St. Johns, Apalachicola, and Withlacoochee Basins. The lowest concentrations in springs are found in conservation lands and forestlands of the Upper Middle St. Johns Basin and the Choctawhatchee–St. Andrew Basin, where there are few sources of nitrate.

Phosphorus

Phosphorus, the other essential nutrient governing algal growth in aquatic systems, can originate from natural or anthropogenic sources. In many parts of the state, naturally occurring phosphorus is a significant source of phosphate in both surface water and groundwater. Anthropogenic

sources of phosphorus include fertilizer, animal waste, human wastewater and biosolids, and industrial wastewater effluent. Because phosphorus originates from multiple sources, it is difficult to discern whether the phosphorus found in groundwater and springs is naturally occurring or comes from human activities.

Phosphorus has a critical concentration that is much lower than the nitrogen threshold. Stevenson et al. (2007) found that when nitrogen was present at elevated concentrations, the phosphorus thresholds for *Vaucheria* spp. and *L. wollei* were 0.026 and 0.033 mg/L, respectively. Ambient phosphorus concentrations in groundwater in springshed recharge areas are frequently higher than the algae-based thresholds offered by Stevenson et al. Of the springs listed in **Table 6.2**, 77 % (30 out of 39) have phosphorus concentrations greater than the lower algal-based threshold identified in Stevenson's work (0.026 mg/L). The springs listed in the table with the highest phosphorus concentrations are in the Middle St. Johns and Suwannee Basins.

DO

Low DO is a normal characteristic of groundwater. This is because the primary source of oxygen in water is from dissolution from the atmosphere, and groundwater is not in prolonged contact with air. In instances where groundwater contributions to surface waterbodies are significant, low DO is a typical consequence, and many DO exceedances in Florida waters are attributable to groundwater discharge.

Springs receive their water from the Upper Floridan aquifer, which is recharged mainly by precipitation. Springs with relatively shallow flow systems respond rapidly to precipitation events, and these springs have chemical characteristics that are more similar to those of rainwater than to deeper springs, whose discharge water has had a longer residence time in the aquifer material. Thus, DO concentration provides useful information about the relative age of water coming from springs. Rainwater and "newer" groundwater typically have higher DO levels, and springs with high DO levels are most vulnerable to surface water quality impacts from nearby sources.

In **Table 6.2**, springs with the highest DO concentrations include Jackson Blue Spring, Rainbow Spring #1, Fern Hammock Spring, and Juniper Spring. These all have contributing conduit systems that are shallow and capable of rapidly assimilating rainfall. Jackson Blue Spring and Rainbow Spring #1 are both located in agricultural areas and have among the highest nitrate concentrations of all springs being monitored. Fern Hammock and Juniper Spring are situated in a large conservation area, which is why their nitrate concentrations are lower.

Conversely, the springs with lower DO obtain a large portion of their flow from "older," potentially deeper groundwater with potentially longer flow pathways from groundwater recharge areas. Springs with the lowest DO in **Table 6.2** include Volusia Blue, Wekiwa, and

Rock Springs in the Middle St. Johns Basin and Lafayette Blue and Troy Spring in the Suwannee Basin.

Iron

Iron is another groundwater constituent that occurs naturally at high concentrations because of the leaching of ferric iron from iron-rich clay soils and sediment. Iron in the environment also has an affinity for organic materials. Streams with high iron concentrations typically have a high to moderate groundwater component, low DO, and high dissolved organic carbon (DOC) content. Many of the iron exceedances in surface waters in Florida are caused by this set of natural conditions.

Specific Conductance

Specific conductance can be an indicator of groundwater discharge to surface waters. In some basins, the specific conductance of groundwater discharging to surface water (quite often via springs) is higher than 1,000 μ S/cm and may exceed the specific conductance standard (50 % above background, or 1,275 μ S/cm, whichever is higher) for fresh surface waters.

Salinity

Although most springs in Florida are considered fresh waters, springs can be characterized by their salinity analyte levels and mineral content. Salinity analytes evaluated in this assessment include specific conductance and sodium. In some cases, changes in concentrations of these indicators may indicate drought, sea-level rise, and/or anthropogenic influences. Increasing salinity trends also can be caused by a lack of recharge during low-rainfall periods, overpumping the aquifer, or a combination of the two. Coastal springs cannot be easily evaluated for short-term salinity trends because of the tidal cycle. However, long-term increasing trends for salinity indicators in coastal springs could indicate saltwater intrusion.

Salinity trends have increased in many Florida springs. The more saline springs listed in **Table 6.2**, from recent data, include Silver Glen Spring, Salt Spring (Marion), Homosassa Spring #1, Chassahowitzka Spring Main, Volusia Blue Spring, Tarpon Hole Spring, and Alexander Spring. Of these, Silver Glen, Salt, Volusia Blue, and Alexander Springs are in a region of the Middle St. Johns Basin where a geologic fault zone along the St. Johns River provides a pathway for saline water from the Lower Floridan aquifer to migrate vertically upward (upwell) to zones intersecting these springs. In densely populated areas, groundwater withdrawals enhance this upwelling.

Along the Springs Coast, where Homosassa, Chassahowitzka, and Tarpon Hole Springs are located, salinity in springs is related to the proximity of the Gulf of Mexico. Here, salinity increases can occur during drought conditions where the aquifer gradients are lower, and the influence of groundwater withdrawals is more pronounced. The landward movement of the saline water wedge along the coastline also may be influenced by slight increases in sea level. Increases in spring salinity also influence receiving waters.

References

- 2 Degrees Institute. 2020. *Interactive CO₂ graph*. British Columbia. <u>https://www.co2levels.org/</u>, accessed March 13, 2020.
- Carvalho, A., W. Schropp, G.M. Sloane, T.P. Biernacki, and T.L. Seal. 2002. Development of an interpretive tool for assessment of metal enrichment in Florida freshwater sediment. Jacksonville, FL: Taylor Engineering and Florida Department of Environmental Protection. Prepared for the Florida Department of Environmental Protection. <u>https://floridadep.gov/dear/watershed-monitoring-section/content/sediment-guidelines#Fresh</u>.
- Florida Department of Environmental Protection. 2013a. *Implementation of Florida's numeric nutrient standards*. Tallahassee, FL: Division of Environmental Assessment and Restoration. <u>https://floridadep.gov/dear/water-quality-standards/documents/nnc-implementation</u>.
 - —. 2013b; modified 2019. *Derivation of dissolved oxygen criteria to protect aquatic life in Florida's fresh and marine waters*. Technical Support Document. Tallahassee, FL: Division of Environmental Assessment and Restoration. <u>https://floridadep.gov/dear/water-quality-standards-program/documents/derivation-dissolved-oxygen-criteria-protect-aquatic</u>
 - —2016. *Elements of Florida's Water Monitoring and Assessment Programs*. Tallahassee, FL: Division of Environmental Assessment and Restoration.
 - 2018a. Florida Watershed Monitoring Status and Trend Program design document.
 Tallahassee, FL: Division of Environmental Assessment and Restoration.
 <u>http://publicfiles.dep.state.fl.us/dear/DEARweb/WMS/Reports_Docs_SOPs/Design_Docs/</u>
 <u>WMS-MonitoringDesignDocument2018.pdf</u>.
 - 2018b. Data analysis protocols for the Status Network, Version 2.0: Guidelines for Florida's Probabilistic Monitoring Network. Tallahassee, FL: Division of Environmental Assessment and Restoration. Tallahassee, FL.
 <u>http://publicfiles.dep.state.fl.us/dear/DEARweb/WMS/Reports_Docs_SOPs/Standard%200</u> perating%20Procedures/Data%20Analysis%20Protocols/WMS-DataAnalysisProtocolsForStatusNetwork.pdf.
 - —. 2018c. Restoring bacteria-impaired waters: A toolkit to help local stakeholders identify and eliminate potential pathogen problems. Tallahassee, FL: Division of Environmental Assessment and Restoration, Water Quality Restoration Program. <u>https://floridadep.gov/sites/default/files/Restoring_Bacteria-Impaired_Waters_Toolkit_082018.pdf</u>.

- Florida Fish and Wildlife Conservation Commission and Florida Department of Health. 2009. *Resource guide for public health response to harmful algal blooms in Florida*. FWRI Technical Report TR-14. St. Petersburg, FL: Fish and Wildlife Research Institute. <u>http://www.floridahealth.gov/environmental-health/aquatic-toxins/_documents/habs-</u> <u>technical-guide.pdf</u>
- Gilbert, R.O. 1987. *Statistical methods for environmental pollution monitoring*. New York: John Wiley and Sons, Inc.
- Helsel, D.R., and R.M. Hirsch. 2002. Statistical methods in water resources, Chapter A3. In: Techniques of water-resources investigations of the United States Geological Survey, Book 4, Hydrologic analysis and interpretation. <u>https://pubs.usgs.gov/twri/twri4a3/twri4a3.pdf</u>, accessed March 4, 2020.
- Hirsch, R.M., and J.R. Slack. 1984. Nonparametric trend test for seasonal data with serial dependence. *Water Resources Research* 20(6): 727–732. <u>https://www.researchgate.net/publication/224839899_Non-</u> <u>Parametric_Trend_Test_for_Seasonal_Data_With_Serial_Dependence</u>.
- Hogue, A., J. Burchett, K. Sapp, T. Seal, S. Sunderman-Barnes, K. Sutton, and J. Silvanima.
 2019. *Exploratory study of emerging contaminants in select Florida rivers*. Florida
 Department of Environmental Protection white paper.
 http://publicfiles.dep.state.fl.us/DEAR/ESOC/ESOCpilot/Report/EC_Report_FINAL.pdf
- Hollander, M., and D. Wolfe. 1999. *Nonparametric statistical methods, second edition*. New York: John Wiley and Sons, Inc.
- Kincaid, T.M., and A.R. Olsen. 2019. *Spsurvey: Spatial survey design and analysis*. R package version 3.3. <u>https://cran.r-project.org/web/packages/spsurvey/spsurvey.pdf.</u>
- MacDonald, D.D. 1994. Approach to the assessment of sediment quality in Florida coastal waters (Vol. 1). MacDonald Environmental Sciences Ltd. Prepared for the Florida Department of Environmental Protection. http://publicfiles.dep.state.fl.us/DEAR/DEARweb/WMS/Sediment/vol1/volume1.pdf.
- MacDonald Environmental Sciences Ltd. and U.S. Geological Survey. 2003. *Development and evaluation of numerical sediment quality assessment guidelines for Florida inland waters*. Prepared for the Florida Department of Environmental Protection. <u>https://floridadep.gov/sites/default/files/SQAGs_for_Florida_Inland_Waters_01_03.PDF</u>.
- Millard, S.P. 2013. *EnvStats: An R package for environmental statistics*. New York: Springer. ISBN 978-1-4614-8455-4. <u>http://www.springer.com</u>.

- Payne, G.G. 2019. Preliminary results of the South Florida Canal Aquatic Life Study. Tallahassee, FL: Division of Environmental Assessment and Restoration, Water Quality Standards Program. <u>http://publicfiles.dep.state.fl.us/DEAR/DEARweb/Standards/South%20Florida%20Canal%20Canal%20Canal%20Canal%20Study%20Public%20Meeting/Summary%20Report%20SF%20Canal%20Study%20-%2010-3-19.pdf.
 </u>
- R Core Team. 2017. *R: A language and environment for statistical computing*. R Foundation for Statistical Computing Report 3-900051-07-0, Vienna, Austria. <u>http://www.R-project.org/.</u>
- Schropp, S., and H. Windom. 1988. A guide to the interpretation of metals concentrations in estuarine sediments. Tallahassee, FL: Florida Department of Environmental Regulation, Coastal Zone Management Section. <u>https://floridadep.gov/sites/default/files/estuarine.pdf</u>.
- Seal T., N.A. Woeber, and J. Silvanima. 2016. Using tracers to infer potential extent of emerging contaminants in Florida's groundwater. *Florida Scientist* 79: 279–289. <u>http://publicfiles.dep.state.fl.us/DEAR/DEARweb/WMS/Reports_Docs_SOPs/Using%20Tr</u> <u>acers_Seal_FL%20Sci_2016%20-%20%20ADA.pdf</u>.
- Silvanima, J., A. Woeber, S. Sunderman-Barnes, R. Copeland, C. Sedlacek, and T. Seal. 2018. A synoptic survey of select wastewater-tracer compounds and the pesticide imidacloprid in Florida's ambient freshwaters. *Environ Monit Assess* 190: 435. <u>https://doi.org/10.1007/s10661-018-6782-4</u>.
- Southeast Regional Climate Center. 2020a. *Florida state averaged precipitation data*. <u>http://www.sercc.com/climateinfo_files/monthly/Florida_prcp_DivNew.htm.</u>

—. 2020b. Historical climate summaries for Florida.

- Stevenson, R.J, A. Pinowska, A. Albertin, and J.O. Sickman. 2007. Ecological condition of algae and nutrients in Florida springs: The synthesis report. Michigan State University, Department of Zoology, Florida Department of Environmental Protection Contract WM858. <u>https://www.researchgate.net/publication/238737639_Ecological_Condition_of_Algae_and_Nutrients in Florida Springs The Synthesis Report.</u>
- U.S. Census Bureau. 2020. *Quick facts Florida*. Washington, DC: U.S. Department of Commerce. <u>https://www.census.gov/quickfacts/FL</u>.
- U.S. Environmental Protection Agency. 2003. <u>Elements of a state water monitoring and</u> <u>assessment program.</u> EPA 841-B-03-003. Washington, DC: Office of Wetlands, Oceans and Watersheds.

Verdi, R.J., S.A. Tomlinson, and R.L. Marella. 2006. The drought of 1998–2002: Impacts on Florida's hydrology and landscape. U.S. Geological Survey Circular 1295. https://pubs.usgs.gov/circ/2006/1295/.

Appendices

Appendix A: Selected Pesticide Analyte Detections and Exceedances

² Chlorpyrifos Aquatic L ² Chlorpyrifos Aquatic L Detected in >10 % of sar Exceeded an aquatic life	nples collected.					ositive detection.						
Benchmark values from:						risks/aquatic-life-benchmarks		l-risk%23ben	chmarks%09			
	https://w	ww.epa.gov/	wqc/national-	-recommended	-water-quality-	criteria-aquatic-life-criteria-ta	able.					
Atrazine1 cImazapyr1 cImidacloprid11	detect above invert detect above fish ch detect above vascul detects above inver detect above invert	aronic toxicity ar plant acute ert acute toxici	threshold; 2 de toxicity thresho ty threshold; 10	old.)8 detects above	aquatic inverteb	rate chronic toxicity threshold.						
Pesticide Name	Pesticide Class	Number Detects	Number Samples	Number Exceeding	MDL (µg/L)	Range (µg/L)	Fish Acute (µg/L)	Fish Chronic (µg/L)	Invert Acute (μg/L)	Invert Chronic (μg/L)	Algae Acute (µg/L)	Plants Acute (µg/L)
2,4,5-T	Herbicide	0	4	-	0.004	-	-	-	-	-	-	-
2,4-D	Herbicide	134	230	0	0.002	0.0021 - 2.5	> 40,800	23,600	12,500	16,050	3,880	299.2
2,4-DB	Herbicide	0	4	-	0.008	-	-	-	-	-	-	-
3-Hydroxycarbofuran	Degradate	0	209	-	0.002	-	-	-	-	-	-	-
Acetochlor	Herbicide	7	208	0	0.00024	0.00025 - 1.1	190	130	4,100	22.1	1.43	3.4
Acifluorfen	Herbicide	0	4	-	0.002	-	-	-	-	-	-	-
Alachlor	Herbicide	4	208	0	0.00025	0.001 - 0.014	900	187	1,250	110	1.64	2.3
Aldicarb	Insecticide	4	209	1	0.020	0.04 - 2.5	26	0.46	10	1	> 50,000	> 88,700
Aldicarb Sulfone	Degradate	6	209	-	0.002	0.004 - 0.25	21,000	-	140	-	-	-
Aldicarb Sulfoxide	Degradate	5	209	-	0.002	0.004 - 0.25	3,570	-	21.5	-	-	-
Aldrin	Insecticide	0	210	-	0.0039	-	-	-	-	-	-	-
Alpha BHC	Degradate	0	210	-	0.002	-	-	-	-	-	-	-
Alpha Chlordane	Degradate	0	210	-	0.001	-	-	-	-	-	-	-
Ametryn	Herbicide	49	208	0	0.00031	0.00046 - 0.0053	1,800	700	14,000	240	3.67	10
AMPA	Degradate	85	210	0	0.1	0.11 - 5.7	249,500	_	341,500	-	-	-
Atrazine	Herbicide	179	208	2	0.00023	0.00025 - 36	2,650	5	360	60	1	4.6
Atrazine desethyl	Degradate	87	208	0	0.0014	0.0015 - 0.98	-	300	330	30	390	-
Azinphos methyl	Insecticide	0	208	-	0.0021	0.0016	-	-	-	-	-	-

2020 Integrated Water Quality Assessment for Florida, June 2020

Pesticide Name	Pesticide Class	Number Detects	Number Samples	Number Exceeding	MDL (µg/L)	Range (µg/L)	Fish Acute (µg/L)	Fish Chronic (µg/L)	Invert Acute (µg/L)	Invert Chronic (µg/L)	Algae Acute (µg/L)	Plants Acute (µg/L)
Bentazon	Herbicide	130	230	0	0.0008	0.00095 - 0.093	>95,000	9,830	31,150	101,200	4,500	5,350
Beta-BHC	Degradate	0	220	-	0.004	-	-	-	-	-	-	-
Bromacil	Herbicide	66	208	0	0.00047	0.00051 - 5.2	18,000	3,000	60,500	8,200	6.8	45
Butylate	Herbicide	2	208	0	0.00037	0.00045 - 0.00047	105	300	5,500	-	-	4,600
Carbaryl	Insecticide	6	209	0	0.002	0.0025 - 0.25	110	6	0.85	0.5	660	-
Carbofuran	Insecticide	0	209	-	0.002	-	-	-	-	-	-	-
Carbophenothion	Insecticide	0	210	-	0.004	-	-	-	-	-	-	-
Chlordane	Insecticide	30	208	0	0.0026	0.0028 - 0.014	22	7	31	10	338	-
Chlorothalonil	Fungicide	0	210	-	0.0021	0.0051	5.25	3	1.8	0.6	6.8	630
Chlorpyrifos ethyl	Insecticide	18	208	0	0.00024	0.00028 - 0.017	0.9 ¹	0.57 ²	0.05 ¹	0.04 ²	140	-
Chlorpyrifos methyl	Insecticide	0	208	_	0.000096	-	7		0.085	-	-	-
Cyanazine	Herbicide	0	208	-	0.00048	-	-	-	-	-	-	-
Cypermethrin	Insecticide	1 (IY)	210	0	0.022	0.03	0.195	0.14	0.21	0.069	-	-
DDD	Herbicide	0	210	-	0.0031	-	-	-	-	-	-	-
DDE	Herbicide	0	210	-	0.0031	-	-	-	-	-	-	-
DDT	Herbicide	0	210	-	0.0031	-	-	-	-	-	-	-
Delta-BHC	Degradate	0	210	-	0.004	-	-	-	-	-	-	-
Demeton	Insecticide	0	208	-	0.0002	-	-	-	-	-	-	-
Diazinon	Insecticide	8	208	0	0.00012	0.00013 - 0.00069	45	< 0.55	0.105	0.17	3,700	-
Dicamba	Herbicide	0	4	-	0.08	-	-	-	-	-	-	-
Dichlorprop	Herbicide	1	4	0	0.004	0.0043	500	1,700	-		7,000	63
Dicofol	Insecticide	0	210	-	0.030	-	-	-	-	-	-	-
Dieldrin	Insecticide	4	210	0	0.004	0.0097 - 0.015	2.5	11	4.5	0.7	-	-
Dimethenamid	Herbicide	3	31	0	0.000095	0.00195 - 0.0075	3,150	300	6,000	1,020	14	8.9
Dinoseb	Herbicide	0	4	-	0.004	-	-	_	-	-	-	-
Disulfoton	Insecticide	1	208	0	0.00048	0.006	19.5	3	1.95	0.01	-	_
Dithiopyr	Herbicide	16	30	0	0.000095	0.000098 - 0.00091	235	56	> 850	81	20	-
Diuron	Herbicide	106	230	0	0.002	0.0021 - 0.76	200	26	80	200	2.4	15
Endosulfan I	Insecticide	0	210	-	0.004	-	-	-	-	-	-	
Endosulfan II	Insecticide	0	210	-	0.004	-	-	-	-	-	-	-
Endosulfan sulfate	Degradate	0	210	-	0.002	-	-	-	-	-	-	

2020 Integrated Water Quality Assessment for Florida, June 2020

Pesticide Name	Pesticide Class	Number Detects	Number Samples	Number Exceeding	MDL (µg/L)	Range (µg/L)	Fish Acute (µg/L)	Fish Chronic (µg/L)	Invert Acute (µg/L)	Invert Chronic (µg/L)	Algae Acute (µg/L)	Plants Acute (µg/L)
Endothall	Herbicide	0	137	-	0.1	-	-	-	-	-	-	-
Endrin	Insecticide	0	210	_	0.002	-	-	_	-	_	-	_
Endrin aldehyde	Degradate	0	210	-	0.002	-	-	-	-	-	-	-
Endrin ketone	Degradate	0	210	-	0.002	-	-	-	-	-	-	-
ЕРТС	Herbicide	1	208	0	0.0012	0.012	7,000	40	3,250	800	1,400	5,600
Ethion	Insecticide	2	208	0	0.00014	0.0043 - 0.0094	36.5	-	0.028	-	-	-
Ethoprop	Insecticide	3	193	0	0.000094	0.0026 - 0.0048	150	24	22	0.8	8,400	-
Fenamiphos	Insecticide	0	218	-	0.00025	-	-	-	-	-	-	-
Fenuron	Herbicide	9	230	0	0.016	0.018 - 0.11	8,800	1,000	1,847	-	400	-
Fipronil	Insecticide	60	208	0	0.00024	0.00025 - 0.007	41.5	2.2	0.11	0.011	140	> 100
Fipronil desulfinyl	Degradate	2	30	0	0.00013	0.00022 - 0.00068	10	0.54	100	10.31	140	> 100
Fipronil sulfide	Degradate	78	208	0	0.00014	0.00015 - 0.0064	41.4	6.6	1.07	0.11	140	-
Fipronil sulfone	Degradate	89	208	0	0.00014	0.00015 - 0.015	12.5	0.67	0.36	0.037	140	> 100
Fluridone	Herbicide	126	230	0	0.0004	0.00044 - 1	2,550	480	2,600	600	500	-
Fonofos	Insecticide	0	208	-	0.00019	-	-	-	-	-	-	-
Gamma-BHC	Byproduct	0	210	-	0.004	-	-	-	-	-	-	-
Gamma-Chlordane	Byproduct	0	210	-	0.001	-	-	-	-	-	-	-
Glufosinate	Herbicide	0	137	-	0.10	-	-	-	-	-	-	-
Glyphosate	Herbicide	89	210	0	0.10	0.12 - 180	21,500	25,700	26,600	49,900	12,100	11,900
Heptachlor	Insecticide	0	210	-	0.0015	-	-	-	-	-	-	-
Heptachlor epoxide	Degradate	4	210	0	0.0020	0.0023 - 0.0068	5.3	3.1	0.04	1.9	>200,000	-
Hexazinone	Herbicide	96	208	0	0.00047	0.00051 - 0.51	137,000	17,000	75,800	20,000	7	37.4
Imazapyr	Herbicide	149	193	1	0.004	0.0041 - 55	> 50,000	43,100	> 50,000	97,100	12,200	24
Imidacloprid	Insecticide	144	230	108	0.002	0.0021 - 1.6	114,500	9,000	0.385	0.01	>10,000	-
Linuron	Herbicide	0	230	-	0.004	-	1,500	5.58	60	0.09	13.7	2.5
Malathion	Insecticide	16	208	1	0.00033	0.00035 - 0.190	2.05	8.6	0.049	0.06	2,040	24,000
МСРА	Herbicide	1	4	0	0.002	0.014	48,000	12,000	41,000	11,000	160	130
МСРР	Herbicide	40	230	0	0.002	0.0021 - 0.047	> 46,500	180,000	> 45,500	50,800	14	1,300
Metalaxyl	Fungicide	72	208	0	0.00024	0.032 - 0.38	65,000	9,100	14,000	1,200	140,000	85,000
Methiocarb	Insecticide	0	209	-	0.002	-	-	-	-	-	-	-
Methomyl	Insecticide	3	209	0	0.002	0.0026 - 0.019	160	12	2.5	0.7	-	-

2020 Integrated Water Quality Assessment for Florida, June 2020

Pesticide Name	Pesticide Class	Number Detects	Number Samples	Number Exceeding	MDL (µg/L)	Range (µg/L)	Fish Acute (µg/L)	Fish Chronic (µg/L)	Invert Acute (µg/L)	Invert Chronic (µg/L)	Algae Acute (µg/L)	Plants Acute (µg/L)
Methoxychlor	Insecticide	0	210	-	0.004	-	-	-	-	-	-	-
Metolachlor	Herbicide	137	209	0	0.00024	0.00025 - 0.57	1,900	30	550	1	8	21
Metribuzin	Herbicide	41	208	0	0.00019	0.0002 - 0.52	21,000	< 3,000	2,100	1,290	8.1	130
Mevinphos	Insecticide	0	208	-	0.00024	-	-	-	-	-	-	-
Mirex	Insecticide	0	210	-	0.0038	-	-	-	-	-	-	-
Molinate	Herbicide	0	208	-	0.00028	-	-	-	-	-	-	-
Norflurazon	Herbicide	53	208	0	0.00048	0.00048 - 2.2	4,050	770	>7,500	1,000	9.7	58.2
Oxadiazon	Herbicide	21	30	0	0.000095	0.00018 - 0.047	600	33	1,090	33	5.2	41
Oxamyl	Insecticide	1	209	0	0.002	0.022	2,100	500	90	27	120	30,000
Parathion ethyl	Insecticide	0	208	-	0.00024	-	-	-	-	-	-	-
Parathion methyl	Insecticide	0	208	-	0.00024	-	-	-	-	-	-	-
Pendimethalin	Herbicide	9	208	0	0.00093	0.0011 - 0.11	69	6.3	140	14.5	5.2	12.5
Permethrin	Insecticide	0	210	-	0.00011	-	-	-	-	-	-	-
Phorate	Insecticide	0	208	-	0.00024	-	-	-	-	-	-	-
Picloram	Herbicide	0	4	-	0.05	-	-	-	-	-	-	-
Prodiamine	Herbicide	3	30	0	0.00017	0.00074 - 0.0071	> 6.5	-	> 6.5	1.5	-	-
Prometon	Herbicide	18	208	0	0.00085	0.00093 - 0.0044	6,000	19,700	12,850	3,450	98	-
Prometryn	Herbicide	5	208	0	0.00019	0.00021 - 0.00096	1,455	620	4,850	1,000	1.04	11.9
Propoxur	Insecticide	0	209	-	0.002	-	-	-	-	-	-	-
Pyraclostrobin	Fungicide	8	227	0	0.002	0.0022 - 0.081	3.1	2.35	7.85	4	1.5	1,197
Silvex	Herbicide	0	4	-	0.002	-	-	-	-	-	-	-
Simazine	Herbicide	71	208	0	0.00048	0.00053 - 0.23	3,200	60	500	40	6	67
Tebuconazole	Fungicide	6	30	0	0.00048	0.00048 - 0.0014	1,135	11	1,440	120	1,450	151
Terbufos	Insecticide	2	208	0	0.000094	0.00015 - 0.012	0.385	0.1	0.085	0.03	> 1,850	> 4,200
Terbuthylazine	Herbicide	0	208	-	0.00044	-	1,800	-	19,700	-	-	-
Toxaphene	Insecticide	0	208	-	0.0130	-	0.53	3.5	94	50	380	-
Triclopyr	Herbicide	1	230	0	0.0040	0.018	58,500	-	66,450	-	32,500	-
Trifluralin	Herbicide	2	210	0	0.0011	0.0015 - 0.0029	9.25	1.9	125.5	2.4	21.9	49.7

Appendix B: Change Analysis Results Output

NT = No tren	nd						
Trend	Туре	Indicator	Statistic	DiffEst	StdError	LCB95Pct	UCB95Pct
NT	Statewide	Chl-a	Mean	-1.991414085	1.117183375	-4.181053265	0.198225095
NT	Statewide	CL	Mean	-19.65454215	13.62238125	-46.35391877	7.044834478
UP	Statewide	DO	Mean	0.369063249	0.115201666	0.143272132	0.594854366
NT	Statewide	NO ₃ -NO ₂	Mean	-0.042145136	0.042291573	-0.125035096	0.040744825
DOWN	Statewide	pHField	Mean	-0.458127767	0.065710231	-0.586917454	-0.32933808
DOWN	Statewide	SCField	Mean	-92.83750127	44.69531631	-180.4387115	-5.236291024
NT	Statewide	TempField	Mean	0.051612796	0.14188315	-0.226473069	0.329698661
DOWN	Statewide	TKN	Mean	-0.171988877	0.038669881	-0.247780451	-0.096197303
DOWN	Statewide	TN	Mean	-0.211890603	0.050157968	-0.310198415	-0.113582792
NT	Statewide	TOC	Mean	0.605098293	0.732048897	-0.829691181	2.039887767
DOWN	Statewide	ТР	Mean	-0.081317601	0.012424504	-0.105669181	-0.05696602

Table B.1. Flowing water output

Table B.2. Lakes output

NT = No tren	nd						
Trend	Туре	Indicator	Statistic	DiffEst	StdError	LCB95Pct	UCB95Pct
UP	Statewide	Chl-a	Mean	14.08399631	4.325882864	5.605421696	22.56257093
UP	Statewide	DO	Mean	0.373668169	0.135651343	0.107796423	0.639539915
NT	Statewide	NO ₃ -NO ₂	Mean	0.029666975	0.017786775	-0.005194463	0.064528413
UP	Statewide	pHField	Mean	0.385016931	0.080966784	0.22632495	0.543708911
NT	Statewide	SCField	Mean	1.888413362	17.29872708	-32.01646869	35.79329542
UP	Statewide	TempField	Mean	0.790690141	0.307618237	0.187769475	1.393610807
NT	Statewide	TKN	Mean	0.033331944	0.060828456	-0.085889639	0.152553527
NT	Statewide	TN	Mean	0.063054038	0.058141926	-0.050902042	0.177010118
DOWN	Statewide	TOC	Mean	-1.620149796	0.527716616	-2.654455357	-0.585844235
UP	Statewide	TP	Mean	0.010383398	0.005031514	0.000521811	0.020244985

MT = No tree	nd						
Trend	Туре	Indicator	Statistic	DiffEst	StdError	LCB95Pct	UCB95Pct
DOWN	Statewide	DO	Mean	-0.905836714	0.294185233	-1.482429175	-0.329244253
NT	Statewide	NO ₃ -NO ₂	Mean	0.066773872	0.090662174	-0.110920724	0.244468467
DOWN	Statewide	pHField	Mean	-0.119089607	0.053380412	-0.223713292	-0.014465921
NT	Statewide	SC	Mean	76.91928896	131.6133622	-181.0381608	334.8767387
NT	Statewide	Temp	Mean	0.109639682	0.0947274	-0.076022609	0.295301974
NT	Statewide	TKN	Mean	0.010152714	0.016192473	-0.021583949	0.041889378
NT	Statewide	TN	Mean	0.076926586	0.091151716	-0.101727495	0.255580667
NT	Statewide	TP	Mean	0.017862514	0.012593624	-0.006820535	0.042545562

Table B.3. Confined aquifer output

Table B.4. Unconfined aquifer output

NT = No tre	nd						
Trend	Туре	Indicator	Statistic	DiffEst	StdError	LCB95Pct	UCB95Pct
DOWN	Statewide	DO	Mean	-1.27424544	0.304605804	-1.871261845	-0.677229034
NT	Statewide	NO ₃ -NO ₂	Mean	-0.138132001	0.194189791	-0.518736998	0.242472995
DOWN	Statewide	pHField	Mean	-0.664900844	0.077893745	-0.817569779	-0.512231908
NT	Statewide	SC	Mean	33.29400065	76.4469854	-116.5393375	183.1273388
NT	Statewide	Temp	Mean	0.190253663	0.108489747	-0.022382333	0.40288966
NT	Statewide	TKN	Mean	-0.009252614	0.049652381	-0.106569493	0.088064265
NT	Statewide	TN	Mean	-0.156086391	0.204747389	-0.557383899	0.245211117
NT	Statewide	TP	Mean	-0.01313839	0.012254516	-0.0371568	0.010880019

Appendix C: Water Quality Classifications

All surface waters of the state are classified as follows:

Rule 62-302.400, F.A.C., Classification of Surface Waters, Usage, Reclassification, Classified Waters.

(1) All surface waters of the State have been classified according to designated uses as follows:

Class I	Potable water supplies
Class II	Shellfish propagation or harvesting
Class III	Fish consumption; recreation, propagation and maintenance of
	a healthy, well-balanced population of fish and wildlife
Class III-Limited	Fish consumption; recreation or limited recreation; and/or
	propagation and maintenance of a limited population of fish
	and wildlife
Class IV	Agricultural water supplies
Class V	Navigation, utility and industrial use

(2) Classification of a waterbody according to a particular designated use or uses does not preclude use of the water for other purposes.

Water quality classifications are arranged in order of the degree of protection required, with Class I waters having generally the most stringent water quality criteria and Class V waters the least. However, Class I, II, and III surface waters share water quality criteria established to protect fish consumption, recreation, and the propagation and maintenance of a healthy, well-balanced population of fish and wildlife. All waters of the state are considered to be Class III, except for those specifically identified in Rule 62-302.600, F.A.C., and must meet the "Minimum Criteria for Surface Waters," identified in Rule 62-302.500, F.A.C.

Class III-Limited surface waters also share most of the same water quality criteria as Class I, II, and III surface waters. The designated use for Class III-Limited surface waters is intended primarily for some wholly artificial and altered waters, in acknowledgment that many of these waters have physical or habitat limitations that preclude support of the same type of aquatic ecosystem as a natural stream or lake.

Appendix D: Section 314 (CWA) Impaired Lakes in Florida, Group 1–5 Basins

Lake Trends for Nutrients

Although assessments performed to identify impaired lake segments evaluate current nutrient status, the IWR incorporates additional methodologies to evaluate lake nutrient enrichment trends over time. The nutrient criteria in effect when the assessments in this report were performed are based on numeric criteria for chlorophyll *a*, TN, and TP. The numeric criteria rely on the direct evaluation of trends in the nutrient parameters (i.e., TN and TP), as well as trends in the nutrient response variable (chlorophyll *a*), in identifying nutrient trends over time. Paragraph 62-303.352(1)(c), F.A.C., provides details of the current methodology to identify both long- and short-term trends indicative of declining lake water quality.

The results presented in this report (**Table D.1**) were developed using the numeric nutrient criteria (NNC) (DEP 2013a), as well as both long- and short-term trends, as follows:

- For Planning List assessments, there is a statistically significant increasing trend in the annual geometric mean (AGM) at the 95 % confidence level in TN, TP, or chlorophyll *a* over a 10-year period using a Mann's one-sided, upper-tail test for trend, as described in *Nonparametric Statistical Methods* by M. Hollander and D. Wolfe (1999), pp. 376 and 724, which were incorporated by reference in Rule 62-303.351, F.A.C.
- For Study List Assessments. there is a statistically significant increasing trend in the AGM at the 95 % confidence level in TN, TP, or chlorophyll *a* over a seven-and-a-half-year period using a Mann's one-sided, upper-tail test for trend, as described in *Nonparametric Statistical Methods* (Hollander and Wolfe 1999), pp. 376 and 724, which were incorporated by reference in Rule 62-303.351, F.A.C.
- If the waterbody was placed on the Study List for an adverse trend in nutrient response variables pursuant to Paragraph 62-303.390(2)(a), F.A.C., DEP shall analyze the potential risk of nonattainment of the narrative nutrient criteria in Paragraph 62-302.530(47)(b), F.A.C. This analysis shall take into consideration the current concentrations of nutrient response variables, the slope of the trend, and the potential sources of nutrients (natural and anthropogenic). If there is a reasonable expectation that the waterbody will become impaired within five years, DEP shall place the waterbody on the Verified List to develop a TMDL that establishes a numeric interpretation pursuant to Paragraph 62-302.531(2)(a), F.A.C.

Since the IWR methodology focuses on the identification of impaired waters of the state, DEP's trend evaluation uses a one-sided statistical test. This means the methodology is not designed to identify water quality improvement trends over time. However, water quality improvement for a lake segment may be suggested if the AGM from the 10-year assessment period indicates impairment, and the AGM from the seven-and-a-half-year assessment period does not show an increasing trend.

Table D.1. Impaired lakes of Florida

TN = Total nitrogen; TP = Total phosphorus; DO = Dissolved oxygen; TSI = Trophic State Index; PCBs = Polychlorinated biphenyls

Note: The most up-to-date Verified List of Impaired Waters, by basin group, is available on DEP's <u>Watershed Assessment Section (WAS)</u> website. The table lists waterbodies that are impaired and on the Verified List, or that are impaired and have a TMDL.

Basin Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters
1	1165A	Ochlockonee– St. Marks	Otter Lake	Mercury (in fish tissue)
1	1176A	Ochlockonee– St. Marks	Lake Ellen	Mercury (in fish tissue)
1	1297X	Ochlockonee– St. Marks	Lake Talquin (West)	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	1297Y	Ochlockonee– St. Marks	Lake Talquin (Center)	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	1297Z	Ochlockonee– St. Marks	Lake Talquin (East)	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	1463D	Tampa Bay	Lake Harvey	Biology
1	1463E	Tampa Bay	Lake Helen	Biology
1	1463H	Tampa Bay	Lake Allen	Biology
1	1463K	Tampa Bay	Lake Virginia	Biology
1	1463L	Tampa Bay	Lake Thomas	Mercury (in fish tissue)
1	1463M	Tampa Bay	Little Lake Wilson	Fecal Coliform; Nutrients (chlorophyll <i>a</i>)
1	1463P	Tampa Bay	Lake Linda	Biology
1	1464A	Tampa Bay	Black Lake	DO (percent saturation); Nutrients (chlorophyll <i>a</i>)
1	1464V	Tampa Bay	Lake Hiawatha	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	1464W	Tampa Bay	Lake Ann (Parker)	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	1464X	Tampa Bay	Lake Seminole	Biology
1	1464Y	Tampa Bay	Lake Geneva	Biology
1	1473W	Tampa Bay	Lake Juanita	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	1474A	Tampa Bay	Lake Wastena	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	1474W	Tampa Bay	Lake Dead Lady	Nutrients (chlorophyll <i>a</i>)
1	1478G	Tampa Bay	Little Deer Lake	Biology
1	1478H	Tampa Bay	Lake Reinheimer	DO (percent saturation)

Basin Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters
1	1486A	Tampa Bay	Lake Tarpon	Biology; Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>)
1	1493D	Tampa Bay	Williams Lake	Biology; Nutrients (TN)
1	1498Z	Tampa Bay	Dosson Lake	Biology
1	1502A	Tampa Bay	Lake Estes	Biology
1	1502C	Tampa Bay	Chapman Lake	Biology; Nutrients (chlorophyll <i>a</i>)
1	1502C	Tampa Bay	Lake Raleigh	Biology
1	15150	Tampa Bay	Horse Lake	Biology
1	1516E	Tampa Bay	Lake Ellen	Biology
1	1516E	Tampa Bay	Bird Lake	Biology
1	1510G	Tampa Bay	Lake Armistead	Biology
1	1519C	Tampa Bay	Saint George Lake	Biology
1	1529A 1530A	Tampa Bay	Moccasin Creek	Fecal Coliform; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	1574A	Tampa Bay	Alligator Lake	Biology; Nutrients (TP)
1	1576A	Tampa Bay	Mango Lake	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
1	1579A	Tampa Bay	Bellows Lake (East Lake)	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP); Nutrients (TSI)
1	1603C	Tampa Bay	Beckett Lake	Biology; DO (percent saturation)
1	1603E	Tampa Bay	Harbor Lake	Biology
1	1605B	Tampa Bay	Gornto Lake	Biology
1	1700A	Tampa Bay	Crescent Lake	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
1	1731A	Tampa Bay	Lake Maggiore	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP); Specific Conductance
1	2700	Ocklawaha	Hammocks Lake	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2705B	Ocklawaha	Newnans Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP); Turbidity
1	2706	Ocklawaha	Lake Moon	Nutrients (TP)
1	2713C	Ocklawaha	Holdens Pond	DO (percent saturation)
1	2713D	Ocklawaha	Little Orange Lake	Mercury (in fish tissue); Nutrients (TP)
1	2717	Ocklawaha	Kanapaha Lake	DO (percent saturation)
1	2718B	Ocklawaha	Bivans Arm	Turbidity
1	2719A	Ocklawaha	Lake Alice	Mercury (in fish tissue)
1	2720A	Ocklawaha	Alachua Sink	DO (percent saturation); Fecal Coliform; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2723A	Ocklawaha	Cowpen Lake	Mercury (in fish tissue)
1	2738A	Ocklawaha	Lochloosa Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP); Nutrients (TSI trend); Nutrients (TSI)
1	2740B	Ocklawaha	Lake Ocklawaha	Mercury (in fish tissue)
1	2748X	Ocklawaha	Key Pond	DO (percent saturation)

Basin	W/DID	Desire Crossen Norma	Watashada Nasa	Ident: Cod Donomotour
Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters Nutrients (chlorophyll <i>a</i>); Nutrients
1	2749A	Ocklawaha	Orange Lake	(TN); Nutrients (TP)
1	2771A	Ocklawaha	Lake Eaton	Biology; Mercury (in fish tissue)
1	2779A	Ocklawaha	Mill Dam Lake	Mercury (in fish tissue)
1	2781A	Ocklawaha	Halfmoon Lake	DO (percent saturation); Mercury (in fish tissue)
1	2782C	Ocklawaha	Lake Bryant	Mercury (in fish tissue)
1	2783A	Ocklawaha	Doe Lake	Mercury (in fish tissue)
1	2783B	Ocklawaha	Trout Lake	Mercury (in fish tissue)
1	2783F	Ocklawaha	Lake Catherine	Mercury (in fish tissue)
1	2783G	Ocklawaha	Lake Mary	Mercury (in fish tissue)
1	2785A	Ocklawaha	Smith Lake	Mercury (in fish tissue)
1	2790A	Ocklawaha	Lake Weir	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2790B	Ocklawaha	Little Lake Weir	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2797A	Ocklawaha	Ella Lake	Mercury (in fish tissue)
1	2803A	Ocklawaha	Holly Lake	Mercury (in fish tissue)
1	2806A	Ocklawaha	Lake Umatilla	Biology
1	2807A	Ocklawaha	Lake Yale	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2811	Ocklawaha	West Emeralda Marsh Conservation Area	DO (percent saturation)
1	2814A	Ocklawaha	Lake Griffin	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2816A	Ocklawaha	Eldorado Lake	Mercury (in fish tissue)
1	2817B	Ocklawaha	Lake Eustis	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
1	2819A	Ocklawaha	Trout Lake	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2821B	Ocklawaha	Lake Joanna	Mercury (in fish tissue)
1	2825A	Ocklawaha	Silver Lake	Nutrients (TN)
1	2829A	Ocklawaha	Lake Lorraine	DO (percent saturation)
1	2831B	Ocklawaha	Lake Dora	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2832A	Ocklawaha	Lake Denham	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2834C	Ocklawaha	Lake Beauclair	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2835D	Ocklawaha	Lake Apopka	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP); Pesticides (in fish tissue)
1	2837A	Ocklawaha	Lake Jem	Biology
1	2837B	Ocklawaha	Lake Carlton	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)

Basin Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters
1	2838A	Ocklawaha	Lake Harris	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2838B	Ocklawaha	Little Lake Harris	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2839A	Ocklawaha	Lake Minneola	Biology; Mercury (in fish tissue)
1	2839D	Ocklawaha	Lake Cherry	Mercury (in fish tissue)
1	2839F	Ocklawaha	Lake Emma	Mercury (in fish tissue)
1	2839M	Ocklawaha	Lake Louisa	Mercury (in fish tissue)
1	2839N	Ocklawaha	Lake Minnehaha	Mercury (in fish tissue)
1	2854A	Ocklawaha	Marshall Lake	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2865A	Ocklawaha	Lake Florence	Biology
1	2872A	Ocklawaha	Lake Roberts	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	2872C	Ocklawaha	Lake Lily	DO (percent saturation)
1	2873C	Ocklawaha	Johns Lake	Biology; Mercury (in fish tissue)
1	2875B	Ocklawaha	Lake Tilden	Biology
1	2880A	Ocklawaha	Lake Glona	Mercury (in fish tissue)
1	2890A	Ocklawaha	Lake Lowery	Mercury (in fish tissue)
1	3212A	Lake Okeechobee	Lake Okeechobee	Iron; Mercury (in fish tissue); Nutrients (TP)
1	3212B	Lake Okeechobee	Lake Okeechobee	Mercury (in fish tissue); Nutrients (TP)
1	3212C	Lake Okeechobee	Lake Okeechobee	DO (percent saturation); Mercury (in fish tissue); Nutrients (TP)
1	3212D	Lake Okeechobee	Lake Okeechobee	Iron; Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	3212E	Lake Okeechobee	Lake Okeechobee	Iron; Mercury (in fish tissue); Nutrients (TP)
1	3212F	Lake Okeechobee	Lake Okeechobee	Iron; Mercury (in fish tissue); Nutrients (TP)
1	3212G	Lake Okeechobee	Lake Okeechobee	Iron; Mercury (in fish tissue); Nutrients (TP)
1	3212H	Lake Okeechobee	Lake Okeechobee	Iron; Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	3212I	Lake Okeechobee	Lake Okeechobee	Mercury (in fish tissue); Nutrients (TP)
1	3259W	Everglades West Coast	Lake Trafford	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	3319A	Suwannee	Lake Alcyone	Mercury (in fish tissue)
1	3321A	Suwannee	Lake Octahatchee	Mercury (in fish tissue)
1	3322A	Suwannee	Lake Cherry	Mercury (in fish tissue); Nutrients (other information)
1	3366A	Suwannee	Lake Francis	Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
1	3438A	Suwannee	Peacock Lake	DO (percent saturation)
1	3459A	Suwannee	Lake Louise	Mercury (in fish tissue)
1	3472	Suwannee	Tenmile Pond	DO (percent saturation)

Basin	WDID	Basin Crown Nama	Watarbady Nama	Ident: Cod Donomotors
<u>Group</u> 1	WBID 3496A	Basin Group Name Suwannee	Waterbody Name Low Lake	Identified Parameters DO (percent saturation)
1	3499A	Suwannee	Lake Jeffery	Mercury (in fish tissue)
1	3516A	Suwannee	Alligator Lake	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
1	3530B	Suwannee	Swift Creek Pond	Mercury (in fish tissue)
1	3566	Suwannee	Lake Butler	Mercury (in fish tissue)
1	3593A	Suwannee	Lake Crosby	Mercury (in fish tissue)
1	3598B	Suwannee	Lake Rowell	Biology; Mercury (in fish tissue)
1	3598D	Suwannee	Lake Sampson	Mercury (in fish tissue)
1	3605G	Suwannee	Santa Fe Lake	Mercury (in fish tissue)
1	3605H	Suwannee	Lake Alto	Mercury (in fish tissue)
1	3635A	Suwannee	Hampton Lake	Mercury (in fish tissue)
1	3731A	Suwannee	Lake Marion	DO (percent saturation)
1	3738B	Suwannee	Bonable Lake	Mercury (in fish tissue)
1	442	Ochlockonee–St. Marks	Lake Iamonia	DO (percent saturation); Mercury (in fish tissue)
1	540A	Ochlockonee–St. Marks	Lake Tallavana	Biology; Fecal Coliform; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP); Nutrients (TSI)
1	546A	Ochlockonee–St. Marks	Lower Dianne Lake	Biology
1	546C	Ochlockonee–St. Marks	Lake Monkey Business	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	564A	Ochlockonee–St. Marks	Lake Arrowhead	Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
1	564B	Ochlockonee–St. Marks	Pine Hill Lake (Bockus Lake)	Biology
1	564C	Ochlockonee–St. Marks	Petty Gulf Lake	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	582B	Ochlockonee–St. Marks	Lake Jackson	DO (percent saturation); Mercury (in fish tissue)
1	647A	Ochlockonee–St. Marks	Lake Tom John	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	647E	Ochlockonee–St. Marks	Lake McBride	DO (percent saturation)
1	647F	Ochlockonee–St. Marks	Lake Kanturk	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	647G	Ochlockonee–St. Marks	Alford Arm	DO (percent saturation)
1	647I	Ochlockonee– St. Marks	Shakey Pond	Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
1	647J	Ochlockonee– St. Marks	Lake Killarney	Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
1	647K	Ochlockonee– St. Marks	Lake Kinsale	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	689A	Ochlockonee– St. Marks	Lake Overstreet	DO (percent saturation)
1	756B	Ochlockonee-	Lake Piney Z	Mercury (in fish tissue);

Basin Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters
		St. Marks		Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
1	756C	Ochlockonee– St. Marks	Lake Lafayette (Lower Segment)	DO (percent saturation)
1	756F	Ochlockonee– St. Marks	Lake Lafayette (Upper Segment)	Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
1	791N	Ochlockonee– St. Marks	Lake Miccosukee	Mercury (in fish tissue)
1	807C	Ochlockonee– St. Marks	Lake Munson	Lead; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP); Nutrients (TSI); PCBs (based on fish consumption advisory); Turbidity
1	878A	Ochlockonee– St. Marks	Lake Bradford	Lead
1	878D	Ochlockonee– St. Marks	Cascade Lake	Lead
1	878E	Ochlockonee– St. Marks	Grassy Lake	DO (percent saturation)
1	889A	Ochlockonee– St. Marks	Moore Lake	Mercury (in fish tissue)
1	971C	Ochlockonee– St. Marks	Eagle Lake	DO (percent saturation)
2	1424	Tampa Bay Tributaries	Lake Pasadena	Mercury (in fish tissue)
2	1443H	Tampa Bay Tributaries	Hillsborough Reservoir	Mercury (in fish tissue); Nutrients (TP)
2	1451D	Tampa Bay Tributaries	Lake Padgett	Nutrients (TN); Nutrients (TP)
2	1491B	Tampa Bay Tributaries	Galloway Lake	DO (percent saturation)
2	1506A	Tampa Bay Tributaries	Meadow View Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
2	1522B	Tampa Bay Tributaries	Lake Thonotosassa	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP); Un-Ionized Ammonia
2	1523C	Tampa Bay Tributaries	Cedar Lake (East)	DO (percent saturation)
2	1537	Tampa Bay Tributaries	Lake Wire	Lead
2	1537A	Tampa Bay Tributaries	Lake Bonnet	Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
2	1543	Tampa Bay Tributaries	Lake Hunter	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
2	1547A	Tampa Bay Tributaries	Lake Valrico	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
2	1610	Tampa Bay Tributaries	Carter Road Park Lakes	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
2	1807B	Tampa Bay Tributaries	Lake Manatee Reservoir	Biology; Fecal Coliform; Mercury (in fish tissue)
2	180A	Apalachicola - Chipola	Merritts Mill Pond	Nutrients (algal mats)
2	2213G	Lower St. Johns	St. Johns River above Doctors Lake	Mercury (in fish tissue)

Basin Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters
2	2213H	Lower St. Johns	St. Johns River above Julington Creek	Mercury (in fish tissue)
2	2213I	Lower St. Johns	St. Johns River above Black Creek	Mercury (in fish tissue); Silver
2	2213J	Lower St. Johns	St. Johns River above Palmo Creek	Mercury (in fish tissue)
2	2213K	Lower St. Johns	St. Johns River above Tocoi	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
2	2213L	Lower St. Johns	St. Johns River above Federal Point	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
2	2389	Lower St. Johns	Doctors Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
2	2509	Lower St. Johns	Lake Geneva	Lead
2	2509C	Lower St. Johns	Lake Magnolia	Mercury (in fish tissue)
2	2509H	Lower St. Johns	Lily Lake	Lead
2	2509K	Lower St. Johns	Lowry Lake (Sand Hill Lake)	Mercury (in fish tissue)
2	2541	Lower St. Johns	Georges Lake	Mercury (in fish tissue)
2	2543F	Lower St. Johns	Lake Ross	Lead; Nutrients (TN)
2	2575	Lower St. Johns	Cue Lake	Mercury (in fish tissue)
2	2575Q	Lower St. Johns	Mason Lake	Mercury (in fish tissue)
2	2582A	Lower St. Johns	Rowan Lake	Nutrients (TN)
2	2593A	Lower St. Johns	Davis Lake	DO (percent saturation)
2	2606B	Lower St. Johns	Crescent Lake	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
2	2615A	Lower St. Johns	Dead Lake	Mercury (in fish tissue); Nutrients (TN); Nutrients (TP)
2	2617A	Lower St. Johns	Lake Broward	Mercury (in fish tissue)
2	2630B	Lower St. Johns	Lake Disston	Lead; Mercury (in fish tissue)
2	2667A	Lower St. Johns	Lake Dias	Mercury (in fish tissue)
2	2671A	Lower St. Johns	Lake Daugharty	Mercury (in fish tissue)
2	272	Apalachicola– Chipola	Thompson Pond	DO (percent saturation)
2	2892	Middle St. Johns	Lake Margaret	Mercury (in fish tissue)
2	2893A	Middle St. Johns	Lake George	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
2	2893D	Middle St. Johns	Lake Monroe	Biology; Mercury (in fish tissue)
2	2893H	Middle St. Johns	Mullet Lake	Mercury (in fish tissue)
2	2893J	Middle St. Johns	Mud Lake	Mercury (in fish tissue)
2	2893U	Middle St. Johns	Lake Beresford	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
2	2894	Middle St. Johns	Lake Delancy	Mercury (in fish tissue)
2	2899B	Middle St. Johns	Lake Kerr	Mercury (in fish tissue)

Basin Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters
2	2899C	Middle St. Johns	Little Lake Kerr	Mercury (in fish tissue)
2	2905C	Middle St. Johns	Wildcat Lake	Mercury (in fish tissue)
2	2916B	Middle St. Johns	South Grasshopper Lake	Mercury (in fish tissue)
2	2917	Middle St. Johns	Boyd Lake	Mercury (in fish tissue)
2	2921	Middle St. Johns	Lake Woodruff	Mercury (in fish tissue)
2	2921C	Middle St. Johns	Lake Dexter	Mercury (in fish tissue)
2	2921D1	Middle St. Johns	Tick Island Mud Lake	Mercury (in fish tissue)
2	2921E	Middle St. Johns	Spring Garden Lake	Mercury (in fish tissue)
2	2925A	Middle St. Johns	Lake Ashby	Mercury (in fish tissue)
2	2929B	Middle St. Johns	Lake Norris	Mercury (in fish tissue)
2	2929C	Middle St. Johns	Lake Dorr	Mercury (in fish tissue)
2	2953	Middle St. Johns	Bethel Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
2	2954	Middle St. Johns	Konomac Lake Reservoir	Mercury (in fish tissue)
2	2956A1	Middle St. Johns	Linden Lake	DO (percent saturation)
2	2961	Middle St. Johns	Lake Sylvan	Mercury (in fish tissue)
2	2964A	Middle St. Johns	Lake Harney	Mercury (in fish tissue)
2	2964A4	Middle St. Johns	Lake Proctor	DO (percent saturation)
2	2973F	Middle St. Johns	Deforest Lake	DO (percent saturation)
2	2973G	Middle St. Johns	Amory Lake	Biology; DO (percent saturation)
2	2981	Middle St. Johns	Lake Jesup	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP); Un-Ionized Ammonia
2	2986B	Middle St. Johns	Lake Myrtle	DO (percent saturation)
2	2986D	Middle St. Johns	Lake Alma	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
2	2986E	Middle St. Johns	Lake Searcy	Biology; Nutrients (TP)
2	2986F	Middle St. Johns	Greenwood Lake	Nutrients (TP)
2	2991D	Middle St. Johns	Horseshoe Lake (South)	Biology
2	2997B	Middle St. Johns	Lake Howell	Biology; Nutrients (chlorophyll a)
2	2997Q	Middle St. Johns	Lake Dot	Fecal Coliform
2	2997R	Middle St. Johns	Lake Adair	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
2	2997V	Middle St. Johns	Lake Gem (Orange County)	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
2	2998D	Middle St. Johns	Lake Marion	Biology
2	2998E	Middle St. Johns	Lake Adelaide	Biology; Nutrients (TP)
2	3000A	Middle St. Johns	Lake Harriet	DO (percent saturation); Fecal Coliform
2	3002E	Middle St. Johns	Lake Primavista	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
2	3002I	Middle St. Johns	Lake Rose	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)

Basin Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters
2	3002Q	Middle St. Johns	Kasey Lake	Fecal Coliform
2	3002U	Middle St. Johns	Lake Pleasant	DO (percent saturation)
2	3004A	Middle St. Johns	Bear Lake	Mercury (in fish tissue)
2	3004G	Middle St. Johns	Bay Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
2	3004K	Middle St. Johns	Lake Wekiva (Orlando)	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
2	3004N	Middle St. Johns	Lake Fairview	Mercury (in fish tissue)
2	3009	Middle St. Johns	Bear Gulley Lake	Nutrients (chlorophyll <i>a</i>)
2	3009A	Middle St. Johns	Waunatta Lake	Biology
2	3009F	Middle St. Johns	Lake Florence	Nutrients (chlorophyll <i>a</i>)
2	3009I	Middle St. Johns	Garden Lake	Biology
2	3011A	Middle St. Johns	Lake Weston	Nutrients (chlorophyll <i>a</i>)
2	3011C	Middle St. Johns	Lake Lucien	Mercury (in fish tissue)
2	3036	Middle St. Johns	Lake Frederica	Mercury (in fish tissue)
2	3194C	St. Lucie– Loxahatchee	Savannas	Copper
2	51A	Apalachicola– Chipola	Dead Lakes	Mercury (in fish tissue)
2	51F	Apalachicola– Chipola	Dead Lake (West Arm)	Nutrients (TN)
2	60	Apalachicola– Chipola	Lake Seminole	Biology
2	926A1	Apalachicola– Chipola	Lake Mystic	Mercury (in fish tissue)
3	1449A	Sarasota Bay–Peace– Myakka	Lake Deeson	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1488B	Sarasota Bay–Peace– Myakka	Lake Rochelle	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1488C	Sarasota Bay–Peace– Myakka	Lake Haines	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1488D	Sarasota Bay–Peace– Myakka	Lake Alfred	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1488U	Sarasota Bay–Peace– Myakka	Lake Conine	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1497A	Sarasota Bay–Peace– Myakka	Crystal Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1497B	Sarasota Bay–Peace– Myakka	Lake Parker	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1497D1	Sarasota Bay–Peace– Myakka	Lake Crago	Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
3	1497E	Sarasota Bay–Peace– Myakka	Lake Bonny	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1497G	Sarasota Bay–Peace– Myakka	Lake Mirror	Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
3	1497H	Sarasota Bay–Peace– Myakka	Lake Morton	Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
3	1497J	Sarasota Bay–Peace– Myakka	Saddle Creek Lakes	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)

Basin Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters
3	15002	Sarasota Bay–Peace– Myakka	Middle Lake Hamilton	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1501	Sarasota Bay–Peace– Myakka	Lake Lena	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1501B	Sarasota Bay–Peace– Myakka	Lake Ariana	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1501V	Sarasota Bay–Peace– Myakka	Spirit Lake	Nutrients (TN)
3	1501W	Sarasota Bay–Peace– Myakka	Sears Lake	Nutrients (TP)
3	15041	Sarasota Bay–Peace– Myakka	Lake Hamilton	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	15101	Sarasota Bay–Peace– Myakka	Lake Eva	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1521	Sarasota Bay–Peace– Myakka	Lake Lulu	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1521B	Sarasota Bay–Peace– Myakka	Lake Eloise	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1521D	Sarasota Bay–Peace– Myakka	Lake Shipp	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1521E	Sarasota Bay–Peace– Myakka	Lake May	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1521F	Sarasota Bay–Peace– Myakka	Lake Howard	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1521G	Sarasota Bay–Peace– Myakka	Lake Mirror	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1521G1	Sarasota Bay–Peace– Myakka	Spring Lake	Biology
3	1521H	Sarasota Bay–Peace– Myakka	Lake Cannon	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	15211	Sarasota Bay–Peace– Myakka	Lake Hartridge	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1521J	Sarasota Bay–Peace– Myakka	Lake Idylwild	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1521K	Sarasota Bay–Peace– Myakka	Lake Jessie	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1521L	Sarasota Bay–Peace– Myakka	Lake Marianna	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1521P	Sarasota Bay–Peace– Myakka	Deer Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1521Q	Sarasota Bay–Peace– Myakka	Lake Blue	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1539C	Sarasota Bay–Peace– Myakka	Lake Annie	Nutrients (TN)
3	1539D	Sarasota Bay–Peace– Myakka	Lake Otis	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
3	1549B	Sarasota Bay–Peace– Myakka	Banana Lake	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1549B1	Sarasota Bay–Peace– Myakka	Lake Stahl	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1549B2	Sarasota Bay–Peace– Myakka	Little Banana Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)

Basin Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters
		Sarasota Bay–Peace–	ž	
3	1549C	Myakka	Lake Bentley	Nutrients (chlorophyll <i>a</i>)
3	1549D	Sarasota Bay–Peace– Myakka	Lake Horney	Nutrients (TP)
3	1549E	Sarasota Bay–Peace– Myakka	Lake John	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1549F	Sarasota Bay–Peace– Myakka	Lake Somerset	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1549X	Sarasota Bay–Peace– Myakka	Hollingsworth Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1588A	Sarasota Bay–Peace– Myakka	Lake Mcleod	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>)
3	1590B	Sarasota Bay–Peace– Myakka	Lake Ashton (Lake Myrtle)	Mercury (in fish tissue)
3	1613A	Sarasota Bay–Peace– Myakka	Lake Blue (South)	Nutrients (TN)
3	1617A	Sarasota Bay–Peace– Myakka	Lake Effie	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1623L	Sarasota Bay–Peace– Myakka	Lake Hancock	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1623M	Sarasota Bay–Peace– Myakka	Eagle Lake	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1623T	Sarasota Bay–Peace– Myakka	Engle Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1623X	Sarasota Bay–Peace– Myakka	Reclaimed Mine Cut Lake	Nutrients (TN); Nutrients (TP)
3	1623Z	Sarasota Bay–Peace– Myakka	Fort Meade Lakes	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1677C	Sarasota Bay–Peace– Myakka	Lake Buffum	Biology; Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	1981	Sarasota Bay–Peace– Myakka	Lake Myakka (Lower Segment)	Mercury (in fish tissue)
3	1981C	Sarasota Bay–Peace– Myakka	Lake Myakka (Upper Segment)	Mercury (in fish tissue); Nutrients (TP)
3	2041B	Sarasota Bay–Peace– Myakka	Shell Creek Reservoir (Hamilton Reservoir)	DO (percent saturation)
3	210A	Choctawhatchee– St. Andrew	Double Pond	Mercury (in fish tissue)
3	239A	Choctawhatchee– St. Andrew	Pate Lake	Mercury (in fish tissue)
3	283	Choctawhatchee– St. Andrew	Lake Juniper	Mercury (in fish tissue)
3	28931	Upper St. Johns	Sawgrass Lake	DO (percent saturation); Mercury (in fish tissue)
3	28932	Upper St. Johns	Lake Cone at Seminole	Mercury (in fish tissue)
3	2893K	Upper St. Johns	Lake Poinsett	Mercury (in fish tissue)
3	2893O	Upper St. Johns	Lake Washington	Biology; Mercury (in fish tissue)
3	2893Q	Upper St. Johns	Lake Helen Blazes	DO (percent saturation); Mercury (in fish tissue)
3	2893V	Upper St. Johns	Blue Cypress Lake	Mercury (in fish tissue)

Basin Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters
3	2893Y	Upper St. Johns	Lake Winder	Biology; Mercury (in fish tissue)
3	2964B	Upper St. Johns	Puzzle Lake	Mercury (in fish tissue); Nutrients (TP)
3	2964C	Upper St. Johns	Ruth Lake	Mercury (in fish tissue)
3	2966A	Upper St. Johns	Buck Lake	Mercury (in fish tissue)
3	2978A	Upper St. Johns	Loughman Lake	Mercury (in fish tissue)
3	3008A	Upper St. Johns	Fox Lake	Mercury (in fish tissue)
3	3008B	Upper St. Johns	South Lake	Mercury (in fish tissue)
3	3064A	Upper St. Johns	Florence Lake	Biology
3	3140	Upper St. Johns	Lake Kenansville	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
3	3245B	Lake Worth Lagoon– Palm Beach Coast	Lake Clarke	Biology; Fecal Coliform
3	3245C1	Lake Worth Lagoon– Palm Beach Coast	Lake Mangonia	Fecal Coliform
3	3245C4	Lake Worth Lagoon– Palm Beach Coast	Pine Lake	Fecal Coliform; Nutrients (chlorophyll <i>a</i>)
3	3256A	Lake Worth Lagoon– Palm Beach Coast	Lake Osborne	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
3	3262A	Lake Worth Lagoon– Palm Beach Coast	Lake Ida	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
3	516	Choctawhatchee– St. Andrew	Compass Lake	Mercury (in fish tissue)
3	553A	Choctawhatchee– St. Andrew	Deerpoint Lake	Mercury (in fish tissue)
3	555	Choctawhatchee– St. Andrew	Gap Lake	Mercury (in fish tissue)
3	61A	Choctawhatchee– St. Andrew	Sand Hammock Pond	Mercury (in fish tissue)
3	662	Choctawhatchee– St. Andrew	Porter Lake	Mercury (in fish tissue)
3	780A	Choctawhatchee– St. Andrew	Rattlesnake Lake	Nutrients (TN); Nutrients (TP)
3	786A	Choctawhatchee– St. Andrew	Bass Lake	DO (percent saturation); Nutrients (TN)
3	959G	Choctawhatchee– St. Andrew	Fuller Lake	DO (percent saturation)
4	10EA	Pensacola	Woodbine Springs Lake	Mercury (in fish tissue)
4	1329B	Withlacoochee	Lake Rousseau	Mercury (in fish tissue)
4	1329H	Withlacoochee	Lake Lindsey	DO (percent saturation)
4	1329L	Withlacoochee	Tank Lake	DO (percent saturation)
4	1329T	Withlacoochee	Blue Sink (Blue Sink Lake)	DO (percent saturation); Nutrients (TP)
4	1329W	Withlacoochee	Bystre Lake	Nutrients (TP)
4	1340A	Withlacoochee	Davis Lake	DO (percent saturation)
4	1340C	Withlacoochee	Magnolia Lake	DO (percent saturation)
4	1340D	Withlacoochee	Hampton Lake	DO (percent saturation)
4	1340H	Withlacoochee	Hernando Lake	Mercury (in fish tissue)

Basin	WDID			
Group 4	WBID 1340K	Basin Group Name Withlacoochee	Waterbody Name Cato Lake	Identified Parameters DO (percent saturation)
4	1340K 1340L	Withlacoochee	Cooter Lake	Biology; DO (percent saturation)
4	1340L 1340N	Withlacoochee	Henderson Lake	Mercury (in fish tissue)
4	1340N 1340P	Withlacoochee		DO (percent saturation)
4	1340P	Withlacoochee	Spivey Lake Tussock Lake	DO (percent saturation)
			Tsala Apopka Lake	
4	1340R	Withlacoochee	(Floral City Arm)	Mercury (in fish tissue)
4	1340V	Withlacoochee	Bradley Lake	DO (percent saturation)
4	1342Y	Withlacoochee	Cherry Lake	Mercury (in fish tissue)
4	1347	Withlacoochee	Lake Okahumpka	Biology; Mercury (in fish tissue)
4	1349A	Withlacoochee	Lake Deaton	Mercury (in fish tissue)
4	1351B	Withlacoochee	Lake Panasoffkee	Mercury (in fish tissue)
4	1403	Withlacoochee	Clear Lake	Biology
4	1466	Withlacoochee	Lake Agnes	Biology; Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	1467	Withlacoochee	Mud Lake	Biology
4	1472B	Kissimmee River	Lake Hatchineha	Biology; Mercury (in fish tissue)
4	1480	Kissimmee River	Lake Marion	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	1484B	Withlacoochee	Lake Juliana	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
4	1532A	Kissimmee River	Lake Pierce	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	1573A	Kissimmee River	Tiger Lake	Mercury (in fish tissue); Nutrients (TP)
4	1573C	Kissimmee River	Lake Rosalie	Biology
4	1573E	Kissimmee River	Lake Weohyakapka	Mercury (in fish tissue)
4	1619A	Kissimmee River	Lake Wales	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
4	1619D	Kissimmee River	Lake Moody	Nutrients (chlorophyll <i>a</i>)
4	1619E	Kissimmee River	Lake Amoret	DO (percent saturation)
4	1663	Kissimmee River	Crooked Lake	Mercury (in fish tissue)
4	1685A	Kissimmee River	Lake Arbuckle	Mercury (in fish tissue)
4	1685D	Kissimmee River	Reedy Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
4	1685E	Kissimmee River	Lake Ida	Nutrients (TN)
4	1706	Kissimmee River	Lake Clinch	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	1730	Kissimmee River	Hickory Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
4	1730B	Kissimmee River	Livingston Lake	Mercury (in fish tissue); Nutrients (TP)
4	1730D	Kissimmee River	Lake Adelaide	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
4	1761H	Kissimmee River	Lake Lucas	DO (percent saturation)

Basin Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters
<u>4</u>	179A	Pensacola	Bear Lake	Mercury (in fish tissue)
4	1813A	Kissimmee River	Dinner Lake	Mercury (in fish tissue)
4	1813B	Kissimmee River	Lake Lotela	Mercury (in fish tissue)
4	1813L	Kissimmee River	Lake Glenada	Nutrients (chlorophyll <i>a</i>)
4	1842	Kissimmee River	Lake Sebring	Mercury (in fish tissue)
4	1856B	Kissimmee River	Lake Istokpoga	Biology; Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	1860B	Kissimmee River	Lake Josephine	Mercury (in fish tissue)
4	1860D	Kissimmee River	Lake Jackson	Biology; Mercury (in fish tissue)
4	1891A	Kissimmee River	Red Beach Lake	Mercury (in fish tissue)
4	1906	Kissimmee River	Lake Charlotte	Biology; Mercury (in fish tissue)
4	1932A	Kissimmee River	Lake Grassy	Mercury (in fish tissue)
4	1932B	Kissimmee River	Clay Lake	Mercury (in fish tissue)
4	1932E	Kissimmee River	Lake Huntley	Mercury (in fish tissue)
4	1932G	Kissimmee River	Lake Apthorpe	Mercury (in fish tissue)
4	1932M	Kissimmee River	Blue Lake	Biology
4	1938A	Kissimmee River	Lake June in Winter	Mercury (in fish tissue)
4	1938C	Kissimmee River	Lake Placid	Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>)
4	1938D	Kissimmee River	Lake Carrie	Biology
4	1938E	Kissimmee River	Persimmon Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
4	1938F	Kissimmee River	Red Water Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	1938H	Kissimmee River	Lake Annie	Mercury (in fish tissue)
4	1938I	Kissimmee River	Lake Lachard	Biology
4	2105A	Nassau - St. Marys	Hampton Lake	DO (percent saturation)
4	2339	Nassau - St. Marys	Ocean Pond	Mercury (in fish tissue)
4	2392	Nassau - St. Marys	Palestine Lake	Mercury (in fish tissue)
4	25A	Pensacola	Lake Stone (Southwest of Century)	Mercury (in fish tissue)
4	3168A	Kissimmee River	Lake Conway	Mercury (in fish tissue)
4	3168E	Kissimmee River	Lake Anderson	Nutrients (chlorophyll <i>a</i>)
4	3168F	Kissimmee River	Lake Bass	Nutrients (chlorophyll <i>a</i>); Nutrients (TN)
4	3168H	Kissimmee River	Lake Holden	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	3168M	Kissimmee River	Lake Copeland	Biology
4	3168N	Kissimmee River	Lake Olive	Biology
4	3168Q	Kissimmee River	Lake Warren (Lake Mare Prairie)	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	3168W	Kissimmee River	Bear Head Lake	Biology
4	3168W3	Kissimmee River	Lake Wade	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)

Basin Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters
4	3168W4	Kissimmee River	Lake of The Woods	Nutrients (TN); Nutrients (TP)
4	3168W6	Kissimmee River	Lake Warren	Nutrients (TN)
4	3168W7	Kissimmee River	Lake Bumby	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP); Silver
4	3168X2	Kissimmee River	Hourglass Lake	Nutrients (chlorophyll <i>a</i>)
4	3168X4	Kissimmee River	Lake Rabama	Nutrients (TP)
4	3168X5	Kissimmee River	Lake Condel	Fecal Coliform; Lead; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	3168X8	Kissimmee River	Lake Angel	Nutrients (chlorophyll <i>a</i>); Nutrients (TP)
4	3168Y	Kissimmee River	Lake Lancaster	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	3168Y2	Kissimmee River	Lake Como (Orange County)	Nutrients (TP)
4	3168Y3	Kissimmee River	Lake Greenwood	Nutrients (TP)
4	3168Y4	Kissimmee River	Lake Davis	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	3168Y6	Kissimmee River	Lake Lurna	Nutrients (TP)
4	3168Y8	Kissimmee River	Lake Weldona	Nutrients (chlorophyll <i>a</i>)
4	3168Z3	Kissimmee River	Lake Arnold	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	3168Z4	Kissimmee River	Lake Giles	Nutrients (TP)
4	3168Z9	Kissimmee River	Lake Lawsona	Nutrients (TP)
4	3169A2	Kissimmee River	Lake Tyler	Biology
4	3169C	Kissimmee River	Big Sand Lake	Lead; Mercury (in fish tissue)
4	3169G3	Kissimmee River	Lake Fran	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	3169G4	Kissimmee River	Lake Kozart	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	3169G5	Kissimmee River	Lake Walker	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	3169G6	Kissimmee River	Lake Richmond	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	3169G8	Kissimmee River	Lake Beardall	Nutrients (TP)
4	3169Q	Kissimmee River	Rock Lake	Nutrients (TN)
4	3169T	Kissimmee River	Lake Sandy	Nutrients (TP)
4	3170B	Kissimmee River	Lake Russell	Mercury (in fish tissue)
4	3170H1	Kissimmee River	Lake Sheen	Mercury (in fish tissue)
4	3170H2	Kissimmee River	Pocket Lake	Mercury (in fish tissue)
4	3170I	Kissimmee River	Lake Hickorynut	Nutrients (TN)
4	3170Q	Kissimmee River	Lake Butler	Mercury (in fish tissue); Nutrients (TN)
4	3170S	Kissimmee River	Lake Down	Mercury (in fish tissue)
4	3170T	Kissimmee River	Lake Bessie	Mercury (in fish tissue)
4	3170W	Kissimmee River	Lake Louise	Mercury (in fish tissue)
4	3170Y	Kissimmee River	Lake Tibet Butler	Mercury (in fish tissue)

Basin Group	WBID	Basin Group Name	Waterbody Name	Identified Parameters
4	3170Z1	Kissimmee River	Little Fish Lake	Mercury (in fish tissue)
4	3171	Kissimmee River	Lake Hart	Lead; Mercury (in fish tissue)
4	3171A	Kissimmee River	Lake Mary Jane	Lead; Mercury (in fish tissue)
4	3171C	Kissimmee River	Red Lake	Copper
4	3172	Kissimmee River	East Lake Tohopekaliga	Mercury (in fish tissue)
4	3173A	Kissimmee River	Lake Tohopekaliga	Biology; Mercury (in fish tissue)
4	3174	Kissimmee River	Lake Center	Biology
4	3174D	Kissimmee River	Coon Lake	Biology
4	3176	Kissimmee River	Alligator Lake	Mercury (in fish tissue)
4	3177	Kissimmee River	Lake Gentry	Mercury (in fish tissue)
4	3177A	Kissimmee River	Brick Lake	Mercury (in fish tissue)
4	3180A	Kissimmee River	Lake Cypress	Biology; Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	3183B	Kissimmee River	Lake Kissimmee	Biology; Mercury (in fish tissue); Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	3183G	Kissimmee River	Lake Jackson (Osceola County)	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	3184	Kissimmee River	Lake Marian	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
4	38A	Pensacola	Lake Jackson	Mercury (in fish tissue)
5	1392B	Springs Coast	Lake Hancock	Biology; Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
5	1409A	Springs Coast	Moon Lake	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP)
5	1432A	Springs Coast	Lake Worrell	DO (percent saturation)
5	1618	Springs Coast	Lake Seminole	Nutrients (chlorophyll <i>a</i>); Nutrients (TN); Nutrients (TP); pH
5	1650	Springs Coast	Walsingham Reservoir	Mercury (in fish tissue)

Appendix E: Strategic Monitoring and Assessment Methodology for Surface Water

FWRA

The 1999 FWRA (Section 403.067 et seq., F.S.) clarified the statutory authority of DEP to establish TMDLs, required DEP to develop a scientifically sound methodology for identifying impaired waters, specified that DEP could develop TMDLs only for waters identified as impaired using the new methodology, and directed DEP to establish an Allocation Technical Advisory Committee (ATAC) to assure the equitable allocation of load reductions when implementing TMDLs.

The 2005 FWRA amendments included provisions that removed the need for the ATAC and added the development and implementation of BMAPs to guide TMDL activities and reduce urban and agricultural nonpoint sources of pollution. Nevertheless, BMAPs are not mandatory for the implementation of TMDLs. The Legislature established a long-term funding source that provided \$20 million per year for urban stormwater retrofitting projects to reduce pollutant loadings to impaired waters. However, over the years the level of funding has been inconsistent.

The FWRA also requires FDACS and DEP to adopt rules for BMPs. As Florida already had an urban stormwater regulatory program, this new authority was particularly important in strengthening Florida's agricultural nonpoint source management program. The law requires DEP to verify the effectiveness of BMPs in reducing pollutant loads. The BMP rules and associated BMP manuals are available from the <u>FDACS OAWP</u> website. DEP can take enforcement action against permittees who do not implement the BMPs they agreed to implement in the BMAP.

IWR

DEP uses the methodology in Florida's IWR (Chapter 62-303, F.A.C.) to evaluate water quality data and identify impaired waters. The rule also addresses data sufficiency, data quality, and delisting requirements. **Appendix F** contains detailed information on the IWR.

Watershed Management Approach

DEP's statewide method for water resource management, called the watershed management approach, is the framework for developing and implementing the provisions of Section 303(d) of the federal CWA as required by federal and state laws. This approach manages water resources on the basis of hydrologic units—natural boundaries such as river basins—rather than arbitrary political or regulatory boundaries. DEP assesses each basin as an entire functioning system and evaluates aquatic resources from a basinwide perspective that considers the cumulative effects of human activities. From that framework, DEP addresses the causes of pollution.

Rather than relying on single solutions to water resource issues, the watershed management approach is intended to improve the health of surface water and groundwater resources by strengthening coordination among such activities as monitoring, stormwater management, wastewater treatment, wetland restoration, agricultural BMPs, land acquisition, and public involvement. Stakeholder involvement (including federal, state, regional, tribal, and local governments and individual citizens) is an important feature to cooperatively define, prioritize, and resolve water quality problems. Coordination among the many existing water quality programs helps manage basin resources and reduce duplication of effort.

DEP implements the watershed management approach by using a 5-year basin rotation cycle. Under this approach, DEP groups Florida's 52 HUC basins (51 HUCs plus the Florida Keys) into 29 distinct basins distributed among each of DEP's 6 districts. Within each district, DEP assesses 1 basin group each year (except for the Northeast District) and assesses each basin every 5 years. **Table E.1** lists the basin groups included in each of the basin rotations by DEP district. **Table E.2** lists the specific assessment periods for the Planning, Study, and Verified Lists for each of the 5 basin groups for the 44 iterations of the basin rotation.

Table E.1. Basin groups for the implementation of the watershed management approach,		
by DEP district		

- = No basin assessed					
DEP District	Group 1 Basins	Group 2 Basins	Group 3 Basins	Group 4 Basins	Group 5 Basins
Northwest	Ochlockonee– St. Marks	Apalachicola– Chipola	Choctawhatchee– St. Andrew	Pensacola	Perdido
Northeast	Suwannee	Lower St. Johns	-	Nassau–St. Marys	Upper East Coast
Central	Ocklawaha	Middle St. Johns	Upper St. Johns	Kissimmee River	Indian River Lagoon
Southwest	Tampa Bay	Tampa Bay Tributaries	Sarasota Bay– Peace–Myakka	Withlacoochee	Springs Coast
South	Everglades West Coast	Charlotte Harbor	Caloosahatchee	Fisheating Creek	Florida Keys
Southeast	Lake Okeechobee	St. Lucie– Loxahatchee	Lake Worth Lagoon– Palm Beach Coast	Southeast Coast– Biscayne Bay	Everglades

Cycle	Basin		
Rotation	Group	Planning Period	Verified Period
1	1	1989–1998	1/1/1995-6/30/2002
1	2	1991–2000	1/1/1996-6/30/2003
1	3	1992–2001	1/1/1997-6/30/2004
1	4	1993–2002	1/1/1998-6/30/2005
1	5	1994–2003	1/1/1999-6/30/2006
2	1	1995–2004	1/1/2000-6/30/2007
2	2	1996–2005	1/1/2001-6/30/2008
2	3	1997–2006	1/1/2002-6/30/2009
2	4	1998–2007	1/1/2003-6/30/2010
2	5	1999–2008	1/1/2004-6/30/2011
3	1	2000–2009	1/1/2005-6/30/2012
3	2	2002–2011	1/1/2007-6/30/2014
3	3	2003–2012	1/1/2008-6/30/2015
3	4	2004–2013	1/1/2009-6/30/2016
3	5	2005–2014	1/1/2010-6/30/2017
4	1	2006–2016	1/1/2011-6/30/2018
4	2	2007–2017	1/1/2012-6/30/2019
4	3	2008–2018	1/1/2013-6/30/2020
4	4	2009–2019	1/1/2014-6/30/2021
4	5	2010–2020	1/1/2015-6/30/2022

Table E.2. Periods for the development of the Planning, Study, and Verified Lists by cycle and basin group

The watershed management approach also involves the coordination of multiple programs within DEP. First, DEP prepares a monitoring plan in collaboration with stakeholders to determine when and where additional monitoring is needed to assess potentially impaired waters. This effort culminates in the preparation of a strategic monitoring plan. DEP then executes the strategic monitoring plan primarily using DEP staff in the Regional Operations Centers (ROCs). Data from this effort are used to produce a Verified List of Impaired Waters, developed by applying the surface water quality standards in Chapter 62-302, F.A.C., and the IWR methodology in Chapter 62-303, F.A.C. Next, DEP provides draft lists to stakeholders for comment and finalizes the lists based on these comments and any additional information received throughout the process. Finally, as required by Subsection 403.067(4), F.S., DEP adopts the Verified List for each basin by Secretarial Order.

After Secretarial adoption, the TMDL Program uses the Verified List and additional considerations to set priorities for TMDL development. A TMDL assigns preliminary allocations to point and nonpoint pollution sources. DEP adopts all TMDLs by rule. Depending on the circumstances, a basin working group may be formed to develop a BMAP to guide TMDL

implementation activities. DEP works closely with watershed stakeholders to ensure that they understand and support the approaches being undertaken to develop and implement the TMDLs.

The basin working group and other stakeholders—especially other state agencies, WMDs, and representatives of county and municipal governments—develop the BMAP. The BMAP may address some or all of the watersheds and basins that flow into the impaired waterbody. This process may take several months to years and culminates in the formal adoption of the BMAP by DEP's Secretary.

The most important BMAP component is the list of management strategies to reduce pollutant sources. Local entities (e.g., wastewater facilities, industrial sources, agricultural producers, county and city stormwater systems, military bases, water control districts, and individual property owners) usually implement these efforts. The management strategies may improve the treatment of pollution (e.g., wastewater treatment facility upgrades, or retrofits in an urban area to enhance stormwater treatment), or the activities may improve source control.

Watershed restoration plans that implement TMDLs can be through a BMAP or through other regulatory requirements such as National Pollutant Discharge Elimination System (NPDES) municipal separate storm sewer system (MS4) bacteria pollution control plans or TMDL implementation plans. In addition, there are opportunities for stakeholders to develop plans that address impairments and improve water quality prior to TMDL development and adoption. While these alternative plans are not BMAPs, they can promote improved water quality and begin the restoration process without waiting for a TMDL to be established. There are two alternative plan types: (1) Assessment Category 4b, reasonable assurance plans (RAPs), and (2) Assessment Category 4e, water quality restoration plans. Once a restoration plan—whether BMAP or stakeholder driven—is in place, activities and projects are completed on a schedule to ensure progress towards water quality restoration.

Tracking Improvements Through Time

The iterative nature of the watershed management approach allows DEP to evaluate and track the effectiveness of management activities (i.e., BMAP and TMDL implementation, the extent to which water quality objectives are being met, and whether individual waters are no longer impaired) over time. For example, each adopted BMAP includes a monitoring component. These data can be compared across multiple basin rotation cycles to document water quality change.

Determination of Use Support

Section 303(c) of the CWA requires that water quality standards established by the states and tribes include appropriate uses to be achieved and protected for jurisdictional waters. The CWA also establishes the national goal of "fishable and swimmable" for all waters wherever that goal is attainable. **Table E.3** lists the use support categories evaluated by assessments performed

under the IWR. These categories correspond hierarchically to the surface water classifications provided in **Appendix C**.

Designated Use Category Evaluated by Assessments Performed under the IWR	Applies to Waters Having This Surface Water Classification
Aquatic Life Use	Class I, II, III, III-Limited
Primary Contact and Recreation	Class I, II, III, III-Limited
Fish and Shellfish Consumption	Class I, II, III, III-Limited
Drinking Water	Class I
Protection of Human Health	Class I, II, III, III-Limited

Table E.3. Designated use support categories for surface waters in Florida

Although the IWR establishes the assessment methodology for identifying impaired waters, DEP uses EPA's multicategory, integrated reporting guidance to report use support status. **Table E.4** lists the categories for waterbodies or waterbody segments used by DEP in the *2020 Integrated Report*, and **Table E.5** lists the categories anticipated to be used in the *2022 Integrated Report*.

Table E.4. Categories for waterbodies or waterbody segments DEP used in the 2020 Integrated Report

Note: The TMDLs are established only for impairments caused by pollutants (a TMDL quantifies how much of a given pollutant a waterbody can receive and still meet its designated uses). For purposes of the TMDL Program, pollutants are chemical and biological constituents, introduced by humans into a waterbody, that may result in pollution (water quality impairment). Other causes of pollution, such as the physical alteration of a waterbody (e.g., canals, dams, and ditches) are not linked to specific pollutants.

Category	Description	Comments
1	Attains all designated uses.	Not currently used by DEP.
2	Attains some designated uses and insufficient or no information or data are available to determine if remaining uses are attained.	If attainment is verified for some designated uses of a waterbody or segment, DEP will propose partial delisting for those uses that are attained. Future monitoring will be recommended to acquire sufficient data and/or information to determine if the remaining designated uses are attained.
3a	No data and/or information are available to determine if any designated use is attained.	Future monitoring will be recommended to acquire sufficient data and/or information to determine if designated uses are attained.
3b	Some data and information are available but not enough to determine if any designated use is attained.	Future monitoring will be recommended to acquire sufficient data and/or information to determine if designated uses are attained.
Зс	Enough data and information are available to determine that one or more designated uses may not be attained according to the Planning List in the IWR.	These waters are placed on the Planning List and will be prioritized for future monitoring to acquire sufficient data and/or information to determine if designated uses are attained.
4a	Impaired for one or more designated uses but does not require TMDL development because a TMDL has already been completed.	After EPA approves a TMDL for the impaired waterbody or segment, it will be included in a restoration plan or BMAP to reduce pollutant loading toward the attainment of designated use(s).

Category	Description	Comments
4b	Impaired for one or more designated uses but does not require TMDL development because the water will attain water quality standards based on existing or proposed measures.	Pollutant control mechanisms designed to attain applicable water quality standards within a reasonable time have either already been proposed or are already in place.
4c	Impaired for one or more criteria or designated uses but does not require TMDL development because the impairment is not caused by a pollutant.	This category includes segments that do not meet their water quality standards because of naturally occurring conditions or pollution; such circumstances more frequently appear linked to impairments for low DO or elevated iron concentrations. In these cases, the impairment observed is not caused by specific pollutants but is believed to represent a naturally occurring condition, or to be caused by pollution.
4d	Identified as not attaining one or more designated uses, but DEP does not have sufficient information to determine a causative pollutant; or current data show a potentially adverse trend in nutrients or nutrient response variables; or there are exceedances of stream nutrient thresholds, but DEP does not have enough information to fully assess nonattainment of the stream nutrient standard.	This category includes segments that do not meet their water quality standards, but no causative pollutant has been identified or where there are adverse trends in nutrients, nutrient response variables, or DO. Waters in this category are included on the basin-specific Study List and submitted to EPA as additions to Florida's 303(d) list of impaired waters.
4e	Does not attain water quality standards, and pollution control mechanisms or restoration activities are in progress or planned to address nonattainment of water quality standards. DEP does not have enough information to fully evaluate whether proposed pollution mechanisms will result in the attainment of water quality standards.	Restoration activities for waterbodies in this category have been completed, are planned, or are ongoing, such that once the activities are completed or the waterbody has had a chance to stabilize, in the opinion of DEP staff it will meet its designated uses. Waters in this category are included on the basin-specific Study List and submitted to EPA as additions to Florida's 303(d) list of impaired waters.
5	Water quality standards are not attained and a TMDL is required.	Waterbodies or segments in this category have been identified as impaired for one or more designated uses by a pollutant or pollutants. Waters in this category are included on the basin-specific Verified List adopted by Secretarial Order and submitted to EPA as additions to Florida's 303(d) list of impaired waters.

Table E.5. Categories for waterbodies or waterbody segments DEP plans to use in the 2022 Integrated Report

WAS = Watershed Assessment Section WQETP TMDL = Water Quality Evaluation and TMDL Program–Total Maximum Daily Load WPCS BMAP = Watershed Planning and Coordination Section–Basin Management Action Plan NPDES MS4 = National Pollutant Discharge Elimination System–Municipal Separate Storm Sewer System (MS4) Section DWRA NPS = Division of Water Restoration Assistance–Nonpoint Source Section				
Category	Description	Comments		
2b	Attains one or more designated uses and a RAP has already been completed.	Waterbody is not impaired for the parameter being assessed and has a RAP that addresses the parameter. A comprehensive and coordinated evaluation will be implemented that includes DEP staff (WAS, WQETP TMDL, WPCS BMAP, NPDES MS4, DWRA NPS, etc.) and/or stakeholders to determine whether the use of the assessment category is warranted (i.e., has attainment/success really been achieved) or whether the evaluation of the data used in the current assessment is considered preliminary. If additional data are needed to confirm attainment, the waterbody should be retained in Assessment Category 4b.		
2e	Attains one or more designated uses and an alternative restoration plan has already been completed.	Waterbody is not impaired for the parameter being assessed and has an alternative restoration plan that addresses the parameter. A comprehensive and coordinated evaluation will be implemented that includes DEP staff (WAS, WQETP TMDL, WPCS BMAP, NPDES MS4, DWRA NPS, etc.) and/or stakeholders to determine whether the use of the assessment category is warranted (i.e., has attainment/success really been achieved) or whether the evaluation of the data used in the current assessment is considered preliminary. If additional data are needed to confirm attainment, the waterbody should be retained in Assessment Category 4e.		
2t	Attains one or more designated uses and a TMDL has already been completed.	Waterbody is not impaired for the parameter being assessed and has a TMDL that addresses the parameter. A comprehensive and coordinated evaluation will be implemented that includes DEP staff (WAS, WQETP TMDL, WPCS BMAP, NPDES MS4, DWRA NPS, etc.) and/or stakeholders to determine whether the use of the assessment category is warranted (i.e., has attainment/success really been achieved) or whether the evaluation of the data used in the current assessment is considered preliminary. If additional data are needed to confirm attainment, the waterbody should be retained in Assessment Category 4a.		

Assessments and subsequent listing decisions performed using the IWR methodology relate only to the current assessment periods. For segments that cannot be fully assessed using only data from the current assessment periods, EPA has encouraged Florida to incorporate a complete review of all water quality data for the entire period of record. Consequently, DEP extended the assessment methodology to include period-of-record data when such additional data are available and these data meet DEP QA requirements (often the quality and/or the reliability of older data cannot be established).

For the second cycle of the basin rotation, DEP implemented a complete review of each basin group to evaluate the period-of-record data and determined which waterbodies needed further data collection. Waterbodies with historical data that met the Verified List methodology were placed on the Planning List if more recent data were not available to confirm use attainment.

Data Management

Sources

WIN, Florida STORET, and Statewide Biological Database (SBIO) are the primary sources for assessment data. While the vast majority of IWR assessments rely almost entirely on data from Florida STORET and WIN, these data are supplemented as required with data obtained from other sources. For assessments performed for the current assessment period, 87 % of the data used came from Florida STORET, 12 % came from WIN, and less than 1 % came from other sources. **Table E.6** lists the agencies and organizations that provided IWR assessment data.

Table E.6. Agencies and organizations providing data used in the IWR assessments

- Alabama Department of Environmental Management
- Alachua County Environmental Protection Department
- Amec Foster Wheeler Environment and Infrastructure Inc. (AMEC)
- Avon Park Air Force Range
- Babcock Ranch
- Biological Research Associates (ENTRIX)
- Bream Fishermen Association
- Broward County Environmental Protection Department
- Charlotte County Department of Health
- Charlotte County Stormwater Division
- Charlotte Harbor National Estuary Program (CHNEP) – East Wall
- CHNEP Lower Lemon Bay
- CHNEP Matlacha Pass
- CHNEP Peace River
- CHNEP San Carlos Bay
- CHNEP Tidal Myakka River
- CHNEP Tidal Peace River
- CHNEP West Wall
- Choctawhatchee Basin Alliance
- City of Altamonte Springs
- City of Atlantic Beach
- City of Bonita Springs
- City of Cape Coral
- City of Deltona
- City of Fort Myers
- City of Jacksonville
- City of Jacksonville Beach
- City of Kissimmee
- City of Lakeland
- City of Marco Island
- City of Naples
- City of Neptune Beach
- City of Orlando
- City of Port St. Lucie
- City of Punta Gorda
- City of Saint Petersburg
- City of Sanibel, Natural Resources Department
- City of Tallahassee Stormwater Management Division

- Collier County Coastal Zone
 Management Department
- Collier County Pollution Control
- Dade County Environmental Resource Management
- FDOH Division of Environmental Health, Bureau of Water
- Environmental Services and Permitting, Inc.
- DEP Groundwater Monitoring Section
- DEP Charlotte Harbor Aquatic/Buffer Preserves
- DEP Tallahassee Regional Operations Center
- DEP Watershed Assessment Section
- DEP Water Quality Standards and Special Projects
- DEP WET Section
- DEP Central District
- DEP Northeast District
- DEP Northwest District
- DEP South District
- DEP Southeast District
- DEP Southwest District
- DEP Okaloosa County Environmental Council
- Florida Department of Agriculture and Consumer Services
- Florida Department of Environmental Protection
- Florida Game and Freshwater Fish Commission
- Florida Keys National Marine Sanctuary – Water Quality Monitoring Program
- Florida LakeWatch
- Florida Marine Research Institute
- Frydenborg Ecologic LLC
- Guana Tolomato Matanzas Estuarine Research Reserve
- Hillsborough County, Florida Water Quality Data
- Howard T. Odum Florida Springs Institute
- Jacksonville Electric Authority
- Lake County Water Resource Management
- Lee County Environmental Lab

Page 141 of 160

- Lehigh Acres Municipal Services Improvement District
- Leon County Public Works
- Loxahatchee River District
- Manatee County Environmental Management Department.
- Marine Resources Council of East Florida
- McGlynn Laboratories, Inc.
- Naval Station Mayport
- Northwest Florida Water Management District
- Orange County Environmental Protection
- Palm Beach County Environmental Resource Management
- Pasco County Stormwater Management Division
- Peace River Manasota Regional Water Authority
- Pelican Bay Services
- Pinellas County Department of Engineering and Environmental Services
- Polk County Natural Resources Division
- Reedy Creek Improvement District Environmental Services
- Sanibel Captiva Conservation Foundation
- Sarasota County Environmental Services
- Seminole County
- SMR Communities, Inc.
- South Florida Water Management District
- Southwest Florida Water Management District
- Southwest Florida Water Management District (Project Coast)
- St. Johns River Water Management District
- Suwannee River Water Management District
- Tampa Bay Water
- Turrell, Hall and Associates., Inc.
- U.S. Geological Survey
- Volusia County Environmental Health

Quality Assurance/Quality Control (QA/QC) Criteria

The IWR addresses QA/QC by requiring all data providers to use established SOPs and National Environmental Laboratory Accreditation Conference (NELAC)–certified laboratories to generate results intended for use in IWR assessments. All data must meet DEP QA rule requirements (Chapter 62-160, F.A.C.). To further ensure that the QA/QC objectives of the program are being met, DEP's Aquatic Ecology and Quality Assurance (AEQA) Section, on request, audits data providers (or laboratories used by data providers) on behalf of the program.

Rationales for Exclusion of Existing Data

In assessing surface water quality under the IWR, DEP attempts to assemble and use all readily available ambient surface water quality data. DEP excludes measurements or observations that are known not to be representative of ambient waters (e.g., results for samples collected from discharges or in approved mixing zones) from IWR assessments. In addition, data collected at locations or during periods that are not representative of the general condition of the waterbody (e.g., samples collected during or immediately after a hurricane or samples linked to a short-term event such as a sewage spill) are subject to additional review before inclusion in the IWR assessment process.

If QA/QC audits identify specific data deficiencies, corresponding data subsets may be excluded from the assessment process. In these situations, the AEQA Section will provide recommendations to the appropriate data providers. Similarly, if a review of water quality assessment data identifies specific discrepancies or anomalies, these data also may be precluded from an assessment. Typically, such discrepancies include systematic issues such as errors in the conversion of units, errors caused by using an incorrect fraction to characterize an analyte, or other data-handling errors that may have occurred in conjunction with the data-loading process. In these cases, DEP staff will work with the data provider to resolve the underlying issues. Upon resolution, corrected data are (re)loaded to Florida STORET and made available for subsequent IWR assessments.

Table E.7 contains additional details about the specific types of data that have been excluded from assessments performed under the IWR.

Use and Interpretation of Biological Results

The biological assessment tools used in conjunction with IWR assessments consist of the SCI, LVI, RPS, LVS, Habitat Assessment (HA), and Bioreconnaissance (BioRecon). Because BioRecon is primarily a screening tool, DEP does not use low BioRecon scores alone as the basis for impairment decisions. Instead, it requires follow-up sampling with the SCI to provide a more comprehensive measure of aquatic life use support. In addition, a single SCI with a score less than the acceptable value is not sufficient to support an impairment or delisting decision. When SCIs are used as the basis for impairment decisions, DEP requires a minimum of at least two temporally independent SCIs.

Data Excluded	Comment
Results reported in Florida STORET that did not include units or included units that were inappropriate for the particular analyte.	The result values could not accurately be quantified or relied on for assessment purposes under the IWR.
Results reported as negative values.	It was concluded that, except in cases where documentation was presented that indicated otherwise, any results reporting a negative value for the substance analyzed represent reporting errors. Credible data could not have any values less than the detection limit (in all cases a positive value) reported, and therefore results reported as negative values could not be relied on for assessment purposes under the IWR.
Results reported as "888" "8888" "88888" "888888" "8888888" and "999" "9999" "99999" "999999" "9999999".	Upon investigation, all data reported using these values were found to be provided by a particular WMD. The district intentionally coded the values in this manner to flag the fact that they should not be used, as the values reported from the lab were suspect. The data coded in this manner were generally older.
Extremely old USGS data (from the beginning of the previous century).	These results did not have complete date information available, and accurate date information is required to assess results under the IWR. The USGS data using USGS parameter codes 32230 or 32231 also were excluded from assessments performed under the IWR, based on information in a memo sent from USGS.
Results for iron that were confirmed to be entered into Database Hydrologic (dbHydro) (South Florida WMD's environmental database) using an incorrect Legacy STORET parameter code.	These results were limited to a subset of the results reported by a particular WMD.
Results reported associated with "K," "U," and "W," qualifier codes (all of which suggest that the result was below the method detection limit [MDL]) when the reported value of the MDL was greater than the criterion, or the MDL was not provided.	To be able to compare a nondetect result with a criterion value, it is necessary to know that it was possible to measure as low as the numeric value of the criterion.
Results reported using an "I" qualifier code (meaning that the result value was between the MDL and the practical quantitation limit [PQL]) if the MDL was not provided, or where the MDL and PQL were inconsistent with the rest of the data record.	Because of the uncertainty with results that had an MDL above a criterion, it is not possible to determine the precision of the data.

Table E.7. Data excluded from IWR assessmen

Data Excluded	Comment
Results reported for metals using an "I" qualifier code if the applicable criterion was expressed as a function of hardness, and the numeric value of the metal criteria corresponding to the reported hardness value was between the MDL and PQL.	Because of the uncertainty with results that had an MDL above a criterion, it is not possible to determine the precision of the data and the applicable water quality criterion.
Results reported using an "L" qualifier code (meaning that the actual value was known to be greater than the reported value) where the reported value for the upper quantification limit was less than the criterion.	The reasoning for excluding these data follows a similar logic as the cases discussed above for results reported as below the MDL.
Results reported with a "Z" qualifier code (indicating that the results were too numerous to count).	These results were excluded because there was no consistency among data providers in how data using this qualifier code were reported. Some data providers entered numeric estimates of bacteria counts, while others entered the dilution factor. As a result, the meaningful interpretation of data reported using this qualifier was not uniformly possible.
Results reported with an "F" qualifier code (indicating female species).	Since the IWR does not assess any analytes for which this qualifier code would be appropriate, the intended meaning of the use of this code is unknown. The reported result is therefore rendered uninterpretable (although there are very few instances of the use of this qualifier code in the IWR dataset, and some agencies may use this to indicate a field measurement).
Results reported with a "G" qualifier code (analyte detected in blank).	Data are excluded when the blank value was greater than 10 % of the associated sample value.
Results reported with an "O" qualifier code (indicating that the sample was collected but that the analysis was lost or not performed).	The exclusion of results reported using this qualifier code is self-explanatory.
Results reported with an "N" qualifier code (indicating a presumption of evidence of the presence of the analyte).	Comparing concentrations of analytes with water quality criteria requires a numeric result value. Presence or absence, for the purposes of assessments performed under the IWR, is not sufficient information on which to base an impairment decision.
Results reported with a "V" or "Y" qualifier code (indicating the presence of an analyte in both the environmental sample and the blank, or a laboratory analysis from an unpreserved or improperly preserved sample).	Such data may not be accurate. The use of these codes indicates that the reported result was not reliable enough to be used in IWR assessments.
Results reported in WIN with a "?" qualifier (data are rejected).	These results are excluded because some or all of the QC data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data

Data Excluded	Comment	
Results reported with a "Q" qualifier code (indicating that the holding time was exceeded).	The data were reviewed to validate whether the appropriate holding times were used, and if so, whether they were exceeded. All parameters reported with a "Q" qualifier code were excluded from IWR assessments, except bacteria.	
Results reported for mercury not collected and analyzed using clean techniques, as required by the IWR.	The use of clean techniques removes the chance for contamination of samples collected and analyzed for mercury. Mercury concentrations obtained from contaminated samples would not be representative of the true mercury concentrations in the target waterbody segments.	
Results recommended for exclusion from DEP's QA Section as a result of lab or field audits.	specific and referred to a specific period. While the data issue	
Certain DO measurements collected using a field kit (as opposed to a sonde).	The results are excluded because of the lack of data quality based on field kits.	

Appendix F: IWR Methodology for Evaluating Impairment

DEP evaluates the quality of waters of the state by using the science-based assessment methodology described in Chapter 62-303, F.A.C. The methodology provides a detailed process for determining the attainment of applicable water quality standards. Two distinct steps aim at identifying impaired waters: (1) using a statistical methodology to identify waterbody segments that exceed water quality criteria ("potentially impaired waters"), and (2) subjecting these segments to further review. If an exceedance for a potentially impaired segment caused by a pollutant later is verified, the segment is placed on the Verified List of Impaired Waters. The methodology described in the IWR provides a prespecified level of confidence that assessment results accurately reflect the actual water quality conditions of waters of the state.

In addition to providing assessment and listing thresholds, the IWR also (1) describes data sufficiency requirements, (2) addresses data quality objectives, and (3) describes the requirements for delisting segments that were previously included on the Verified List. The results in this report, including those assessments performed through 2019, are based on water quality criteria that were recently revised to incorporate DO (as percent saturation, replacing DO as concentration), NNC (DEP 2013a), recreational bacteria, and total ammonia nitrogen (replacing un-ionized ammonia).

The particular type of data and/or information required to determine use support varies by designated use (see **Appendix C**) and, in addition to physical and chemical analytical results characterizing the water column, includes biological data, fish consumption advisories, and beach closure and advisory information, as well as changes in the classification of shellfish-harvesting areas. At times, DEP also uses field survey and reconnaissance information to help identify impairments.

Evaluation of Aquatic Life–Based Use Support

Aquatic life–based use support refers to the propagation and maintenance of a healthy, wellbalanced population of fish and wildlife. To determine aquatic life–based use support, the IWR methodology uses three distinct types of data (Rule 62-303.310, F.A.C.):

- 1. Comparisons of discrete water quality measurements with specific classspecific numeric criteria from the Florida Standards (and other, similarly worded numeric threshold values, as described in Rule 62-303.320, F.A.C.).
- 2. Comparisons of results calculated for multimetric biological indices with waterbody type–specific biological assessment thresholds (as described in Rule 62-303.330, F.A.C).

3. Comparisons of annual summary statistics with numeric values based on an interpretation of narrative nutrient criteria from the Florida Standards (as described in Rule 62-303.350, F.A.C.).

Evaluations performed under the IWR rely primarily on discrete sample data obtained primarily from STORET and WIN. Subject to data sufficiency and data quality requirements, exceedances of applicable criteria and/or threshold values indicate that aquatic life–based use support is not achieved. However, the IWR allows waterbodies with values not meeting the DO criterion that have healthy biological assessments not to be included on the Verified List

Evaluation of Primary Contact and Recreation Use Support

The IWR methodology determines primary contact and recreation use attainment by evaluating the following (Rule 62-303.360, F.A.C.):

- 1. Comparisons of discrete water quality measurements with specific numeric criteria values for bacteria, consisting of comparisons with the relevant class-specific numeric criteria from the Florida Standards (and other, similarly worded numeric threshold values, as described in Rule 62-303.360, F.A.C.).
- 2. Evaluation of beach closure, or beach advisories, or warning information; this information must be based on bacteriological data, issued by the appropriate governmental agency, as described in Rule 62-303.360, F.A.C.
- 3. Comparison of summary measures of bacteriological data with threshold values described in Rule 62-303.360, F.A.C.

For the purpose of assessments using bacteria counts, FDOH reports the bacteriological results used as the basis for beach advisories, warnings, and closures to WIN. DEP combines these data with bacteriological results from other data providers statewide. Subject to data sufficiency and data quality requirements, exceedances of applicable criteria and/or threshold values indicate that primary contact and recreational use support are not achieved.

Evaluation of Fish and Shellfish Consumption Use Support

The evaluation of fish and shellfish consumption use support relies on the evaluation of both quantitative and qualitative information, as follows (as described in Rule 62-303.370, F.A.C.):

1. Comparisons of discrete water quality measurements with specific numeric criteria values for bacteria, consisting of comparisons with the relevant class-specific numeric criteria from the Florida Standards (and other, similarly worded numeric threshold values, as outlined in Rule 62-303.320, F.A.C.).

- 2. Evaluation of fish advisory information issued by FDOH or other authorized governmental entity.
- 3. Evaluation of shellfish-harvesting actions taken by FDACS, provided those actions were based on bacteriological contamination or water quality data.

When a Class I, II, or III waterbody fails to meet its applicable water quality criteria for bacteriological quality, the waterbody is assessed as impaired under the IWR. Subject to data sufficiency and data quality requirements, exceedances of applicable thresholds indicate that aquatic life–based use attainment is not met.

In addition, if FDOH has issued a fish consumption advisory, or if FDACS has classified a Class II waterbody segment as anything other than approved for shellfish harvesting or propagation, that segment is verified as impaired, and determined not to meet its designated use.

Evaluation of Drinking Water Use Attainment

The evaluation of drinking water use attainment is based on the following type of information (Rule 62-303.380, F.A.C.):

1. Comparisons of discrete water quality measurements to class-specific threshold values or numeric criteria from the Florida Standards, as outlined in Rule 62-303.320, F.A.C.

Evaluation and Determination of Use Attainment

Exceedances of Numeric Criteria from the Florida Standards

Table F.1 lists analytes for which numeric criteria exist in the Florida Standards and counts of sample results available for assessments performed under the IWR.

Table F.1. Sample counts for analytes having numeric criteria in the Florida Standards

Analyte	Number of Observations	
2,4-D	4,545	
Anthracene	246	
Silver	48,058	
Aluminum	42,964	
Aldrin	1,820	
Alkalinity	151,490	
Acenaphthene	236	
Arsenic	59,990	
Boron	9,668	
Barium	39,038	
Beta BHC	1,831	
Beryllium	24,075	
Benzene	293	
Cadmium	60,477	
Chlordane	1,608	
Chloride	150,868	
Chlorine	49	
Cyanide	8	
Specific Conductance	606,531	
Chlorophenol	229	
Chromium III	55,054	
Carbon Tetrachloride	292	
Copper	64,501	
Dichloroethylene	159	
2,4-Dichlorophenol	186	
DDT	1,816	
Demeton	1,565	
Detergents	25	
Dieldrin	1,917	
Dissolved Solids	97,259	
2,4-Dinitrophenol	224	
Escherichia coli	28,654	
Enterococci 183,788		
Endosulfan	1,835	
Endrin	1,737	
Fluoride	64,086	
Fecal Coliform	296,583	
Iron	71,123	
Fluoranthene	246	

Analyte	Number of Observations		
Fluorene	236		
Guthion	1,806		
Heptachlor	1,828		
Mercury	2,078		
Lindane	1,755		
Malathion	2,211		
Mirex	1,712		
Manganese	42,384		
Methoxychlor	1,655		
Nickel	50,645		
Nitrate	49,087		
Oil/Grease	269		
Lead	61,580		
Pentachlorophenol	196		
рН	695,880		
Phenol	1,115		
Pyrene	246		
Antimony	23,432		
Selenium	40,867		
Sevin	304		
Tetrachloroethylene	238		
Thallium 23,223			
Toxaphene1,615			
Trichloroethylene	293		
Turbidity	337,734		
Un-Ionized Ammonia	nized Ammonia 154,817		
Zinc	58,382		

Since the numeric water quality criteria from Chapter 62-302, F.A.C., are class and waterbodytype specific, DEP classifies segments first by their appropriate waterbody class and as one of four waterbody types—stream (including springs), lake, estuary, or coastal. For each analyte having a criterion in the Florida Standards, DEP calculates four-day station median concentrations (or, in some instances, daily values) and compares these values with the applicable class-specific criterion values in the Florida Standards, rather than the four-day station median.

For waters assessed under Subsection 62-303.320(1), F.A.C., for each segment and analyte combination, DEP counts the number of samples and exceedances of the applicable criterion and compares the exceedance count with the listing threshold value for the corresponding sample size. The listing thresholds represent the minimum number of samples not meeting the applicable

water quality criterion necessary to obtain the required confidence levels. Comparisons performed for acute toxicity-based exceedances, or exceedances of synthetic organics and pesticides, have a lower listing threshold of more than a single exceedance in any consecutive three-year period.

Subject to data sufficiency requirements, DEP places a waterbody segment assessed under Subsection 62-303.320(1), F.A.C., on the Planning List if there are a sufficient number of samples to attain at least 80 % confidence that the actual criterion exceedance rate was greater than or equal to 10 %. Waters placed on the Planning List are subject to additional data collection and review.

To place a waterbody segment assessed under Subsection 62-303.420(2), F.A.C., on the Verified List, the number of samples must be sufficient to attain at least 90 % confidence that the actual criterion exceedance rate was greater than or equal to 10 %.

Interpretation of Narrative Nutrient Criterion

The Florida Standards include a narrative nutrient criterion, which states, "In no case shall nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora or fauna." In Rule 62-303.350, F.A.C., the IWR provides a working interpretation of this criterion. Under this interpretation, the AGMs for chlorophyll *a*, TN, and TP concentrations (for streams, lakes, and estuaries) and nitrate-nitrite (for spring vents) were used to assess whether a waterbody should be further assessed for nutrient impairment under the rule in effect in 2019.

Exceedances of Biological Thresholds

Biota inhabiting a waterbody function as continual natural monitors of environmental quality, capable of detecting the effects of both episodic, as well as cumulative, alterations in water quality, hydrology, and habitat. A biological assessment uses the response of resident aquatic biological communities to various stressors as a method of evaluating ecosystem health. Because these communities can manifest long-term water quality conditions, they can provide a direct measure of whether the designated use of a "well-balanced population of fish and wildlife" is being attained (Rule 62-302.400, F.A.C.) better than characterization by discrete chemical or physical measurements alone. In addition, bioassessment often can provide insights into appropriate restoration strategies.

Metrics Used

Bioassessment tools used with the IWR assessments incorporate multimetric methods to quantify biological community structure or function. When multimetric methods are used, the results of individual metrics (e.g., number of long-lived taxa, number of sensitive taxa, percent filter feeders, percent clingers) are combined into a single dimensionless, multimetric index. Such indices offer potential advantages over the use of individual metrics by integrating multiple

nonredundant measures into a single score reflecting a wider range of biological information. The SCI and BioRecon are two examples of multimetric indices used to quantify the health of rivers and streams based on the biological health of macroinvertebrates.

Recalibrations of the SCI and the BioRecon methods completed in 2007 involved the use of the Human Disturbance Gradient (HDG), which ranks sites based on independent assessments of habitat quality, degree of hydrologic disturbance, water quality, and human land use intensity. The SCI and BioRecon scores calculated before August 2007 used a smaller, similar set of input metrics.

Since both sets of scores represent valid biological assessments performed during discrete periods, both are used in assessments of biological health performed under the IWR. The BioRecon is used to place waterbodies on the Planning List only, but the SCI is used in conjuction with the floral metrics (chlorophyll *a*, RPS, and LVS, as described in Rules 62-302.531 and 62-302.532, F.A.C.). This implementation is consistent with the document *Implementation of Florida's Numeric Nutrient Standards* (DEP 2013a).

Additional efforts to develop multimetric indices for periphyton (attached algae) and phytoplankton (drifting algae) that incorporate the HDG also have been attempted, but significant relationships between human disturbance and biological response in these communities have not been established. DEP has since developed and implemented an RPS method to evaluate periphyton communities and continues to use chlorophyll *a* concentrations to quantify imbalances in phytoplankton communities.

Bioassessment Data Used

IWR bioassessments used macroinvertebrate data only from ambient sites located in surface waters of the state. DEP excluded data from effluent outfall sites and monitoring sites not clearly established to collect ambient water quality data.

Site-specific habitat and physicochemical assessment (e.g., percent suitable macroinvertebrate habitat, water velocities, extent of sand or silt smothering, and width of riparian buffer zones) provides information important for identifying stressors responsible for a failed SCI score.

This information also can be extremely useful in determining biological impairment, since biological communities sometimes respond to factors other than water quality, such as habitat disruption and hydrologic disturbances. Waterbody segments adversely affected only by pollution (e.g., a lack of habitat or hydrologic disruption) but not by a pollutant (a water quality exceedance) are not placed on the Verified List.

DEP's SOPs provide definitions and specific methods for the generation and analysis of bioassessment data. Because these bioassessment procedures require specific training and expertise, the IWR also requires that persons conducting bioassessments must comply with the

QA requirements of Chapter 62-160, F.A.C., attend at least eight hours of DEP-sanctioned field training, and pass a DEP-sanctioned field audit. Meeting these requirements helps ensure samplers will follow the applicable SOPs in Chapter 62-160, F.A.C., before collecting bioassessment data used in IWR assessments.

SCI

The total SCI score is the average of 10 metric scores: total number of taxa, total number of taxa belonging to the order Ephemeroptera, total taxa of the order Trichoptera, percent filter feeders, total number of long-lived taxa, total number of clinger taxa, percent dominant taxa, percent taxa in the tribe Tanytarsini, total number of sensitive taxa, and percent very tolerant taxa (see **Table F.2** for calculations).

Table F.2. SCI metrics for the Northeast, Big Bend, Panhandle, and Peninsula regions ofFlorida

X = Raw metric value, $ln = Natural log$				
SCI Metric	Northeast	Big Bend	Panhandle West	Peninsula
Total taxa	10 * (X-15)/27	10 * (X–17)/23	10 * (X–19)/28	10* (X-15)/24
Ephemeroptera taxa	10 * X /5	10 * X /5	10 * X /8	10 * X /5
Trichoptera taxa	10 * X /8	10 * X /7	10 * (X-1) /9	10 * X /7
% filterer	10 * (X-0.7)/40.5	10 * (X-1)/53	10 * (X-2.7)/47	10 * (X-0.7)/43
Long-lived taxa	10 * X /4	10 * X /3	10 * X /5	10 * X /3
Clinger taxa	10 * X /10	10 * X /8	10 * (X-2) /10	10 * X /7
% dominant	10 - (10 * [(X-11)/48])	10 - (10 * [(X-12.5)/54])	10 - (10 * [(X-10.5)/36])	10 - (10 * [(X-14)/50])
% Tanytarsini	$10 * [\ln (X + 1)/3.2]$	$10 * [\ln (X + 1)/3.1]$	$10 * [\ln (X + 1)/3.2]$	$10 * [\ln (X + 1)/3.4]$
Sensitive taxa	10 * X /13	10 * X /10	10 * (X-2) /15	10 * X /7
% Very tolerant	10 - (10 * [ln (X + 1)/4.1])	10 - (10 * [(ln (X + 1)- 0.6)/3.6])	10 - (10 * [$\ln (X + 1)/3.3$])	10 - (10 * [(ln (X + 1)-0.7)/4.0])

BioRecon

A BioRecon data impairment rating uses the six metrics as calculated in **Table F.3** and the index thresholds in **Table F.4**.

BioRecon Metric	Northeast	Panhandle	Peninsula
Total taxa	(X–14) /23	(X–16) /33	(X-11)/25
Ephemeroptera taxa	X /3.5	X /12	X /5
Trichoptera taxa	X /6.5	X /7	X /7
Long-lived taxa	X /6	X /10	X /7
Clinger taxa	X /7	X /15.5	X /8
Sensitive taxa	X /11	X /19	X /9

Table F.3. BioRecon metrics for the Northeast, Panhandle, and Peninsula regions ofFlorida

BioRecon	Index Range
1 sample: Pass	(6–10)
1 sample: Fail	(0–6)
2 samples: Good	(7–10)
2 samples: Fair	(4–7)
2 samples: Poor	(0-4)

Delisting

V - Pow metric volue

A waterbody segment on the 303(d) list or the Verified List may be proposed for delisting when it is demonstrated that water quality criteria are currently being met. Waterbody segments also may be proposed for delisting for other reasons, including if the original listing is in error, or if a water quality exceedance is from natural causes or not caused by a pollutant.

Although the IWR has specific requirements for delisting decisions, determining the ultimate assessment category (or subcategory) (see **Appendix G**) for delisted segments is not necessarily straightforward. For example, EPA has provided guidance that a waterbody previously identified as impaired for nutrients based on chlorophyll *a* or TSI assessments can be delisted if the waterbody does not exceed the IWR threshold values or NNC (DEP 2013a). However, until sufficient site-specific information is available to demonstrate use attainment, these waterbody segments cannot be placed in Assessment Category 2 and instead are assigned to Assessment Category 3b. The required site-specific information to place the waterbody segment in Assessment Category 2 can include, but is not limited to, measures of biological response such as the SCI and macrophyte or algal surveys.

Appendix G: IWR Guidance for Delisting WBIDs for Nutrients

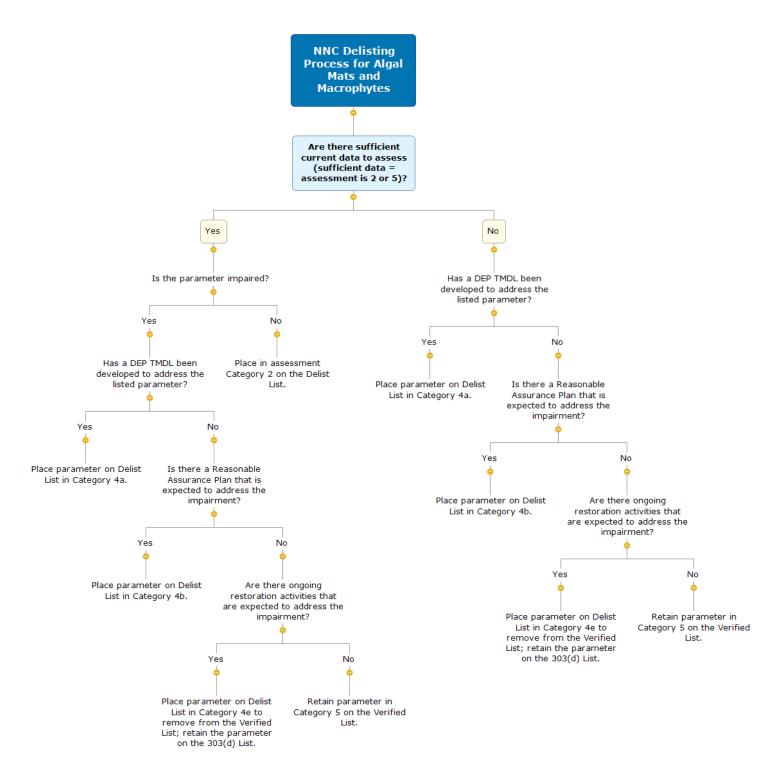
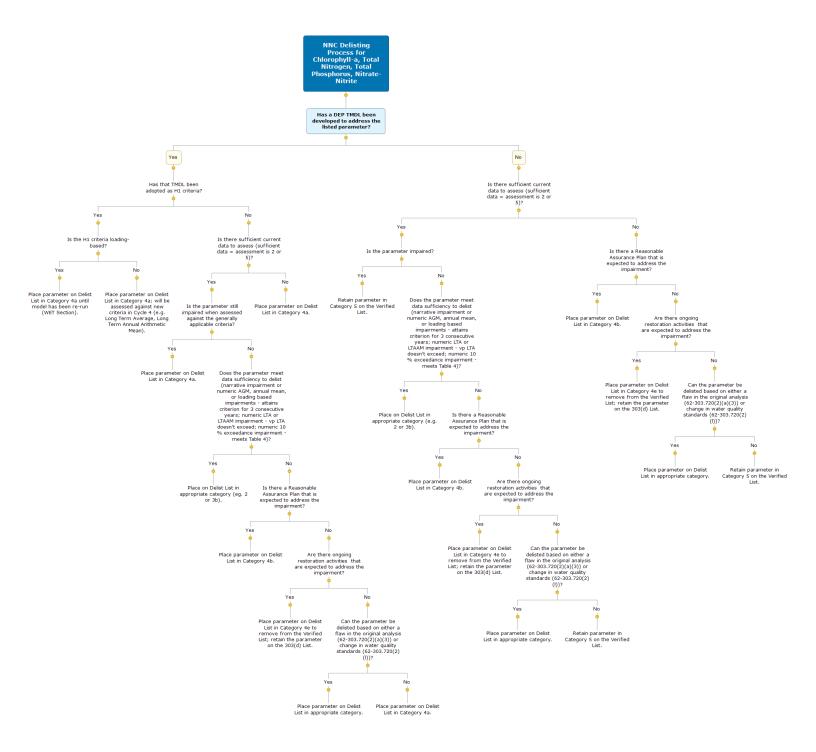



Chart G.1. NNC delisting process for algal mats and macrophytes

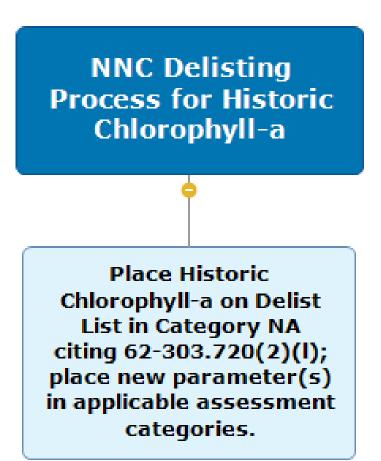


Chart G.3. NNC delisting process for historic chlorophyll *a*

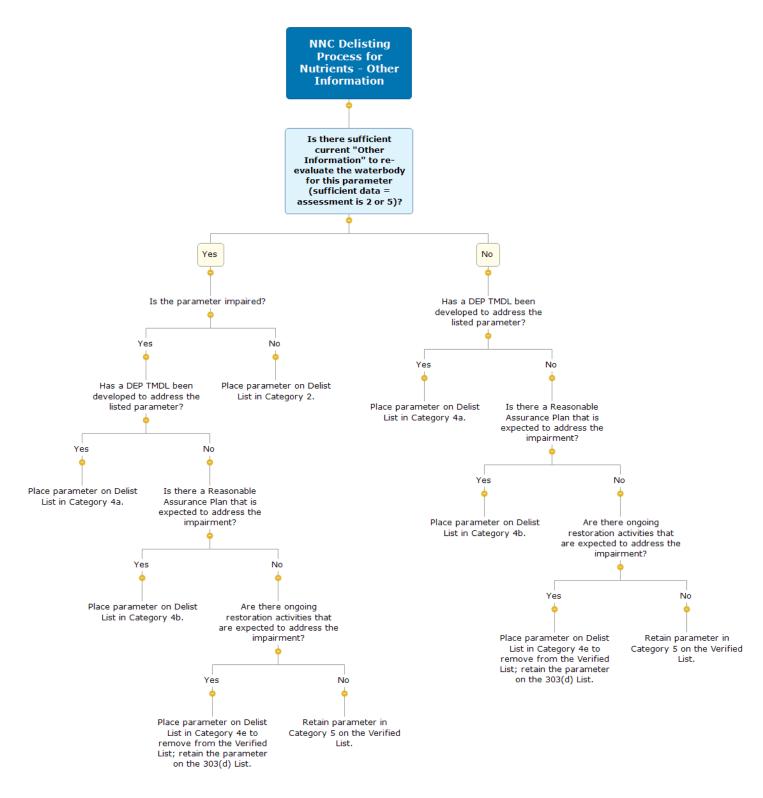
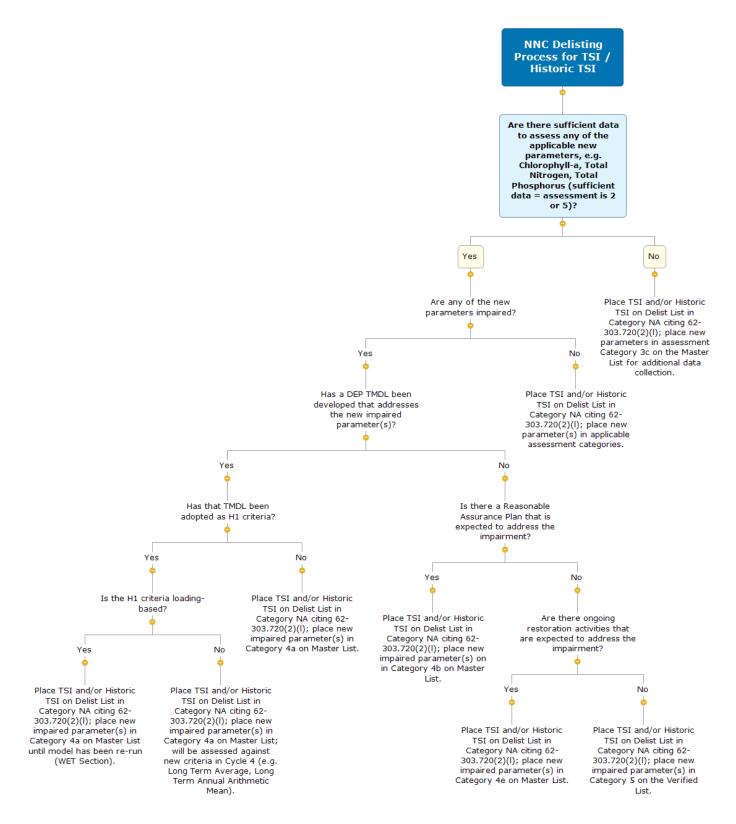
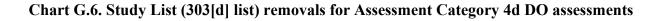
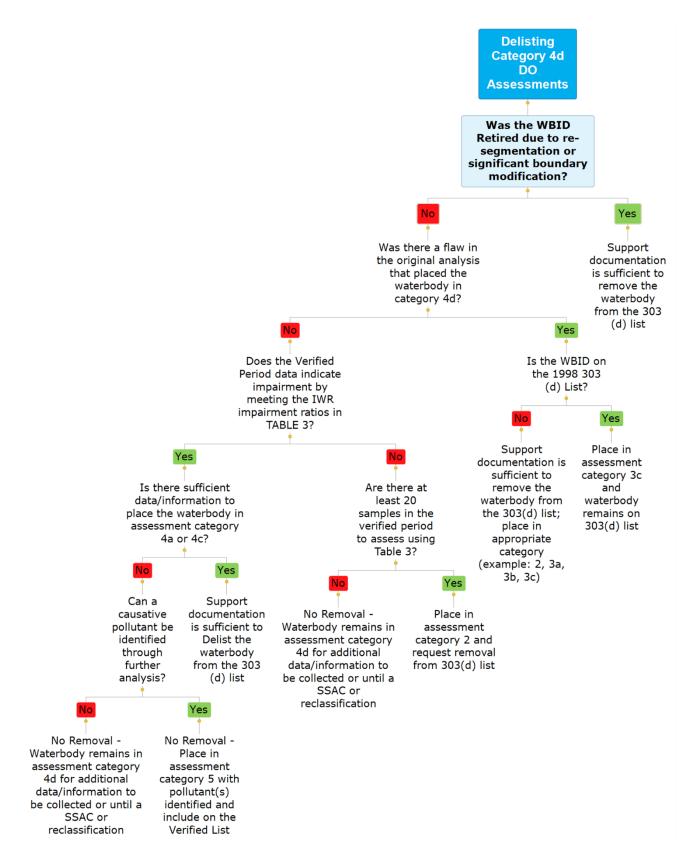





Chart G.4. NNC delisting process for nutrients-other information

Chart G.5. NNC delisting process for TSI/historic TSI

