

Summary of Child Ingestion Rate Studies

Nicole Fortenbery, Ph.D. Geosyntec Consultants

Contaminated Media Forum Meeting 16 October 2014

Exposure Factors Handbook Recommended Ingestion Rates

Table 5-1. Recommended Values for Daily Soil, Dust, and Soil + Dust Ingestion (mg/day)								
	•	Du	st ^b	Soil + Dust				
		High End						
Age Group	General Population Central Tendency c	General Population Upper Percentile ^d	Soil-Pica ^e	Geophagy ^f	General Population Central Tendency ^g	General Population Upper Percentile ^h	General Population Central Tendency ^c	General Population Upper Percentile ^h
6 weeks to ≤1 year	30				30		60	
1 to ≤6 years	50		1,000	50,000	60		100 ⁱ	
3 to ≤6 years 6 to ≤21 years	50	200	1,000	50,000	60	100	100 ⁱ	200
Adult	20 ^j			50,000	30 ^j		50	
^a Includes soil and outdoor settled dust.								
 Includes indoor settled dust only. 								
Davis and Mirick (2006); Hogan et al. (1998); Davis et al. (1990); van Wijnen et al. (1990); Calabrese and Stanek (1995)								
^d Özkavnak et al. (2011): Stanek and Calabrese (1995b): rounded to one significant figure								
ATSDR (2001); Stanek et al. (1998); Calabrese et al. (1997b; 1997a; 1991; 1989); Calabrese and Stanek (1993); Barnes								
(1990); Wong (1988); Vermeer and Frate (1979).								
^f Vermeer and Frate (1979).								
^g Hogan et al. (1998).								
^b Özkaynak et al. (2011); rounded to one significant figure.								
Total soil and dust ingestion rate is 110 mg/day; rounded to one significant figure it is 100 mg/day.								
Estimate	es of soil and dust we	ere derived fro	om the soil +	dust and assum	ung 45% soi	l and 55% d	ust.	

 \bigcirc

Study Methodologies

- 1. Tracer element-based, mass balance
- 2. Biokinetic modeling lead (Pb) study
 - Integrated Exposure Uptake Biokinetic Model (IEUBK)
- 3. Activity pattern
 - EPA's probabilistic Stochastic Human Exposure Dose Simulation (SHEDS) model
 - Macroactivity model (Ozkaynak et al.)
- 4. Survey response

Tracer Element Studies

- Six key studies conducted
- Multiple tracer elements (e.g., Al, Si, Ti, Y, Zr, Ba, Mn, V)
 - Variability depending on the tracer(s)
- Mass balance approach
- Children aged ~ 6 months to 13 years of age
- Many underlying assumptions/issues
 - Metabolism, absorption, recovery timing, ingestion from other sources, short study duration, biased population

Ingestion Rate - Implementation

How do we extrapolate from a short-term study to estimate long-term ingestions rate?

- Many studies only follow subjects for 1 to 2 weeks
- Stanek and Calabrese caution that this can overestimate long-term rates.

Number of Resamples

\bigcirc

Calabrese and Stanek, 1995 (reanalysis of four earlier studies): Best Tracer Method

- Non-soil sources of tracer elements
- BTM uses Food/Soil (F/S) tracer concentration ratios to correct for errors caused by misalignment of tracer input and outputs and ingestion of non-food/non-soil sources
- F/S ratio is the tracer concentration present in duplicate food and soil tracer concentration where children (or adults) spend their time.

Table 5-19. Distribu	tion of Aver	age (mean)	Daily Soi	il Ingestion	Estimate	es per Child	for 64	Children ^a	(mg/day)
Type of Estimate	Overall	Al	Ba	Mn	Si	Ti	V	Y	Zr
Number of Samples	64	64	33	19	63	56	52	61	62
Mean	179	122	655	1,053	139	271	112	165	23
25 th Percentile	10	10	28	35	5	8	8	0	0
50 th Percentile	45	19	65	121	32	31	47	15	15
75 th Percentile	88	73	260	319	94	93	177	47	41
90 th Percentile	186	131	470	478	206	154	340	105	87
95 th Percentile	208	254	518	17,374	224	279	398	144	117
Maximum	7,703	4,692	17,991	17,374	4,975	12,055	845	8,976	208
For each child, estimates of soil ingestion were formed on days 4-8 and the mean of these estimates was then evaluated for each child.									
The values in the column "overall" correspond to percentiles of the distribution of these means over the 64 children. When specific									
trace elements were not excluded via the relative standard deviation criteria, estimates of soil ingestion based on the specific trace									
element were formed for 108 days for each subject. The mean soil ingestion estimate was again evaluated. The distribution of these means for specific trace elements is shown.									
Source: Stanek and Calabrese (1995a).									

Source:

US EPA 2011, Exposure Factors Handbook

Ozkaynak et al. 2011 (SHEDS model)

Table II. Predicted Soil and Dust Ingestion Rates (mg/day)

Pathway	п	Mean	SD	p50	p75	р95
Dust ingestion from HM	1,000	19.80	36.54	8.39	21.29	73.74
Soil ingestion from HM	1,000	40.96	78.29	15.34	44.85	175.60
Dust ingestion from OM	1,000	6.85	14.41	2.41	7.43	27.23
Total ingestion	1,000	67.61	90.62	37.75	83.18	224.02

Note: HM is hand-to-mouth, OM is object-to-mouth.

Source: Modified from

Ozkaynak et al., 2011, Modeled Estimates of Soil and Dust Ingestion Rates for Children

Soil Ingestion Rates for Young Children. Our most recent study of soil 1. ingestion rates in young children (Stanek and Calabrese, 2000) included several improvements over our prior studies. These included: 1) a relatively large study group (64 children); 2) improved particle size measurements that focused attention on soil of smaller particle size; 3) a longer study duration (365 days); 4) the use of a relevant age group (1 to 4 year old children); 5) use of a random sample of the population for that age group; and 6) better control for input/output error. The results of this study showed a 95th percentile soil ingestion rate of 106 mg/day (when evaluated over a year), a median (50th percentile) ingestion rate of 17 mg/day, and an arithmetic average ingestion rate of 31 mg/day. Based on these results, I recommend that the most appropriate soil ingestion rates to use for chronic exposures to young children would be an upper bound rate of 100 mg/day (based on the year-long 95th percentile value from our study) and a central tendency estimate of 20 mg/day (based on the median value from our study).

Letter from Dr. Calabrese to US EPA (Region 1) providing his recommendations for an update of ingestion rates for children.

Most recent study- Wilson et al., 2013

Table 5. Calculated arithmetic mean soil ingestion rates

Age (year)	Arithmetic (mean) ± SD (p95)
1 to 5	20 ± 26 (64)
5 to 11	23 ± 32 (75)
11 to 18	1.5 ± 2.6 (5.3)

Notes:

1. SD : standard deviation

2. p95 : 95th percentile

Source: Modified from

Wilson et al., 2013, Revisiting Dust and Soil Ingestion Rates Based on Hand-to-Mouth Transfer

Ingestion Rate Alternatives

Children

Stanek et al. (2001) Soil Ingestion Distributions for Monte Carlo Risk Assessment in Children

BLUP – Best linear unbiased predictor Child (mg/d): mean=31; median = 24; 95% = 91

What ingestion rate/distribution do we use?

How to extrapolate long-term exposure?

Deterministic Method SCTLs

$SCTL = \frac{[1 \times 10^{-6}]}{[Soil Ingestion] \times [Toxicity] \times [Body Weight] \times [Constants]}$ $\frac{[120 mg/day]}{[EPA#]} = \frac{[350 days/yr]}{[30 yrs]}$

For each input a single value is selected such that the resulting risk estimate is the highest that is reasonably expected to occur (Reasonably Maximum Exposure – RME).

In deterministic risk assessment the resulting output risk is a single value typically corresponding to a upper bound risk estimate.

2,3,7,8 TCDD – Residential SCTL = 0.000007 mg/kg soil 7 ng/kg (ppt)

Probabilistic Risk Assessment

Rather than single value corresponding to conservative assumptions on exposure conditions - input assumptions are represented by a distribution of possible values.

Monte Carlo Methods: mathematically difficult or sometimes impossible to generate closed form analytical solutions

Probabilistic Risk Assessment

Back Calculation – Not Ideal for PRA

= (1.5 to 4)

2 to 3

Deterministic is easy...

But assume B and C are ranges (simulates distributions)

B x C = A
$$\longrightarrow$$
 (2 to 3) x (3 to 4) = (6 to 12)

Assume B = (2 to 3) and C = (3 to 4)

Rearrange and solve for B given A and C (above).... Expect B = (2 to 3)

$$A / C = B \longrightarrow (6 \text{ to } 12) / (3 \text{ to } 4) = (6/4 \text{ to } 12/3)$$

can work around this by iterative forward calculations

Soil and Dust Ingestion: Children Central Tendency

- Hogan et al. 1998, Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children: Empirical Comparisons with Epidemiologic Data.
 - Used to derive recommended values for infant ingestion (< 12 months).
 - Used to derive recommended values for children ingestion (1 to 21 years).

Soil and Dust Ingestion: Children High End

- Ozkaynak et al., 2011, Modeled Estimates of Soil and Dust Ingestion Rates for Children and Calabrese and Stanek, 1995, Resolving Intertracer Inconsistencies in Soil Ingestion Estimation
 - Used to derive recommended values for infant ingestion (< 12 months).
 - Used to derive recommended values for children ingestion (1 to 21 years).

Soil and Dust Ingestion: Adults

- Davis and Mirick 2006, Soil ingestion in children and adults in the same family study
 - recommended <u>central tendency</u> value for soil + dust (note: there aren't any studies on adult ingestion of dust. Value was derived assuming 45% soil and 55% dust contribution)