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Management Summary 
The rapid spread of SCTLD throughout Florida’s Coral Reef has hampered efforts to 

identify the causative pathogen, due in part to the difficulty of finding disease-susceptible 
corals with no prior disease exposure. This project leveraged integrative multi-omic and 
histological analyses to characterize SCTLD pathogenesis and coral immunity in four 
species of coral collected from Dry Tortugas National Park before and after the arrival of 
SCTLD. Histopathology of samples from this study showed consistent patterns to other 
histological analyses of SCTLD, although healthy samples from the Dry Tortugas 
exhibited an unusual amount of exocytosis. Initial analyses of coral microbial function and 
taxonomy based on shotgun sequencing data suggest that while microbial communities of 
corals naïve to SCTLD in Dry Tortugas National Park may differ from other corals sampled 
in the Florida Keys, microbial community function and composition of diseased samples 
from this study were similar to samples that have been previously sequenced. We found 
that diseased coral samples across coral species harbored viruses hypothesized to interact 
with the algal symbiont and viruses (including herpesvirus) that may influence host 
immunity capacity against other infections. Immune function in samples of healthy coral 
varied by species and patterns of change in function followed observed patterns of disease 
prevalence by month. Continued analyses supported by Florida DEP will focus on the 
development of robust, integrative analytical approaches to leverage the true power of this 
data set. 

Executive Summary 
The rapid spread of SCTLD throughout Florida’s Coral Reef has had devastating impacts 
on these essential coastal ecosystems. This rapid spread has hampered efforts to study 
many aspects of disease biology, including investigation of causative agents and factors 
which contribute to host resilience. Characterization of these traits is essential to creation 
of improve management strategies for Florida’s Coral Reefs, but depends on availability 
of samples from disease-susceptible corals with no prior disease exposure. This project 
leveraged unique samples from Dry Tortugas National Park (DRTO) samples before and 
during SCTLD arrival to investigate numerous aspects of SCTLD biology. By combining 
integrative ‘omic and histological analyses of corals sampled through time we provide 
novel insight regarding the patterns underlying SCTLD outbreaks across multiple species 
of corals. Histological analyses of samples confirmed signatures of disease consistent with 
previous analysis of SCTLD corals, including vacuolization of symbionts. Similarly, while 
microbial communities of DRTO corals pre-disease were unique compared to other Florida 
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Keys samples, signatures of disease progression in the microbial communities were highly 
similar to those previously sequenced. Notably, while corals from DRTO had high levels 
of beneficial microbes, including Endozoicomonas, presence of these bacteria failed to 
protect against disease onset, and populations of these beneficial microbes declined 
through disease onset. This suggests intervention to maintain beneficial microbial 
communities, through methods such as probiotic treatment, may be necessary to maintain 
these communities and prevent disease. Viral community analyses similarly identified 
patterns consistent with previous studies of SCTLD. Viruses associated with 
Symbiodiniaceae were present in both healthy and diseased samples, pointing to a role of 
opportunistic pathogens in SCTLD. Viruses with potential impacts on coral immunity were 
also documented, further implicating roles of opportunistic associations in SCTLD. 
Finally, transcriptomic analyses revealed notable patterns of changes in host coral 
immunity across disease progression in three out of the four studied species. Notably, all 
three of these species were characterized by decreases in expression of key immune genes 
over time in healthy and apparently healthy coral tissue. These patterns of immune decline 
corresponded with peak disease onset in each species, suggesting a biological rather than 
environmental driver. Combined, our analyses to date suggest that even remote, previously 
healthy corals can succumb to SCTLD, and emphasize the need for proactive and 
comprehensive management approaches. Ongoing analyses of these data, supported by a 
2024-2025 FDEP contract, will incorporate integrative approaches to generate important 
biological insight which will guide the development of improved management approaches 
necessary for the protection of theses reefs. 
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1. BACKGROUND 
1.1. Introduction 

Florida’s Coral Reef is currently experiencing a multi-year disease-related 
mortality event that has resulted in massive die-offs in multiple coral species. This die 
off event has been attributed to the spread of a novel coral disease, stony coral tissue 
loss disease (SCTLD). Approximately 21 species of coral, including both Endangered 
Species Act-listed and primary reef-building species, have displayed tissue loss lesions 
which often result in whole colony mortality. First observed near Virginia Key in late 
2014, the disease has since spread to the northernmost extent of Florida’s Coral Reef, 
and southwest past the Marquesas in the Lower Florida Keys. The best available 
information indicates that the disease outbreak is continuing to spread west and 
throughout the Caribbean. 

The rapid spread of SCTLD throughout Florida’s Coral Reef has hampered efforts 
to identify the causative pathogen, due in part to the difficulty of finding disease-
susceptible corals with no prior disease exposure. Comparative assessments of 
pathogen abundances in “healthy” vs diseased corals may be confounded by the 
presence of latent, asymptomatic infection in healthy controls. Many bacterial taxa 
found in diseased corals (incl. Rhizobiales and Rhodobacterales) have also been 
identified in considerable abundance in apparently healthy conspecifics. Temporal 
analyses of colonies from pre-exposure to necrosis may help reduce background 
variation of coral-associated bacterial and viral communities and in coral immune 
function. Repeated sampling of colonies previously naïve to SCTLD not only provides 
a better baseline to assess microbiome composition of healthy corals, but also 
eliminates the potential for inter-colony variation in microbial composition that may 
have inhibited prior discovery of the causative agent. Furthermore, temporal 
approaches allow for improved investigation of mechanisms of coral response to 
SCTLD, including those which may confer disease resistance. 
1.2. Project Goals and Tasks 

This project leveraged integrative multi-omic and histological analyses to 
characterize samples of four species of coral collected from Dry Tortugas National Park 
before and after the arrival of SCTLD. This included samples of SCTLD-naïve, 
SCTLD-exposed but apparently healthy, and diseased coral health states. This 
integrative approach will provide insight regarding the etiological agent of SCTLD, 
and help identify important mechanisms of coral response and resilience to SCTLD. 
The outcomes of this project will be incorporated into an on-going coral disease 
response effort for Florida’s Coral Reef. 

2. METHODS 
2.1. Metagenomic Analyses 

Coral samples stored in DNA/RNA shield were homogenized using MP 
Biomedicals Lysis Matrix A, and a portion of this homogenate was then used for DNA 
extraction using the Omega E.Z.N.A.® DNA/RNA Isolation Kit, following the 
manufacturer's protocol. Quality & quantity were assessed using a NanoDrop 
spectrophotometer. Extracted DNA from the samples was then submitted to Genohub 
in November of 2023. At Genohub, final quality control was performed using qPCR 
and via Agilent Tapestation. Whole-genome sequencing was then performed to a 
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minimum depth of 50 million 150bp PE reads per sample on one lane of a NovaSeq 
X Plus (10B). Raw sequencing products were submitted to the NCBI Sequence Read 
Archive (SRA) as project numbers SUB14296846 and SUB14297148. 

Quality control and adapter removal was performed using fastp (v. 0.22.0, (Chen 
et al., 2018)) with an average allowable phred score of 25, minimum length of 50bp, 
a complexity threshold of 30%, and with reads with greater than two Ns (ambiguous 
base calls) discarded. Base correction was enabled in overlap regions and any tails 
containining polyG or polyX sequences were trimmed. On average, 13.13% of reads 
were lost with quality control per sample. The maximum number of reads per sample 
after filtration was 241,998,208 reads and the minimum was 47,370,064. Error 
correction was performed on all reads using the SPAdes error correction module (Nurk 
et al., 2017) using a k-mer size of 21, with coverage threshold calculation enabled and 
with mismatch correction enabled. 

Host and symbiont reads were removed using bowtie2 (v. 2.4.2). Bowtie2 
alignment was performed to the available genomes for Montastraea cavernosa 
(https://www.bco-dmo.org/dataset/875253), Orbicella faveolata 
(GCA_002042975.1), Durusdinium trenchii (GCA_963969995.1), Breviolum 
minutum (GCA_000507305.1), Cladocopium goreaui (GCA_947184155.1), and 
Symbiodinium fitti (GCA_003297005.1). Local alignments were performed and reads 
that failed to align concordantly to reference genomes (i.e., reads that did not match 
to symbiont or host genomes) were retained. We also utilized the draft transcriptome 
of Colpophyllia natans produced by RNAseq analysis (see “Transcriptomic Analyses” 
below) to produce a rough DNA reference library for this species and aligned samples 
of Colpophyllia natans to this draft. 

After host/symbiont filtration, functional characterization of samples was 
performed using HUMAnN3 (v3.8, (Beghini et al., 2021) to profile genes, pathways, 
and modules from initial assemblies. Reads were annotated via MetaPhlAn4 (v 4.1.1, 
Blanco-Miguez et al., 2023) by aligning to both the ChocoPhlAn DNA database and 
the UniRef50 protein database. Outputs of this analysis included gene family 
abundance files (the presence of groups of evolutionarily-related protein coding 
sequences) and pathway abundance files (a measure of pathway completion of a 
function of abundance of the pathway’s component reactions). Pathway abundance 
tables were then joined into a single file using humann_join_tables and renormalized 
to copies per million (CPM) using humann_renorm_table. Pathways from 
HUMAnN3, counts, and sample metadata were normalized as relative abundance, 
imported into RStudio (v.2022.12.0+353) with R (v.4.2.2), and plotted using ggplot2. 
Taxonomic characterization of each sample (unbinned) was performed using 
MetaPhlAn4 (v 4.1.1,(Blanco-Miguez et al., 2023) using the ChocoPhlAn DNA 
database. To determine taxonomic groups that were statistically differentially 
abundant between disease status types, the R package corncob (Martin et al., 2020) as 
used. 

Reads were also used to produce metagenome-assembled genomes (MAGs) 
by assembling de novo using three parallel methods: MEGAHIT (v.1.2.9, Li et al., 
2016), metaSPAdes (v.3.13.1, (Nurk et al., 2017), and MetaVelvet (v1.1.01, Namiki 
et al., 2012). MEGAHIT and MetaVelvet were performed using presets for large 
metagenomes. MetaSPAdes assembly was performed within the metawrap wrapper 

https://www.bco-dmo.org/dataset/875253
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using default parameters. Initial assemblies were concatenated by sample and then 
binned using MaxBin (v. 2.2.7, Wu et al., 2016) to cluster metagenomic contigs into 
different bins, each consisting of contigs from one microbial species. Quality of these 
initial bins was then assessed using CheckM (v. 1.2.2, Parks et al., 2015), which uses 
single-copy marker gene sequences to evaluate the completeness and contamination 
of a genome. CheckM was also used to assess taxonomy using the marker lineage 
workflow. At this stage, completion is low, which is to be expected due the large 
amount of bacterial diversity observed in these samples from initial analysis via the 
16S rRNA marker gene. Assemblies will be refined by combining taxonomically 
congruent bins across samples. 

2.2. Viral Community Analyses 
Virus community analyses were performed on previously quality-controlled DNA 

and RNA sequencing reads (see sections 2.1 and 2.3). To reduce the computational 
burden of downstream analyses, all cleaned libraries were normalized using the 
program bbnorm.sh from the BBMap toolkit (https://sourceforge.net/projects/bbmap/). 
Because the field of coral reef virology is still in its infancy (Thurber et al., 2017), there 
is no available coral reef virus databases adequate for virus read alignment. Thus, the 
first step in the virus community analysis was “raw” assembly of each cleaned DNA 
and RNA sequencing libraries with SPAdes (v.3.15.5, Nurk et al., 2017) using the “--
meta” and “--rnaviral” options, respectively. 

Virus-like sequences were detected in the DNA assembly files using the program 
geNomad (v1.8.0, Camargo et al., 2023). Each sequence classified as virus-like by 
geNomad was then extracted from their original assembly file and concatenated into a 
single fasta file. The single fasta file containing all virus-like sequences from the 
metagenome assemblies was then used as input for binning collapsing with vRhyme 
(v1.1.0, Kieft et al., 2022) to construct virus metagenome-assembled genomes 
(vMAGS). Sequences that were not included in bins were then extracted from the 
vRhyme input fasta file and combined with the final vMAGs producing a final fasta 
file containing all likely virus sequences from DNA sequencing libraries. Quality and 
completeness of all virus vMAGs and unbinned sequences (both of which representing 
either genome-fragments or whole genomes) using the program CheckV (v1.0.1, 
Nayfach et al., 2021). Taxonomic classification for the final set of virus-like sequences 
was generated using the program geNomad (v1.8.0). Metadata information was for 
each sequence was extracted from CheckV and geNomad output files to produce a final 
sequence metadata file containing information such as sequence length, quality, 
completeness and predicted taxonomic classification. A read counts matrix with all 
samples was produced by mapping non-normalized, cleaned reads from each DNA 
sequencing library to the final fasta file containing virus-like sequences with the 
programs minimap2 (v2.28, Li, 2021) and SAMtools (v1.20, Danecek et al., 2021)). 

Virus-like contigs were first identified within each individual RNA sequencing 
library using the program Deep6 (Finke et al., 2023). Any sequence predicted to be 
viral with a group score greater than or equal to 0.7 was then extracted and sequences 
were pooled into a single fasta file. Next, short (<500 bp), misassembled, and redundant 
contigs were removed from the fasta file containing all Deep6-predicted virus 
sequences and a non-redundant assembly file was produced using the program 

https://sourceforge.net/projects/bbmap
https://bbnorm.sh
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EvidentialGene tr2aacds pipeline v2019.05.14 Gilbert, 2019). A second round of 
Deep6 virus sequence prediction was then performed on the non-redundant virus-like 
contig fasta file to retain only the most probable virus-like sequences. The final non-
redundant virus-like contig fasta file was then assessed with geNomad (v1.8.0) to 
obtain putative taxonomy of sequences. Next, quality and completeness of the virus-
like sequences were checked using the program CheckV (v1.0.1). Metadata for each 
sequence was then extracted from Deep6, geNomad, and CheckV output files to 
produce a final sequence metadata file containing identical types of information within 
the DNA sequence metadata file. A read counts matrix with all samples was generated 
by mapping cleaned, normalized reads against the final non-redundant virus-like contig 
file using the program kallisto (v0.50.1, (Bray et al., 2016). 

The sequence classification results, expression counts, and sample metadata were 
imported into RStudio (v.2022.12.0+353) with R (v.4.2.2) and combined into a single 
phyloseq object (one for DNA sequencing results files and one for RNA sequencing 
results files) using the phyloseq package McMurdie & Holmes, 2013). To determine 
the virus sequences/taxonomic groups (when available) that had statistically significant 
increase in abundance within diseased coral tissue samples, the R package DESeq2 was 
used with the Wald test, “fittype = local”. Differential abundance of these upregulate 
virus taxa in the RNA sequencing data was visualized in a heatmap using the 
abundance_heatmap() function from the phylosmith R package and the trimmed mean 
of M-values (TMM) normalized counts table. 

2.3. Transcriptomic Analyses 
Coral samples stored in DNA/RNA shield were homogenized using MP 

Biomedicals Lysis Matrix A, and a portion of this homogenate was then used for RNA 
extraction using the Omega E.Z.N.A.® DNA/RNA Isolation Kit, following the 
manufacturer's protocol. Quality & quantity were assessed using a Nanodrop 
spectrophotometer. Extracted RNA from the samples was then submitted to Genohub 
in November of 2023. At Genohub, mRNA library prep with polyA tail enrichment 
was conducted and the library was then sequenced on the NovaSeq PE150 platform. 

Resulting read files were first processed using the program fastp to remove adapters 
and filter out poor-quality reads (Chen et al., 2018). The following parameters were 
used for fastp: minimum quality score of 25, minimum phred quality score of 20, 
minimum read length of 50 bp, minimum complexity threshold of 30%, removal of any 
polyG or polyX tails, n base limit of 2, and base correction enabled in overlap regions. 

De novo transcriptomes were generated from a random set of five samples for all 
coral species following protocols described in Beavers et al. 2023. “Raw” 
transcriptome assemblies were generated using Trinity v2.9.1 (Grabherr et al., 2011). 
The resulting transcriptomes were then filtered to retain only the longest isoform per 
gene and blasted against a master coral transcriptome to retain only coral-derived 
transcripts (https://zenodo.org/records/7838980). Next, the program TransDecoder was 
used to identify transcripts with open reading frames and transcripts without an 
identified coding region were removed (Haas & Papanicolaou, 2016). The program cd-
hit was used to remove redundant transcripts (Li & Godzik, 2006). Resultant 
transcriptome completeness was assessed using BUSCO (Simao et al., 2015). Finally, 

https://zenodo.org/records/7838980
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the transcriptomes were annotated via comparison to the UniProt database using blast 
v2.15.0. 

Prior to alignment, read files were processed using BBSplit (Bushnell) to separate 
host and Symbiodiniaceae reads, as returned sequencing data includes transcripts from 
both. Raw reads were processed in BBSplit against the generated de novo 
transcriptomes and references transcriptomes of species representative of each of the 
four dominant genera of Symbiodiniaceae: Symbiodinium microadriaticum (Aranda et 
al., 2016), Breviolum minutum (Parkinson et al., 2016), Cladocopium goreaui (Davies 
et al., 2016), and Durusdinium trenchii (Bellantuono et al., 2018). The resulting host 
reads were then aligned to the generated de novo transcriptomes using Salmon (Patro 
et al., 2017). 

Symbiont read count matrices were also generated using BBSplit output. In 
addition to splitting out host and Symbiodiniaceae reads, BBSplit also reports 
proportions of reads aligned to each reference transcriptome. Based on this output each 
sample was assigned a dominant symbiont type for symbiont gene expression analyses. 
Samples were then split by dominant species type and BBSplit symbiont output reads 
were aligned to the respective reference Symbiodineaceae transcriptome (listed above) 
using Salmon (Patro et al., 2017). The symbiont read count matrices will be analyzed 
at a later date. 

Generated host read matrixes were analyzed to identify differences in gene 
expression patterns across time points and tissue status using the R package limma 
(Ritchie et al., 2015). Limma analysis was chosen as the program allows for a repeated 
measures approach. Gene expression analyses were conducted independently for each 
coral species. Reads were first normalized using the calcNormFactors function, and 
then analyzed using the voomLmFit function with blocking based on sample genotype 
(repeated measures approach). For each species all pairwise contrasts between sample 
groups with a minimum n of 3 were run. Table 1 lists pairwise comparisons run for 
each species. Differentially expressed genes were identified based on 10% FDR (adjust 
p < 0.10). Immune genes were identified based on gene ontology terms using the 
keywords: “immun”, “bacteria”, ”defense”, ”inflamm”, “wound heal”, and “melanin 
bio”. All graphs were produced using raw count values with the R package ggplot2 
(Wickham, 2016). 
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2.4. Histological Analyses 
Samples were fixed in zinc-buffered formalin (Z-fix, Anatech), then seawater 24 

hours, then stored in 70% ethanol and shipped to Louisiana State University. Corals 
were decalcified with a 1% HCl EDTA solution and stored in 70% ethanol until 
processed. Corals were processed using a Leica ASP6025, embedded in paraffin wax 
blocks on a Leica EG1150H embedding machine, and sectioned at five mm thickness 
on a Leica RM2125RTS microtome. All samples were sectioned in both cross and 
longitudinal orientation with three to five polyps in each orientation. Seven sections 
were made 500 µm apart. Histological slides were stained with hematoxylin and eosin 
stain on a Leica ST5020, viewed on an Olympus BX41 microscope with an Olympus 
SC180 camera attachment, and analyzed using ImageJ software. 

Slides were analyzed across two methodologies, tissue quantification and 
measurements following Rossin et al. (in prep). Tissue quantification was split 
between consistency and intensity of disease signs ranked as absent, low, medium, 
and high. The disease signs noted were necrosis, vacuolization, exocytosis, 
gastrodermal separation, and degraded symbionts. Consistency referred to the signs 
occurring over the five slides analyzed – regardless of intensity of sign. Intensity 
referred to the degree of the disease sign when it was seen. Additionally, certain tissue 
parameters were noted for presence/absence: eroded gastrodermis, amoebocytes, loss 
of eosin from the mesoglea, loss of structural integrity, and fungus or sponge. This 
quantification was then compared between species and time points. 

Disease measurements were performed using five 60,000 mm2 images per tissue 
sample. Each micrograph was split into twelve 5000 mm2 grid-cells. A random number 
generator determined which section the cells were measured within. The areas of 15 
symbionts within their vacuoles were measured per sample. Additionally, presence of 
gastrodermal separation and degraded symbionts was noted, as well as the proportion 
of symbionts undergoing exocytosis within the grid-cell of interest. 

A Bayesian hierarchical linear model was used to detect differences between 
apparently healthy and diseased samples according to four histological measurements: 

Species Contrasts 

C. natans Sept_H vs June_AH, Sept_H vs. Aug_AH, June_AH vs. Aug_AH 
June_AH vs. June_DM 

O. faveolata Sept_H vs June_H, Sept_H vs. Aug_H, June_H vs. Aug_H 
Sept_H vs June_AH, June_H vs. June_AH, Aug_H vs. June_AH 

June_AH vs. June_DM 
O. franksi Sept_H vs June_H, Sept_H vs. Aug_H, June_H vs. Aug_H 

Sept_H vs. Aug_AH, June_H vs. Aug_AH 
M. cavernosa Sept_H vs June_H, Sept_H vs. Aug_H, June_H vs. Aug_H 

Table 1. List of pairwise comparisons used for transcriptomic analyses; H= 
healthy, AH= apparently healthy, DM= disease margin 
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vacuolization, symbiont size, degraded symbiont presence, proportion exocytosis, and 
gastrodermal separation. This model used non-informative priors. A second Bayesian 
hierarchical model was employed in which the first level of the model was a binomial 
generalized linear model with an intercept and five predictors, which were each 
modeled as random effects with j = 6 levels for species. 

Where yi is the binomially-distributed response variable of disease state (0 = 
putatively healthy and 1 = diseased), a is the intercept, b1–4 are the slopes, and x1–5 are 
the predictor values, exocytosis, gastrodermal separation, symbiont size, degraded 
symbiont presence, and vacuolization. The subscript j indexes the random effect of 
species (j = 6) and the subscript i indexes the observed data (i = n). The second level 
of the model was unconditional; i.e., no model was applied to the random effect 
estimates and only grand mean estimates of the five level one parameters were 
estimated. Model variance-covariance was estimated using a scaled-inverse Wishart 
distribution. The model was run in JAGS (version 1.5.2) using the package JAGSUI 
(Su & Yajima, 2015) in R. All parameters were given diffuse normal priors. Models 
were initialized with a randomly selected value for all five parameters from a normal 
distribution with a mean of zero and standard deviation of one. We ran three Markov 
chain Monte Carlo (MCMC) chains each for 40,000 iterations but removed 5,000 for 
burn in and thinned by two, for a total of 105,000 iterations used for posterior analysis. 

Model convergence was evaluated from the values, where < 1.1 indicated 
convergence. Additionally, we plotted all posteriors and visually confirmed 
convergence. We interpreted predictor effects based on where 0 was in relation to their 
posterior distributions. We did not take full advantage of the Bayesian hierarchical 
model potential as we did not have informed priors or utilize a second level model in 
this study. All Bayesian hierarchical models converged below 1.1 and were accepted. 

3. RESULTS 
3.1. Metagenomic Analyses 
3.1.1.Filtration 

We sequenced samples of four species of coral, resulting in an average of 
33,781,130 reads per sample for Orbicella faveolata, an average of 42,083,762 reads 
per sample for Orbicella franksi, an average of 29,069,371 reads per sample for 
Montastraea cavernosa, and an average of 24,240,705 reads per sample for 
Colpophyllia natans. After quality control, these 133 metagenomic samples were 
aligned to the available genomes for Montastraea cavernosa (https://www.bco-
dmo.org/dataset/875253), Orbicella faveolata (GCA_002042975.1), Durusdinium 
trenchii (GCA_963969995.1), Breviolum minutum (GCA_000507305.1), 
Cladocopium goreaui (GCA_947184155.1), and Symbiodinium fitti 
(GCA_003297005.1). Reads from Colpophyllia natans were also aligned to the draft 
transcriptome of Colpophyllia natans produced by RNAseq analysis. Only reads that 
did not align to coral host or algal symbiont reference genomes were retained for 
downstream analyses. Samples were sequentially aligned to reference genomes in the 
order listed in Table 2, and as such, the percent aligning to each genome refers to the 
percent of remaining reads that aligned, not the percent of initial reads. For example, 
for samples of Montastraea cavernosa 10.89% of initial reads aligned to the genome 
of Orbicella faveolata. Then an average of 83.38% of remaining reads aligned to the 

https://dmo.org/dataset/875253
https://www.bco
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genome of M. cavernosa. Although samples of both Orbicella species aligned well to 
the O. faveolata genome and samples of M. cavernosa aligned well to the M. 
cavernosa available genome, C. natans samples did not align well to the C. natans 
transcriptome produced from RNAseq reads. This is likely a result of large non-coding 
regions of C. natans that are absent from the transcriptome and which are likely 
present in DNA sequences from these samples. After quality control and filtration, we 
retained an average of 9,802,537 reads per sample for Orbicella faveolata, an average 
of 13,011,951 reads per sample for Orbicella franksi, an average of 4,748,355 reads 
per sample for Montastraea cavernosa, and an average of 14,599,950 reads per sample 
for Colpophyllia natans. 

After aligning the metagenomic reads to these reference genomes, a substantial 
amount of host and algal symbiont reads were successfully removed. This step was 
critical to reduce the background noise and enhance the detection of other microbial 
sequences within the samples. However, subsequent BLAST queries indicated that a 
significant level of coral host contamination remains in the metagenomic samples, 
with sequence BLAST homology matching other species of coral not included in this 
dataset. This has hampered the assembly of microbial genomes from metagenomic 
dataset. We will continue to refine this dataset by aligning reads to available reference 
genomes from other coral species. 

3.1.2. Functional and Taxonomic Annotations 
In order to best characterize the microbial community composition and 

functional capacity in these samples, we elected to analyze the dataset looking both at 
unassembled reads, reflecting the entire microbial community in each sample, as well 
as at metagenome-assembled genomes, which provide greater resolution into the 
dominant taxa within our dataset. From complete metagenomic samples (unassembled 

A. 
Host alignment 

1. Average % aln to 
Orbicella faveolata 

2. Average % aln to 
Montastraea 
cavernosa 

3. Average % aln to 
Colpophyllia natans 
draft transcriptome 

CNAT 4.74 8.54 15.79 

MCAV 10.89 83.38 NA 

OFAV 72.17 9.48 NA 

OFRA 67.96 9.41 NA 

B. Symbiont 
alignment 

4. Average % aln 
to Durusdinium 
trenchii 

5. Average % aln 
to Symbiodinium 
fitti 

6. Average % aln 
to Cladocopium 
goreaui 

7. Average % aln 
to Breviolum 
minutum 

CNAT 0.14 0.49 3.04 38.35 

MCAV 0.14 0.48 39.15 4.08 

OFAV 0.15 0.48 35.12 5.05 

OFRA 0.15 0.52 34.93 3.01 

Table 2. A. Percent alignment of samples from this dataset to available reference 
genomes and transcriptomes from species included in this study. B. Percent alignment 
of samples from this dataset to available reference genomes for dominant symbiont 
profiles identified from ITS2 data from these samples. 
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reads) a total of 464 functional pathways were preliminarily identified by HUMAnN3. 
The output abundance tables were exported in Reads Per Kilobase of transcript and 
normalized using the HUMAnN3 relative abundance function. The relative abundance 
of these pathways was assessed by disease status (e.g., Naïve, Diseased Lesion, 
Diseased Apparently Healthy, and Apparently Healthy) within species as well as 
averaged by disease status across species. The most abundant classified pathway 
across all samples was the prokaryotic TCA cycle, which averaged 0.252% ± 0.088% 
of reads in diseased samples, 0.222% ± 0.061% of reads in diseased- apparently 
healthy samples, 0.243% ± 0.086% of reads in healthy samples, and 0.316% ± 0.186% 
of reads in naïve samples across all species. Also found in high relative abundance 
were the pathways for ATP biosynthesis, guanosine deoxyribonucleotides de novo 
biosynthesis, aerobic respiration via cytochrome c, and the ammonia assimilation 
cycle (Table 3, Fig 1). No statistically significant differences were found in abundance 
of pathways across either coral host species or disease status. Nonetheless, abundance 
of the pathways TCA Cycle I, ATP biosynthesis, and guanosine ribonucleotide de 
novo biosynthesis trended higher in apparently healthy and naïve samples than in 
diseased and diseased-apparently healthy samples. In contrast. The abundance of 
pathways associated with assimilatory nitrate reduction, assimilatory sulfate reduction 
IV, and assimilatory sulfate reduction I were elevated in samples of diseased and 
diseased-apparently healthy tissue in comparison to apparently healthy (no disease) 
and naïve samples. Pathways assigned to photosynthesis light reactions were elevated 
in diseased apparently healthy samples compared to other treatments. These patterns 
were consistent when examined within species (Fig. 2). 
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PATHWAY DISEASED DISEASED-
APPARENTLY 
HEALTHY 

APPARENTLY 
HEALTHY 

NAÏVE 

TCA: TCA CYCLE I 
(PROKARYOTIC) 

0.252 ± 0.175 0.222 ± 0.061 0.243 ± 0.86 0.316 ± 0.186 

PWY-7980: ATP BIOSYNTHESIS 0.171 ± 0.196 0.253 ± 0.066 0.251 ± 0.115 0.251 ± 0.528 
PWY-7226: GUANOSINE 
DEOXYRIBONUCLEOTIDES DE 
NOVO BIOSYNTHESIS I 

0.228 ± 0.081 0.216 ± 0.092 0.248 ± 0.057 0.216 ± 0.053 

PWY-3781: AEROBIC 
RESPIRATION I (CYTOCHROME C) 

0.235 ± 0.164 0.153 ± 0.084 0.257 ± 0.092 0.212 ± 0.085 

PWY-7221: GUANOSINE 
RIBONUCLEOTIDES DE NOVO 
BIOSYNTHESIS 

0.144 ± 0.146 0.174 ± 0.259 0.271 ± 0.035 0.256 ± 0.060 

AMMASSIM-PWY: AMMONIA 
ASSIMILATION CYCLE III 

0.157 ± 0.083 0.247 ± 0.234 0.168 ± 0.011 0.209 ± 0.284 

PWY-5690: TCA CYCLE II (PLANTS 
AND FUNGI) 

0.216 ± 0.261 0.130 ± 0.087 0.245 ± 0.076 0.182 ± 0.040 

PWY-6608: GUANOSINE 
NUCLEOTIDES DEGRADATION III 

0.202 ± 0.139 0.196 ± 0.067 0.166 ± 0.046 0.204 ± 0.480 

PWY-7663: GONDOATE 
BIOSYNTHESIS (ANAEROBIC) 

0.139 ± 0.203 0.244 ± 0.074 0.202 ± 0.028 0.166 ± 0.061 

PWY490-3: NITRATE REDUCTION 
VI (ASSIMILATORY) 

0.221 ± 0.089 0.146 ± 0.056 0.172 ± 0.040 0.181 ± 0.155 

PWY-6599: GUANINE AND 
GUANOSINE SALVAGE II 0.162 ± 0.093 0.151 ± 0.221 0.191 ± 0.399 0.151 ± 0.114 
PWY-101: PHOTOSYNTHESIS 
LIGHT REACTIONS 0.057 ± 0.785 0.221 ± 0.111 0.090 ± 0.182 0.021 ± 0.177 
PWY1ZNC-1: ASSIMILATORY 
SULFATE REDUCTION IV 0.121 ± 0.021 0.069 ± 0.041 0.054 ± 0.110 0.055 ± 0.051 
SO4ASSIM-PWY: ASSIMILATORY 
SULFATE REDUCTION I 0.038 ± 0.742 0.095 ± 0.032 0.022 ± 0.097 0.046 ± 0.090 
PWY-7111: PYRUVATE 
FERMENTATION TO ISOBUTANOL 
(ENGINEERED) 0.069 ± 0.210 0.058 ± 0.060 0.020 ± 0.113 0.018 ± 0.049 

Table 3: Average and standard deviation of relative abundance of 15 most highly 
abundant functional pathways, averaged across species within tissue status types. 
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Fig 1: Relative abundance of the 30 most highly abundant pathways across all 
samples, as averaged by disease status.  
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Fig 2. Relative abundance of the most highly abundant pathways across samples of 
Montastraea cavernosa (N = 32), as averaged by disease status.  

Taxonomic characterization of each sample was performed using MetaPhlAn4 
(v 4.1.1, (Blanco-Miguez et al., 2023) using the ChocoPhlAn DNA database and the 
abundance of these taxonomic groups were compared across samples using the R 
package corncob (Martin et al., 2020). Corncob utilizes beta-binomial models to test 
hypotheses about the effects of covariates on relative abundance of microbial taxa 
from high throughput sequencing data. As samples of M. cavernosa had the most taxa 
successfully annotated (N = 521), we here present differential abundance data from 
this species (Fig. 3). 
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Fig 3. Differential abundance of taxa found in samples of M. cavernosa as a function 
of health status, assessed using the R package ‘corncob’ (v 0.1.0). The relative 
abundance of each taxonomic group as identified by MetaPhlAn4 was modeled as a 
function of health status, and the coefficient indicates differences in ASV relative 
abundance with positive coefficients (x-axis) indicating taxa that are more abundant 
in diseased samples, and negative coefficients indicating taxa are less abundant. Bars 
represent 95% confidence intervals of abundance as modeled across samples within 
groups. A false discovery rate (FDR) cutoff of 0.05 was used. 

3.2. Viral Community Analyses 
3.2.1. DNA sequencing virus contig assembly, prediction, and differential 

abundance analysis 
There were 130,862,039 contigs assembled across species with 20,394,501 

from C. natans libraries, 27,413,323 from M. cavernosa libraries, 37,486,939 
from O. faveolata libraries, and 45,567,276 from O. franksi libraries. From the 
130,862,039 total contigs, geNomad identified 54,642 as virus-like having 
homology to known virus sequences. vRhyme binned 12,177 virus-like contigs 
into 2,355 bins representing vMAGS. The vMAGs and the non-binned sequences 
(which may still represent individual viruses) were combined into one final virus 
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reference file containing a total of 44,820 sequences. Sequence lengths ranged 
from 300-359,601 base pairs long indicated genome/gene fragments as well as 
putative whole genomes. CheckV determined that 97% (43,509) of these 
sequences represent genome-fragments, while 1,311 sequences were of high-
quality having high completeness (>90%). The program geNomad was able to 
provide taxonomic classifications to the realm level for 27,006 (40%) sequences, 
21,727 belonged to Duplodnaviria (dsDNA viruses), 4,787 to Varidnaviria 
(dsDNA viruses), 527 to Riboviria (RNA viruses), and 20 to Monodnaviria 
(ssDNA viruses). All sequences that were assigned to the realm Duplodnaviria 
(the major fraction of geNomad-classified sequences) were determined to belong 
to class Caudoviricetes, a group of tailed prokaryotic viruses. As for eukaryotic 
viruses, sequences from classes of known algae-infecting viruses like Algavirales 
(n=51) and hypothesized coral-infecting viruses such as Herpesvirales (n=497) 
were also present. 

Differential abundance analysis with DESeq2 revealed 31 sequences that 
were significantly more abundant in diseased tissue samples across all species. 
There were 26 sequences from the realm Duplodnaviria with the remaining five 
sequences lacking a realm assignment. The significantly upregulated 
Duplodnaviria sequences were assigned to class Caudoviricetes and only one of 
these sequences was able to be classified to a taxonomic level beyond class. The 
one sequence was classified as family Autographiviridae, a group of bacteria-
infecting viruses (phages) that are thought to cause lytic infections of gram-
negative bacteria. 

3.2.2. RNA sequencing virus contig assembly, prediction, and differential 
abundance analysis 
Assembly of RNA sequencing reads from all species yielded 8,978,237 

assembled contigs. There were 1,740,640, 1,702,441, 2,976,155 and 2,559,001 
from C. natans, M. cavernosa, O. faveolata, and O. franksi libraries, respectively. 
The initial Deep6 screening identified 1,837,778 virus-like transcripts that were 
then reduced to 990,976 by removing error-derived sequences and sequence 
redundancy with EvidentialGenes. An additional screening with Deep6 lead to the 
removal of an additional 17,331 producing a final, non-redundant virus-like 
reference file containing 973,645 sequences. The lengths of virus-like sequences 
ranged from 500-25,141 nucleotides. Many reference sequences (973,277) were 
determined to be genome-fragments (whole or partial transcripts) by CheckV, 
while 368 were of high-quality with high completeness (>90%). The taxonomy 
results sourced from Deep6 or geNomad indicated that 865,612 sequences were 
from Riboviria (RNA viruses), 48,426 from Varidnaviria (dsDNA viruses), 45,982 
from Duplodnaviria (dsDNA viruses), and 13,713 from Monodnaviria (ssDNA 
viruses). Notably, sequences from suspected Symbiodiniaceae-infecting 
filamentous +ssRNA virus orders order Tymovirales (n=67) and Patavirales (n=8) 
were identified in the data. 

DESeq2 analyses identified 128,791 sequences that were upregulated within 
diseased tissue sample type across species. The bulk of upregulated sequences 
were classified as RNA virus (n=117,838; realm Riboviria), although most 
(n=117,838) were unclassified past the taxonomic rank of realm. Of those 
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sequences that were able to be assigned to an order (n=42), 17 were retroviral 
(Ortervirales) and 15 were assigned to Picornavirales. Additionally, sequences 
assigned to Tymovirales (n=4) and Patatavirales (n=1) were upregulated in 
diseased tissue types (Fig 4) 

3.3. Transcriptomic Analyses 
3.3.1.Colpophyllia natans gene expression patterns 

For C. natans, a total of 252,705,470 paired reads were assembled into a 
raw assembly of 865,329 transcripts. Following the cleaning steps, a final 
reference transcriptome with 44,208 transcripts and an N50 of 2,357 was 
obtained. The BUSCO scores for the final assembly were 89.2% complete (834 
single-copy, 17 duplicate-copy, total = 851), 29 fragmented (3%), and 74 missing 
(7.8%). Comparison to the UniProtKB database resulted in a total of 42,049 
annotated sequences (95.1%). Individual sample mapping rates to the resultant 
de novo transcriptome ranged from 59.78-87.2%. 

Differential expression across all pairwise comparisons of C. natans samples 
anged from 141-293 differentially expressed genes (Table 4). The greatest 
differences in gene expression were observed between apparently healthy and 
disease margin tissue during June sampling points (sites at 25-50% disease 
prevalence). Few identifiable immune genes were differentially expressed 
between groups (~2-8% of total differentially expressed genes). However, several 
of these immune genes were consistently differentially expressed across 
healthy/apparently healthy samples (Sept healthy vs. June apparently healthy vs. 
August apparently healthy; Fig 5, Table 5) 

Fig 4: Abundance heatmap visualizing increased abundances of sequences from RNA 
sequence data analysis determined to be upregulated in diseased tissue types across 
coral species by DESeq2 analysis. Each column represents a sample, and each row 
represents a virus order. Color indicates log10 relative abundance with yellow 
indicating high abundance and purple indicating lower relative abundance (to the 
samples included in the figure). 
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Comparison Total Differentially 
Expressed Genes 

Immune Differentially 
Expressed Genes 

Sept_H vs. June_AH 141 3 

Sept_H vs. Aug_AH 194 15 

June_AH vs. Aug_AH 293 19 

June_AH vs. June_DM 684 31 

Table 4: gene expression results of transcriptomic analysis of C. natans samples; 
H=healthy, AH= apparently healthy, DM= disease margin 

Fig 4: expression of select C. natanas immune genes which vary in expression across 
healthy (H) and apparently healthy (AH) tissue over time. Letters indicate statistical 
groups. p values for each comparison shown in table 5. dmbt1= deleted in malignant 
brain tumor protein 1; txndc12= Thioredoxin domain-containing protein 1; tyr= 
tyrosinase 
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3.3.2. Orbicella faveolata gene expression patterns 
For O. faveolata, total of 256,119,936 paired reads were assembled into a raw 

assembly of 1,187,062 transcripts. Following the cleaning steps, a final reference 
transcriptome with 81,810 transcripts and an N50 of 1,823 was obtained. The 
BUSCO scores for the final assembly were 93.5% complete (848 single-copy, 44 
duplicate-copy, total = 892), 23 fragmented (2.4%), and 39 missing (4.1%). 
Comparison to the UniProtKB database resulted in a total of 78,610 annotated 
sequences (96.1%). Individual sample mapping rates to the resultant de novo 
transcriptome ranged from 68.57-88.75%. 

Differential expression across all pairwise comparisons of O. faveolata 
samples ranged from 11-1031 differentially expressed genes (Table 6). The 
greatest differences in gene expression were observed between healthy samples 
collected in September and August. Few identifiable immune genes were 
differentially expressed between groups (~5% of total differentially expressed 
genes for most comparisons). However, several of these immune genes were 
consistently differentially expressed across healthy/apparently healthy samples 
(Sept s. June vs. August healthy; Fig 5, Table 7) 

Gene Sept_H 
vs. 

June_AH 
coef 

Sept_H 
vs. 

June_AH 
padj 

Sept_H 
vs. 

Aug_AH 
coef 

Sept_H 
vs. 

Aug_AH 
padj 

June_AH 
vs. 

Aug_AH 
coef 

June_AH 
vs. 

Aug_AH 
padj 

dmbt1 0.766 0.546 3.024 0.0137* 2.26 0.0870* 
txndc12 -1.66 0.0624* 1.16 0.497 2.82 0.0207* 

tyr -0.0386 0.996 3.69 0.0671* 3.73 0.0778* 

Table 5: differential expression results for C. natans comparing expression of key 
immune genes across healthy (H) and apparently heathy (AH) tissue over time; coef is 
a metric of the degree of change in expression between the compared sample types. 
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Comparison Total Differentially 
Expressed Genes 

Immune Differentially 
Expressed Genes 

Sept_H vs. June_H 274 14 

Sept_H vs. Aug_H 1031 45 

June_H vs. Aug_H 97 6 

Sept_H vs. June_AH 63 3 

June_H vs. June_AH 11 0 

June_H vs. June_DM 83 4 

June_AH vs. June_DM 67 3 

Gene Sept_H 
vs. 

June_H 
coef 

Sept_H 
vs. 

June_H 
padj 

Sept_H 
vs. 

Aug_H 
coef 

Sept_H 
vs. 

Aug_H 
padj 

June_H 
vs. 

Aug_H 
coef 

June_H 
vs. 

Aug_H 
padj 

dmbt1 2.39 0.0621* 2.59 0.0866* 0.198 0.995 
endod1 3.60 0.0587* 3.57 0.09998* -0.0248 0.9997 

gp2 1.88 0.0762* 2.14 0.0973* 0.263 0.991 
mmp25 2.12 0.0492* 2.42 0.0673* 0.296 0.990 
rnf213a -2.18 0.0484* -2.796 0.0133* -0.613 0.863 

Table 6: gene expression results of transcriptomic analysis of O. faveolata 
samples; H=healthy, AH= apparently healthy, DM= disease margin 

Table 7: differential expression results for O. faveolata comparing expression of key 
immune genes across healthy (H) tissue over time; coef is a metric of the degree of 
change in expression between the compared sample types. 
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Fig 5: expression of select O. faveolata immune genes which vary in expression across 
healthy (H) tissue over time. Letters indicate statistical groups. p values for each 
comparison shown in table 7. dmbt1= deleted in malignant brain tumor protein 1; 
endod1= endonuclease domain-containing protein 1; gp2= pancreatic secretory 
granule membrane major glycoprotein GP2; mmp25= matrix metalloproteinase-25; 
rnf213a= E3 ubiquitin-protein ligase rnf213-alpha 
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3.3.3. Orbicella franksi gene expression patterns 
For O. franksi, a total of 273,084,162 paired reads were assembled into a raw 

assembly of 1,326,040 transcripts. Following the cleaning steps, a final reference 
transcriptome with 77,416 transcripts and an N50 of 1,951 was obtained. The 
BUSCO scores for the final assembly were 91.7% complete (818 single-copy, 57 
duplicate-copy, total = 875), 28 fragmented (2.9%), and 51 missing (5.4%). 
Comparison to the UniProtKB database resulted in a total of 74,404 annotated 
sequences (96.1%). Individual sample mapping rates to the resultant de novo 
transcriptome ranged from 71.03-87.9%. 

Differential expression across all pairwise comparisons of O. franski samples 
ranged from 219-10644 differentially expressed genes (Table 8). The greatest 
differences in gene expression were observed between healthy samples collected 
in September and August. Few identifiable immune genes were differentially 
expressed between groups (~4-9% of total differentially expressed genes). 
However, several of these immune genes were consistently differentially 
expressed across healthy/apparently healthy samples (Sept s. June vs. August 
healthy; Fig 6, Table 9) 

Comparison Total Differentially 
Expressed Genes 

Immune Differentially 
Expressed Genes 

Sept_H vs. June_H 4876 192 

Sept_H vs. Aug_H 10644 561 

June_H vs. Aug_H 2315 202 

Sept_H vs. Aug_AH 1478 70 

June_H vs. Aug_AH 219 15 

Table 8: gene expression results of transcriptomic analysis of O. franksi samples; 
H=healthy, AH= apparently healthy, DM= disease margin 
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Gene Sept_H 
vs. 

June_H 
coef 

Sept_H 
vs. 

June_H 
padj 

Sept_H 
vs. Aug_H 

coef 

Sept_H 
vs. 

Aug_H 
padj 

June_H 
vs. Aug_H 

coef 

June_H 
vs. 

Aug_H 
padj 

dapk 0.941 0.0823* 2.50 0.00383** 1.56 0.0430* 
dmbt1.a 1.29 0.0382* 2.19 0.01303* 0.901 0.287 
dmbt1.b 1.46 0.0749* 3.34 0.0106* 1.878 0.124 

glyp 0.777 0.0568* 1.70 0.00547** 0.920 0.0962* 
otulin 0.952 0.0923 2.50 0.00514** 1.55 0.0584* 
pde2a 0.919 0.0786* 2.33 0.00429** 1.41 0.0560* 

rnf213b 1.69 0.0447* 4.89 0.00749** 3.20 0.0554* 
znfx1.a 1.13 0.0462* 2.50 0.00393** 1.36 0.0767* 
znfx1.b 1.81 0.0374* 4.426 0.00324** 2.62 0.0420* 

Table 9: differential expression results for O. franksi comparing expression of key 
immune genes across healthy (H) tissue over time; coef is a metric of the degree of 
change in expression between the compared sample types. 
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Fig 6: expression of select O. franksi immune genes which vary in expression across 
healthy (H) tissue over time. Letters indicate statistical groups. p values for each 
comparison shown in table 9. dapk= death-associated protein kinase 1; dmbt1= deleted 
in malignant brain tumor protein 1; glyp= glycogen phosphorylase; otulin= Ubiquitin 
thioesterase otulin; pde2a = cGMP-dependent 3',5'-cyclic phosphodiesterase;rnf213b= 
E3 ubiquitin-protein ligase rnf213-beta; znfx1= NFX1-type zinc finger-containing 
protein 1 
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3.3.4. Montastraea cavernosa gene expression patterns 
For M. cavernosa, a total of 286,186,657 paired reads were assembled into a 

raw assembly of 993,661 transcripts. Following the cleaning steps, a final 
reference transcriptome with 86,030 transcripts and an N50 of 1,630 was 
obtained. The BUSCO scores for the final assembly were 93% complete (857 
single-copy, 31 duplicate-copy, total = 888), 28 fragmented (2.9%), and 38 
missing (4.1%). Comparison to the UniProtKB database resulted in a total of 
82,244 annotated sequences (95.6%). Individual sample mapping rates to the 
resultant de novo transcriptome ranged from 40.15-85.97%. 

No differences in gene expression were observed between healthy colonies 
sampled across time points (Sept, June, August) 

3.4. Histological Analyses 
Preliminary histological analysis revealed O. faveolata and M. cavernosa to show 

traditional SCTLD signs of higher vacuolization in diseased samples than in healthy 
(Fig. 7). There is high exocytosis in healthy samples, which is different from previous 
SCTLD analyses. There is a larger minimum size of symbionts in diseased samples as 
well. 

4. DISCUSSION AND MANAGEMENT RECOMMENDATIONS 
4.1. Discussion 

4.1.1. Metagenomics 

Fig 7: Logistic regression depicting Bayesian analyses, on Y-axis, one indicates 
diseased and zero indicates healthy. 
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Initial analyses of coral microbial function and taxonomy based on shotgun 
sequencing data suggest that while microbial communities of corals naïve to 
SCTLD in Dry Tortugas National Park may differ from other corals sampled in the 
Florida Keys, microbial community function and composition of diseased samples 
from this study were similar to samples that have been previously sequenced.  

Previously, the taxa Vibrio, Arcobacter, Algicola, and Planktotalea were 
found to be consistently enriched in lesion tissue in the coral species Montastraea 
cavernosa, Diploria labyrinthiformis and Dichocoenia stokesii (Meyer et al., 2019). In 
contrast, a separate study found members of Rhodobacterales and Rhizobiales to 
be enriched in lesions from Stephanocoenia intersepta, D. labyrinthiformis, D. 
stokesii and Meandrina meandrites (Rosales et al., 2020). In this study, we have so 
far identified a significant enrichment in the family Rhodobacteraceae and the 
genus Desulfocella, though examination of the 16S rRNA from shotgun sequencing 
data in the next year of analysis will continue to elucidate the taxonomic profiles of 
our samples. Although not found to be significant from metagenomic data, in a 
separate analysis of 16S rRNA amplicon sequence data from these same samples 
(with significantly lower sequencing depth than the present study) we determined 
that the bacterial genus Endozoicomonas was found in considerable abundance 
across naïve samples of the species Orbicella faveolata and O. franksi (Klinges, 
unpublished). Interestingly, this genus, which is a proposed commensal or 
beneficial taxon in coral hosts, was not found at >2% abundance in any samples of 
Colpophyllia natans or Montastraea cavernosa. The absence of this proposed 
symbiont may contribute to the observed elevated disease susceptibility we saw in 
these species. 

Analysis of community functional capacity based on shotgun sequencing 
data indicated that aerobic microbial activity was high across all species and health 
status types. We found elevated abundance of reads mapping to PWY-3781 
associated with aerobic respiration via cytochrome c and the TCA cycle (involved 
in energy production by aerobic microbes). These pathways may be associated with 
bacteria identified in 16S rRNA analyses including the genera Endozoicomonas, 
Tistlia, and Terasakiellaceae, which are all aerobic. Pathways associated with 
aerobic respiration via cytochrome c were found to be elevated across all SCTLD 
disease status types in previous studies (Rosales et al., 2022). However, we also 
found high abundance of pathways associated with sulfate reduction and oxidation 
as well as nutrient utilization (ammonia assimilation and nitrate reduction). These 
pathways may be associated with bacteria involved in sulfur cycling, which have 
been previously identified as a biomarker for SCTLD in Montastraea cavernosa 
(Becker et al., 2022)\ In 16S rRNA analyses, we uncovered the high abundance of 
the sulfur reducing taxa Desulfocella, Desulfovibrio, and Halodesulfovibrio, as well 
as numerous anaerobic taxa including Roseimarinus, Fusibacter, and 
Halanaerobium that may be utilizing nitrate during organic matter oxidation. 
Pathways associated with sulfate reduction were elevated in diseased corals in 
comparison to healthy conspecifics, though this was not found to be statistically 
significant, possibly due to unbalanced sample sizes. The production and 
degradation of the nucleosides adenosine (a component of ATP) and guanosine 
were elevated across all species and health status types. 



28 C1E0A5 
June 2024 

We also found a high relative abundance of reads mapping to pathways 
traditionally associated with plants, such as the plant/fungal TCA cycle and 
photosynthesis light reactions. The elevated abundance of these pathways may be 
reflective of remaining algal symbiont reads in our dataset, but it is also possible 
that these pathways are associated with cyanobacteria. We will continue to explore 
this possibility through the characterization of remaining prokaryotic and 
eukaryotic reads in the dataset. 

4.1.2. Viral Community 
Several lines of evidence suggest a contribution of coral-associated virus 

communities to stony coral tissue loss disease, specifically in the observed 
disruption of the coral-dinoflagellate symbiosis (Landsberg et al., 2020). This 
includes: 1. i) impeded or ceased lesion progression in dinoflagellate-free (or 
“bleached”) coral tissues (Meiling et al., 2020), ii) degredation of symbiosomes 
within coral gastrodermal cells (Landsberg et al., 2020), iii) transmission electron 
microscopy detection of putative filamentous virus-like particles associated with 
Symbiodiniaceae cells in SCTLD-affected and SCTLD-exposed corals (Work et 
al., 2021), iv) in silico chracterization of filamentous virus-like genomes in 
SCTLD-affected/exposed coral metatranscriptomes (Veglia et al., 2022), v) 
upregulation of antiviral pathways in SCTLD-affected coral metatranscriptomes 
(Beavers et al., 2023), vi) evidence of upregulation of multiple virus taxa within 
diseased and disease-exposed coral metatranscriptomes (Vega Thurber & Correa, 
2023; Veglia, 2023). In the first year of this project, the goal was to identify all 
putative virus sequences and determine the virus taxa determined to be 
upregulated in diseased tissue types and compare to previous findings from US 
Virgin Islands and Florida. 

The running hypothesis for the role/contribution of viruses to SCTLD 
etiology is that of a community contribution in the form of opportunistic 
infections (Vega Thurber & Correa, 2023; Veglia, 2023). In this scenario, an 
initial etiological agent initiates dysbiosis within the coral holobiont and this is 
then further exacerbated by increased infection activity from several virus taxa 
capable of infecting the coral or its symbionts. The preliminary results from DNA 
and RNA sequencing data analyses in this project indicate similar findings where 
several prokaryotic and eukaryotic virus taxa are upregulated in the diseased coral 
tissue samples (Fig 4). Similar to the previous studies, notable virus taxa that are 
hypothesized to interact with Symbiodiniaceae like Algavirales, Imitervirales, 
Tymovirales, and Patatavirales were seen with increased abundance in diseased 
tissue samples. Algavirales and Imitervirales are both giant dsDNA viruses and 
their detection across coral genera containing distinct Symbiodiniaceae 
communities suggests that these virus groups are common in healthy and diseased 
corals. However, their ecology and the impact of their interactions with the 
putative Symbiodiniaceae host within coral holobionts is completely unknown 
emphasizing the need for future research in this area. Furthermore, the +ssRNA 
filamentous RNA viruses within Tymovirales and Patatavirales have been of 
great interest in the context of SCTLD (Veglia et al., 2022; Work et al., 2021). 
These viruses are also present within healthy and diseased coral tissues indicating 
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a potential for opportunistic infections and a contribution to SCTLD. That said, 
this would not suggest these viruses are the sole etiological agent of SCTLD, 
agreeing with previous observations (see (Vega Thurber & Correa, 2023; Veglia, 
2023; Veglia et al., 2022; Work et al., 2021). 

Viruses are known to influence host immune properties leaving them 
susceptible or more prepared to fight incoming pathogens (Neil & Cadwell, 
2018). One such group of viruses shown to be capable of this is herpes viruses, a 
group hypothesized to infect the coral host and is seemingly ubiquitous in coral 
holobionts (Thurber et al., 2017). Our results suggest that herpesviruses are 
prevalent across coral taxa on Dry Tortuga reefs and their community diversity 
and activity may contribute to differences in SCTLD susceptibility and severity. 
There is a significant amount of work needed to be done to obtain foundational 
information for several of the common virus groups commonly reported in coral 
metagenomes/metatranscriptomes. Unfortunately, without this foundational 
information, it is difficult to interpret results like those shown here. Future work 
should look to investigate these groups (i.e., Algavirales, Imitervirales, and 
Herpesvirales) and produce empirical data related to their prevalence and 
diversity across individuals within and across coral species. 
4.1.3. Transcriptomics 

Preliminary analyses of gene expression patterns across time and tissue types 
revealed strong, species-specific patterns of gene expression. Herein we will 
focus our discussion on patterns of differential expression associated with 
comparisons of healthy and apparently healthy tissue as these were our most 
robust comparisons to date. Changes in gene expression in healthy and apparently 
healthy tissue over time were highly species-specific. While healthy colonies of 
Montastrea cavernosa displayed no significant differences in gene expression 
over the nearly one-year sampling period (and disease progression to 50%), 
Orbicella franksi colonies showed strong changes in gene expression. Over 
10,000 transcripts were differentially expressed between colonies sampled in 
September, and those sampled the following August. O. faveolata and C. natans 
showed intermediate patterns of changes. 

In all three species with significant differences, changes in expression of 
immune transcripts were more subtle, with identifiable immune transcripts 
comprising anywhere from ~2-8% of differentially expressed transcripts. 
However, these subsets of transcripts did display notable patterns of rate and 
directionality of changes, especially when comparing closely related O. faveolata 
and O. franksi. Expression of most immune transcripts in both species declined 
through the sampling periods, with the rate of changes in theses transcripts in 
healthy colonies coinciding with peak disease incidence. The most dramatic 
changes in gene expression in O. faveolata were observed between September 
and June (peak disease abundance), stabilizing in August. In contrast, O. franksi 
gene expression steadily declined from September thru June to August (peak 
disease abundance). The discordance in gene expression patterns between the two 
species suggests that the patterns were indeed driven by increases in disease 
prevalence rather than responses to environmental conditions 
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A few notable conclusions can also be drawn when considering patterns of 
response of specific immune genes. First, patterns of changes in immune genes 
did not show any noticeable trends towards antiviral or antibacterial pathways. 
Both viruses (Beavers et al., 2023; Work et al., 2021) and bacterial (Rosales et 
al., 2020; Rosales et al., 2023) agents have been suggested as the putative cause 
of SCTLD, with viral agents being the most widely recognized putative pathogen. 
Current analysis of gene expression patterns fails to support one putative agent 
over another. However, upcoming analyses using more integrative and 
comprehensive approaches should prove more fruitful in teasing apart these 
signatures and aiding in pathogen identification. 

Several key immune transcript and processes were commonly differentially 
expressed across comparisons and species. The most notable of these is changes 
in the putative antimicrobial protein, deleted in malignant brain tumor protein 1 
(DMBT1). DMBT1 is a component of TLR and NFKB signaling, (Bikker et al., 
2002), which lead to the production of antimicrobial compounds. This gene has 
frequently been cited as an important component of the immune response of 
numerous tropical corals (Fuess et al., 2016; Wright et al., 2017). In all three 
species where patterns of differential expression were observed (C. natans, O. 
faveolata, O. franksi), DMBT1 expression decreased through disease progression 
on reefs, both in apparently healthy (C. natans) and healthy (Oribcellas) tissue. 
This downregulation of an important immune gene as disease reaches reefs 
suggests potential immune suppression of even healthy corals. A second 
important transcript involved in bacterial responses, E3 ubiquitin-protein ligase 
rnf213 (RNF213), was also differentially expressed across healthy tissues in the 
Orbicella sp. RNF213 is key for detection of bacterial LPS and activation of 
immune responses (Zhang et al., 2023). Notably, RNF213 homologs increased in 
expression through disease onset in O. faveolata, but decreased over the same 
period in O. franksi. Further investigation regarding changes in expression of key 
antimicrobial genes is essential to understand the roles of these changes in either 
facilitating or preventing disease. 
4.1.4. Histology 

Preliminary analyses indicate the disease seen at Dry Tortugas is consistent 
with SCTLD analyses previously done. Vacuolization of the symbiont is a 
consistent disease sign for SCTLD-infected colonies. The healthy samples having 
higher exocytosis than the diseased is odd, but could be indicative of a higher 
turnover of symbionts for shuffling. 

4.2. Future Steps 
We have generated an unprecedented sequencing data set comprising both 

sequencing (DNA/RNA) and phenotypic (histology/TEM) data. This sample set is 
notable both for its thoroughness (high degree of within-sample sequencing) and 
breadth (large number of samples per species and repeated sampling across time). In 
addition, samples from this project were sequenced to a very high depth (10’s of 
millions of reads per sample). Consequently, this dataset presents a unique and 
unparalleled wealth of biological data pertinent to SCTLD; specifically, our sample set 
can be mined to gain new insight regarding putative etiological agents, biological 
progression and stages of disease, and markers of disease resistance. Currently we have 
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only just begun to scratch the surface of what can be done with this data, providing 
putative markers of disease resistance and etiological agents using species- and data-
type-independent analyses. Moving forward we will focus on the development of 
robust, integrative analytical approaches which will leverage the true power of this data 
set. Specifically, supported by FY25 DEP funding, we will use advanced ‘omic 
analyses to: 1) identify with confidence putative etiological agents and their effects on 
host and symbiont biology; 2) identify host and symbiont traits of interest which confer 
disease resistance, or lack thereof (both species-specific and species-independent); 3) 
compare biological progression of disease across species to improve understanding of 
disease mechanisms and potentially develop new prophylactic techniques. 

4.3. Management Recommendations 

As one of the first SCTLD time-series analyses performed on samples of corals from 
pre-exposure to exposure to disease development, this study has considerable 
implications for our understanding of disease development, especially in remote coral 
reefs.  

• Corals in this study developed the hallmark histological signs of SCTLD despite 
their location in a remote region of the lower Florida Keys far from significant local 
stressors. Indeed, it is possible that their stress-naïve state pre-exposure made them 
more susceptible to SCLTD, as corals appeared to exhibit signs of 
immunosuppression during disease development. Practitioners and managers 
should ensure that corals in the remote reaches of the Caribbean are regularly 
monitored for disease development, and further studies should be performed in 
these remote areas to validate these results. 

• Despite the initial presence of beneficial and commensal bacterial taxa including 
Endozoicomonas, corals in this study nonetheless developed disease and beneficial 
communities were lost during disease development. Further research into probiotics 
could include methods to enhance and maintain these protective microbial 
communities effectively even under disease pressure. 

• As coral immune function during SCTLD development varied by species, even 
within the same coral genus, restoration projects should include a genetically 
diverse array of corals to enhance the overall resilience of reefs to SCTLD and other 
stressors. Genetic diversity can offer a range of immune responses and adaptive 
capacities. 

• Further study is needed to investigate the mechanisms behind the differences in 
immune responses between coral species. Understanding these mechanisms can 
lead to the development of targeted therapies and better inform species selection 
for restoration. 

• Integrative analysis is needed between datasets produced in this study to evaluate 
the interaction of coral gene expression, the abundance of viral and bacterial 
groups, bacterial function, and disease histopathology. This integrative analysis 
will better inform our understanding of the relative contributions of bacterial and 
viral players to disease development and the relationship to coral immunity and 
pathogenesis. 
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• Continued research is needed on the role of environmental factors (e.g., water 
temperature, pollution) in SCTLD development and spread, in particular as 
bacterial genes involved in nutrient and sulfur cycling were highly abundant in 
diseased samples. Understanding these factors can inform broader conservation 
strategies that address multiple stressors impacting coral health. 

By integrating these recommendations into management strategies, we can enhance our 
ability to mitigate SCTLD impacts on coral reefs, promote coral resilience, and ensure 
the long-term health of these vital ecosystems. The finding that even remote, previously 
healthy corals can succumb to SCTLD emphasizes the need for proactive and 
comprehensive management approaches. 
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