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Summary Recommendations 
● Combining data without scaling factors is acceptable if the water quality monitoring 

program uses a NELAC certified lab. Using a NELAC certified lab allows data to be 
combined across programs without having to account for stoichiometric corrections or 
differing lab protocols. 

● When possible, sampling from different programs should be compared directly from the 
exact same date, time, and location to test NELAC lab compatibility assumptions, but 
this is currently unavailable because complete spatio-temporal overlap between any two 
pairs of programs does not exist in any single location in South Florida. 

● Water monitoring programs should consistently report their Minimum Detection Limits 
(MDLs), and when combining data, we recommend estimating values below MDLs rather 
than simply converting data below the MDL to zero. 

● The most effective way to compare water quality data between programs is through a 
trend analysis. However, consistent sampling must occur over 10 years to estimate a 
meaningful trend. In addition to annual cycles, sampling must span multi-year 
seasonality from a variety of sources (e.g., the loop current). 

● Additional water quality monitoring programs, beyond the five most important 
programs we identified, could be merged into a synoptic master database if they 
sampled at least three nutrients, sampled more than 5-years, or maintained active 
sampling. 

● Sampling gaps occur on Florida’s Coral Reef primarily in the Marquesas and the northern 
portions of Florida’s Coral Reef. 

○ Satellite-derived chlorophyll-a could fill some of these gaps, especially via trend 
analyses and/or in deep water, as the satellite signal is contaminated by 
reflectance from the sea floor in shallow areas. 

○ While there is no satellite product that measures turbidity directly, there is a 
satellite proxy for turbidity, but this product is expressed in optical units relevant 
to color, rather than NTU, which is used for in situ measurements. The magnitude 
of satellite turbidity proxy observations is also markedly different from in situ 
measurements, so caution is advised when using these products for direct 
comparisons or to fill gaps. 

● There is substantial geographic sampling overlap on Florida’s Coral Reef for some water 
quality parameters, resulting in duplicative and inefficient sampling effort. Therefore, 
there are opportunities to distribute the same effort over larger geographic regions 
without compromising sampling integrity. 

● Accounting for inconsistent naming conventions, fields, units, and formatting between 
water quality monitoring programs takes substantial effort. 

○ Units: It would be helpful if all programs reported data in the same units. 
■ Chlorophyll-a (μg/L), turbidity (NTU), total nitrogen (mg/L) and total 

phosphorus (mg/L) are already in the same units across all programs. 
■ Nitrate+nitrite, phosphate, ammonium and silicate are reported in mg/L 

by some and μM by others. 
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○ Datasheet: It would be helpful if all programs reported data in the same format 
with one common datasheet template. 

○ Station Names: It would be helpful if all programs reviewed their station names 
to ensure that all unique stations have uniform names throughout the dataset; 
Spacing, hyphens, dashes, and underscores should match for all entries at the 
same station to ensure no ‘duplicate’ stations. 

Relevant Programs 
93 water quality monitoring programs in Florida were filtered against five criteria (Figure 1): 

1) Sampled within South Florida; 
2) Sampled at least four water quality parameters of interest (i.e., Chlorophyll-a, temperature, 
salinity,  nitrate+nitrite (NOx), soluble reactive phosphorus (PO4), silica (Si), turbidity, total 
nitrogen (TN), and  total phosphorus (TP)); 
3) Contains unique sampling data (i.e., not a derivative dataset from another program, or 
uploaded to multiple portals); 
4) Is still actively sampling; 
5) Has at least five years of data. 

Five of the 93 programs met all of these criteria (NOAA AOML-Walton Smith South Florida 
ecosystem restoration cruises (AOML-Walton Smith), the Southeast Environmental Research 
Center water quality monitoring network (SERC), Miami-Dade County's Department of 
Environmental Resources Management (DERM); the Broward County water quality monitoring 
program (Broward County), and DEP’s coral ecosystem conservation area water quality 
assessment program (DEP-ECA)). The complete matrix comparing water quality programs can be 
found here. 

https://docs.google.com/spreadsheets/d/1jo1z5mgV7d_kTF4FEFdM0rjiMiFzzHzO/edit?usp=sharing&ouid=109140902999666340161&rtpof=true&sd=true
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Figure 1. Sankey chart of water quality monitoring programs relevant to South Florida. Five 
programs met all criteria considered. 

Gap Analysis and Geostatistical Findings 

The merged programs were analyzed to determine if there were systematic differences in 

spatio-temporal trends, develop scaling factors to combine data if needed, and identify gaps in 

sampling. The time series length for each program varies, therefore we examined the trends of 

each analyte via a seasonal Mann-Kendall test following the methods in Millette et al. 2019, 

which estimates the Theil-Sen slope as the rate of change in a parameter. The Theil-Sen slope, 

or rate of change, was used to compare the trends of each parameter of interest across all 

programs. 

The initial comparison of programs was a qualitative examination of spatial trends shown by 

Theil-Sen slopes in areas of overlap. Theil-Sen slopes were related in areas with high spatial 

overlap, such as in Biscayne Bay. Therefore, there were no spatial patterns that appeared to 

yield systematic differences between programs. Rather, divergent rates of change between 

programs manifested as geographic distance and/or proximity to shore increased. 

The qualitative examination was further supported with the quantitative construction of 

semivariograms for each parameter across the merged dataset. Semivariograms are 

geostatistical tests that estimate how related samples are depending on the euclidean distance 

that separates them. Typically, samples closer to each other are more related than samples 

further apart. Semivariograms are used to model this relationship, and determine the distance, 

called “range”,  at which information from one sample does not provide significant information 

on the value of another sample. Taking into account this spatial structure can be used to 

identify if and how samples are highly related (i.e., observe the same process and produce 

duplicative observations), and potentially allow sampling effort to be combined without 
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compromising observations.  For most of the merged parameters, semivariograms 

demonstrated that sampling could be combined when sampling occurs within specific distances. 

Specifically, semivariograms demonstrated variation in the distances at which parameters can 

be combined, with distances as low as 1.7 km for total phosphorus (TP) and as high as 7.6 km 

for ammonia (NH4). Total nitrogen (TN) and silicates (Si) semivariograms did not support 

merging nearby points at any distance, which is likely due to the presence of more complex 

inshore-offshore trends. TN is largely improving at inland sampling sites, mostly in the southern 

Everglades and in Broward County, while remaining mostly unchanged offshore. Silicates are not 

changing across most of Florida’s Coral Reef but worsening in southwest Florida. The use of 

semivariograms to combine TN and Si sampling locations could be improved by splitting the 

inland from the inshore and offshore locations. 

Sampling gaps varied by parameter due to differences in geographic relatedness, as determined 

by semivariograms, and the number of programs sampling that parameter. Chlorophyll-a was 

sampled by five important water quality monitoring programs and semivariograms indicated 

sampling locations could be combined at distances up to  6 km, which results in few sampling 

gaps across Florida’s Coral Reef. Chlorophyll-a sampling is well suited for redistributing sampling 

effort, especially in areas with high programmatic overlap like Biscayne Bay. Conversely, TP has 

the smallest geographic range for potential combinations and is sampled by only three 

programs, resulting in gaps in the northern DEP-ECA and southwest Florida. A few sites in 

Biscayne Bay can be combined for sampling TP; however, separating inland sites from inshore 

and offshore locations may broaden the geographic sampling range and allow for the 

combination of additional sites. 

Semivariograms can be used to compute the autocorrelation between samples based on the 

distance separating sites, or by also considering the relative spatial orientation between each 

pair of points (e.g. North/South vs West/East). If the only factor affecting autocorrelation is 

distance, the underlying spatial data are isotropic. However, if the relationship between samples 

also depends on the relative direction between sites, we need to account for anisotropy in the 

dataset and appropriately describe the underlying spatial structure in the data (Figure 2). Doing 

so provides further valuable information for subsequent interpolation methods. Using a 

non-parametric approximation for the 95 percent confidence interval for the estimated 

anisotropy ratio parameter (Chorti & Hristopulos, 2008 ; Petrakis & Hristopulos, 2017), we 

detected potential anisotropy in the merged datasets for chlorophyll-a, ammonium, total 

nitrogen, and total phosphorus. This can indicate large-scale underlying trends due to systemic 

structures, dynamics, and processes. Total phosphorus shows that decay in sample similitude 

(as indicated by higher semivariance) increases more quickly along the WNW/ESE axis, 

indicating anisotropy in the data. However,  when looking at each dataset separately, not all 

https://docs.google.com/spreadsheets/d/1ckyNPlAZUJ0vpqpOZBv-XfgI9z78EmHR/edit?usp=sharing&ouid=109819773201021974240&rtpof=true&sd=true
https://drive.google.com/file/d/1f59MravYbVLIe2GIXt9rdXgMP_Ye74kX/view?usp=sharing
https://drive.google.com/file/d/1f59MravYbVLIe2GIXt9rdXgMP_Ye74kX/view?usp=sharing
https://drive.google.com/file/d/1h9-KWAEXG635Ejro9q55So-EgSt46s6s/view?usp=sharing
https://drive.google.com/file/d/1h9-KWAEXG635Ejro9q55So-EgSt46s6s/view?usp=sharing
https://drive.google.com/file/d/1qY-Cq0f0vQXKKbn-xUl5A5T0nEHn9wBC/view?usp=sharing
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programs were able to detect (or presented) this anisotropic structure, indicating that this 

phenomenon might also be driven by local environmental and geographic conditions, or that 

the spatial sampling of some program could not account for this aspect of water quality 

variation. 

Figure 2. Variogram maps for anisotropic Total Phosphorus (left) and isotropic Silica (right) for 
merged datasets. 

The results from semivariograms can be used to complement point pattern water quality data 

because semivariograms are the basis for interpolating point pattern data into a continuous 

prediction (i.e., a raster representation of water quality). We produced kriging surface 

predictions for all water quality metrics, both for the merged dataset (Figures 3, 4), and each 

individual program. These maps can be used to estimate the value of a parameter of interest 

between sampled locations, estimate error due to sampling gaps, and to identify areas of 

concern or unusual local conditions. 

https://drive.google.com/drive/folders/1Ts4y5I9wxgcyl4iTI3UGKgA9hiIjL59M?usp=sharing
https://drive.google.com/drive/folders/1JaJz8Mv_SnZV28LsC-b6iqQtpOmh9F3g?usp=sharing
https://drive.google.com/drive/folders/1JaJz8Mv_SnZV28LsC-b6iqQtpOmh9F3g?usp=sharing
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Figure 3. Kriging predictions (left) and associated standard deviation (right) for Silica merged 

dataset. 

Figure 4. Kriging predictions (left) and associated standard deviation (right) for Turbidity merged 

dataset. 

In addition to estimates of a water quality parameter value in an unsampled area, kriging 

interpolation also produces estimates of the standard deviation. Spatially explicit standard 

deviation estimates highlight regions that might benefit from increased sampling intensity. Error 

associated with interpolation, and sampling effort by proxy, is greatest in the Marquesas, the 

https://drive.google.com/drive/folders/1rjYILetF1-hWxl3NCS1r8JMZzSzilsCI?usp=sharing
https://drive.google.com/drive/folders/1rjYILetF1-hWxl3NCS1r8JMZzSzilsCI?usp=sharing
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Dry Tortugas, and the northern reaches of Florida’s Coral Reef across all water quality 

parameters. 

Scaling Factors 

Five of the most important water quality monitoring programs we identified did not require any 

scaling factors to be merged together. Each of the monitoring programs used analysis methods 

approved by the Environmental Protection Agency (EPA) and the labs are all National 

Environmental Laboratory Accreditation Conference (NELAC) certified. Thus, the results of each 

parameter should be directly comparable and can be merged without major issues. 

The assumption that water quality monitoring programs do not require scaling due to NELAC 

certification was tested between the Walton Smith and SERC datasets, which overlap regionally. 

Ten sampling sites from each program located within 1 km of one another, and had sampling 

periods that overlapped in month and year, were paired together. The time series for the 

spatially and temporally overlapping sites were compared to test if different methods for the 

analysis of all four parameters sampled by both programs (NOX, NH4, PO4, and chlorophyll-a) 

resulted in systematic differences in results. There were no patterns evident to show that either 

monitoring program was consistently reporting values on a different scale or consistently higher 

lower value, and thus no scaling factors were identified as necessary (Figure 5). However, the 

spatial range of these sites, up to 1 km apart, and the broad temporal overlap is a concern. 

Specifically, sampling dates were aligned by the same month, but analytes can vary daily and 

hourly with changing tides. When possible, sampling from different programs should be 

compared directly from the exact same date, time, and location to test NELAC lab compatibility 

assumptions, but this is currently unavailable because complete spatio-temporal overlap 

between any two pairs of programs does not exist in any single location in South Florida. 

Program specific interpolation methods such as kriging or spatial interpolation by Inverse Path 

Distance Weighting (Little et al., 1997 ; Stachelek & Madden, 2015) could allow an assessment 

of the correlation between water quality parameter estimates in overlapping areas and make 

adjustments to appropriately scale predictions from each program while accounting for the 

spatial structure underlying each dataset. This could be used to merge estimates and 

predictions from different datasets as well. 
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Figure 5. Chlorophyll-a as measured across geographically similar sites between the AOML 

Walton Smith Cruises (solid lines) and SERC (dotted lines) within the same time period. 

Comparisons between NOX, NH4, and PO4 exhibited similar relationships. 

Minimum Detection Limits 

The use of different protocols by monitoring programs, while potentially comparable, results in 

variation in the minimum detection limits (MDL), or the value below which an analyte cannot be 

meaningfully measured. Discussions with potential future users of the merged water quality 

dataset highlighted the importance of handling values below the MDLs. The values below the 

MDL for each parameter of interest in the merged dataset were estimated using the method 

described in Flynn et al. 2010. In this approach, the underlying distribution of values above the 

detection limit is used to estimate the values below the MDL by minimizing a chi-squared 

statistic. The Flynn method was applied to the merged data using R code provided by Gareth 

Williams and Brian Walker. Each water quality protocol has a different MDL, thus applying the 

Flynn method across the full dataset required the use of a mean MDL, which likely resulted in 

some values above the detection limit being estimated and some below being left as-is. To 

avoid this issue, each monitoring program should be encouraged to report MDLs for each 

https://docs.google.com/spreadsheets/d/1d8yq3n9eWwDZ_BHiY85WeZltrachQZ1d/edit?usp=sharing&ouid=115683098167867334457&rtpof=true&sd=true
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analyte and for each analysis protocol. The Flynn method then can be applied within each 

program and protocol to more accurately estimate values below MDL. 

Comparisons between in situ Data and Satellite Products 
Direct comparisons between satellite and in situ observations of water quality parameters are 
not straightforward. The satellite signal is contaminated by bottom reflectance in shallow 
waters, resulting in satellite observations which are higher than in situ observations because of 
bottom contamination. Another way to compare satellite and in situ water quality 
measurements is looking at change over time in a Theil-Sen slope analysis. However, the way 
Theil-Sen slopes are calculated for satellite and in situ observations is different and introduces a 
temporal mismatch. Satellite data represent an average over a month, while in situ 
measurements are at a single point in time. For example, a single in situ measurement at a point 
in time may capture an event that is averaged out in the satellite data over the month when the 
in situ data point was measured. It is also important to note that Theil-Sen slopes are highly 
dependent on the time period used for analysis, so matching the time periods will improve 
matchups between satellite and in situ slopes. 

To assess trends over time and compare with in situ observations, seasonal Mann-Kendall tests 
and Theil-Sen estimated slopes were calculated based on monthly chlorophyll-a composite 
images covering the entire West Florida Shelf, using Moderate Resolution Imaging 
Spectroradiometer-Aqua (MODIS) data from 1/1/2003-12/31/2021. Satellite-derived Theil-Sen 
slopes were calculated for two products: Chlorophyll-a and remote sensing reflectance at 667 
nm (Rrs667), which is a proxy for turbidity. The images in Figures 6 - 9 show chlorophyll-a 
Theil-Sen slopes for four datasets (AOML-Walton Smith, DEP-ECA, DERM and SERC). Broward 
County sampling is carried out in canals and in areas very close to shore where satellite 
observations are not possible. Filled circles overlaid on the satellite image indicate Theil-Sen 
slopes based on in situ measurements made by NOAA’S Atlantic Oceanographic and 
Meteorological Laboratory (AOML). The color scales are equivalent for the image and for the 
circle fill color. Red colors indicate positive change over time and blue colors negative. The units 
are mg/m3/year. There is reasonable agreement between satellite and in situ Theil-Sen slopes 
for chlorophyll-a in Biscayne Bay where negative slopes are seen in each. There is also 
agreement along the southwest coast of Florida from the mouth of the Shark River north to 
around Marco Island where mostly positive slopes are observed. Along Florida’s Coral Reef, 
slopes have generally low magnitudes in both satellite and in situ data. 

For turbidity or nutrients, there are no satellite products that allow direct comparison with in 
situ data. There is a satellite proxy for turbidity, but the units do not match in situ turbidity and 
the magnitudes of the two measurements are markedly different. These two parameters are 
shown side by side in Figures 10 and 11 with different color scaling to best show the Theil-Sen 
slopes from the two in situ datasets that include turbidity (DEP-ECA and SERC). For the satellite 
turbidity proxy, the slopes are generally negative throughout the study area (mean slope = -5.9 x 
10^-7) except for a small area south of Cape Sable and a couple of small areas in Biscayne Bay. 
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This trend is also reflected in the in situ mean Theil-Sen slopes which are negative in both 
datasets (-0.0173 for SERC and -0.063 for DEP-ECA). Images from figures 6 - 11 can be found 
here. 

In terms of satellite products which are best used for Theil-Sen slope comparisons between 
satellite and in situ measurements, chlorophyll-a is the best for direct comparison, as the units 
and magnitudes match for the two measurements. Turbidity is not as straightforward, but can 
be accomplished by scaling values when comparing slopes from satellite and in situ datasets. 
We recommend that comparisons with satellite and in situ data focus on Chlorophyll-a and that 
the time periods used to calculate Theil-Sen slopes be matched. 

Figure 6. Chlorophyll-a Theil-Sen slope image based on in situ data from all five of the selected 
water quality programs. Data from 1989-2021 was used to create the image. Red circles indicate 
an increasing trend in chlorophyll-a concentrations over time, while blue circles indicate a 
decreasing trend over time. Maps depicting Theil-Sen slopes of other parameters of interest can 
be found here. 

https://drive.google.com/drive/folders/1YIY4QnSL1Ny01BjgoNP6yeEVzZbXH5mO?usp=sharing
https://drive.google.com/file/d/1Z_RxiBkyzQSqgVRo_GitfCGpZYW6BM0K/view?usp=sharing
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Figure 7. Chlorophyll-a Theil-Sen slope image based on monthly MODIS satellite data 
(2003-2021). Filled circles indicate locations where in situ chlorophyll-a was measured by NOAA 
AOML. The circle fill color is based on the same color scale as the satellite image. Units are 
mg/m3/year. 

Figure 8. Chlorophyll-a Theil-Sen slope image based on monthly MODIS satellite data 
(2003-2021). Filled circles indicate locations where in situ chlorophyll-a was measured by the 
DERM. The circle fill color is based on the same color scale as the satellite image. Units are 
mg/m3/year. 
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Figure 9. Chlorophyll-a Theil-Sen slope image based on monthly MODIS satellite data 
(2003-2021). Filled circles indicate locations where in situ chlorophyll-a was measured by SERC. 
The circle fill color is based on the same color scale as the satellite image. Units are mg/m3/year. 
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Figure 10. Top: Theil-Sen slopes calculated using monthly Rrs667 (a satellite proxy for turbidity) 
from MODIS satellite data (2003-2021). Units are sr-1/year. Bottom: Filled circles indicate 
locations where in situ turbidity was measured by SERC. The circle fill color is based on the in 
situ data and is indicated by the bottom color bar. Units are NTU/year. 
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Figure 11. Left: Filled circles indicate locations where in situ turbidity was measured by 
DEP-ECA. The circle fill color is based on the in situ data and is indicated by the color bar at left. 
Units are NTU/year. Right: Theil-Sen slopes calculated using monthly Rrs667 (a satellite proxy 
for turbidity) from MODIS satellite data (2003-2021). Units are sr-1/year. 
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Contact List for Data Providers 

● AOML-Walton Smith: NOAA AOML South Florida Ecosystem Restoration Cruise Data 
o Alexandra Fine (alexandra.fine@noaa.gov) 
o Ian Smith (ian.smith@noaa.gov) 

● SERC: Florida International University South Florida Estuaries Water Quality Data 
o Dr. Yan Ding (yding@fiu.edu) 
o Dr. Henry Briceno (bricenoh@fiu.edu) 

● DERM: Water Quality Monitoring Program 
o Omar Abdelrahman (omar.abdelrahman@miamidade.gov) 
o Yin Chen (yin.chen@miamidade.gov) 

● Broward County: Water Quality Monitoring Program 
o Broward County Environmental Lab (Resilience@broward.org) 
o Lindsey Visser (lvisser@broward.org) 

● DEP-ECA: Coral Ecosystem Conservation Area Water Quality Assessment 
o Alycia Shatters (alycia.shatters@dep.state.fl.us) 

Selected Meetings, Presentations, and Materials 

● October 18, 2021. SEACAR/DEP Water Quality Project Collaboration Meeting. 

● November 4, 2021. “Decision Support Tools for Southeast Florida”, Southeast Florida 

Coral Reef Initiative Technical Advisory Committee Meeting. 

● January 11, 2022. “Water Quality Programs Associated with Florida’s Coral Reef”, 

Department of Environmental Protection. Slides provided to Nick Parr. 

● March 25, 2022. “Florida’s Coral Reef Water Quality Data Year 2”, Department of 

Environmental Protection. 
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