APPENDIX B

Florida Department of Environmental Protection Division of Air Resource Management

Regional Haze Supplemental SIP – Four Factor Analyses and Documentation

- Appendix B-1 WestRock Fernandina Beach Mill Supplemental Four Factor Analysis Page 2
- Appendix B-2 Mosaic South Pierce Effectively Controlled Unit Analysis
 Page 7

Table A-1c Fuel Switching Cost (No Solid Fuel) - WestRock Fernandina Beach No. 7 Power Boiler

CAPITA	L COSTS				
Total Caj	vital Investment for New ULSD Burners and required infrastructure:	(a)	TCI	\$18,750,000	
/	COST ITEM	COST FACTOR		UNIT COST	COST (\$)
Annual O	perating Costs - Direct Annual Costs				
(b)	Maintenance Costs	2.75% of TCI			\$515,625
(c)	Bark ash landfill disposal	tpy		/ton	\$295,466
Fuel					
(d)	Additional natural gas cost - Tier 3 usage rate	MMBtu		/MMBtu	\$6,328,829
(e)	Additional natural gas cost - elevated price days	MMBtu		/MMBtu	\$5,572,800
(f)	ULSD cost	thousand gal		/gal	\$1,052,414
(g)	Coal cost savings	tons		/ton	-\$6,683,215
1	Total Direct Annual Costs:			DAC	\$7,081,919
Annual O	perating Costs - Indirect Annual Costs				
(h)	Overhead	0% of TCI			\$0
(i)	Administrative Charges	2% of TCI			\$375,000
(i)	Property Taxes	0% of TCI			\$0
(i)	Insurance	1% of TCI			\$187,500
	Total Indirect Annual Costs:			IDAC	\$562,500
Į	Total Annual Costs:			TAC	\$7,644,419
Cost Effe	ativanasa				
(i)	Expected lifetime of equipment years	30			
(i)	Interest rate %/vr	3 25%			
(i)	Capital recovery factor	0.053			
(i)	Total Capital Investment Cost \$1	18,750,000			
	Annualized Capital Investment Cost:				\$987,782
	Total Annualized Cost:				\$8,632,201
(i)	SQ: Reduction	97 3%			
0)		1 202 topo SO //r			
	$Fie-ieuoin SO_2$				
	Post-retroit SU2 Using Burner System	32.8 tons SO ₂ /yr			
	SO ₂ Removed	1,171 tons SO ₂ /yr			
	Annual Cost/Ton Removed:				\$7,374

(a) Based on project estimate performed by WestRock.

(b) Maintenance costs were estimated based on the U.S. EPA OAQPS Alternative Control Techniques Document - NOX Emissions from Process Heaters (Revised), Document No. EPA-453/R-93-034 (September 1993).

(c) 2019 WestRock Fernandina Beach cost to dispose of bark ash.

(d) Projected WestRock Fernandina Beach fuel costs.

(e) Projected WestRock Fernandina Beach fuel costs. Projecting that natural gas costs will be elevated (but less than ULSD) at least 24 days/year (518,400 MMBtu of heat input for 20 days of operation).

(f) Projected 2022 WestRock Fernandina Beach fuel costs. WestRock expects that natural gas costs will spike and exceed ULSD costs at least 3 days/year, so that WestRock will fire ULSD instead of natural gas on those days (479 thousand gallons of ULSD for 2 days of operation).

(g) 2019 WestRock Fernandina Beach coal cost.

(h) No charge taken here due to operational cost savings from removing coal.

(i) U.S. EPA Air Pollution Control Cost Manual, Section 1, Chapter 2. Yellow-highlighted values were selected in order to conform to the values used by Florida DEP in their Regional Haze SIP submittal. WestRock believes the expected useful life of the equipment is no more than 20 years, but has utilized 30 years in this set of calculations to conform to Florida DEP's Regional Haze SIP submittal. WestRock believes that the appropriate interest rate is 4.75%, which was the rate prior to the COVID-19 pandemic, but has utilized 3.25% to conform to Florida DEP's Regional Haze SIP submittal. Any potential property tax costs have been excluded.

(j) Pre-retrofil SO2 emissions estimated based on projected 2028 actual throughput/fuel usage. Post-retrofit SO2 emissions estimated based on equivalent heat input and replacment of coal and bark ash with natural gas and as noted in footnote (f), ULSD. See Table A-1d for emission factors and calculations.

Table A-1c Fuel Switching Cost (No Solid Fuel) - WestRock Fernandina Beach No. 7 Power Boiler

CAPITA	AL COSTS				
Total Ca	pital Investment for New ULSD Burners and required infrastructure:	(a)	TCI	\$18,750,000	
ANNUA	LIZED COSTS				
	COST ITEM	COST FACTOR		UNIT COST	COST (\$)
Annual C	Dperating Costs - Direct Annual Costs				
(b)	Maintenance Costs	2.75% of TCI			\$515,625
(c)	Bark ash landfill disposal	tpy	ļ	/ton	\$295,466
Fuel					
(d)	Additional natural gas cost - Tier 3 usage rate	MMBtu		/MMBtu	\$6,328,829
(e)	Additional natural gas cost - elevated price days	MMBtu		/MMBtu	\$5,572,800
(†)	ULSD cost	thousand gal		/gal	\$1,052,414
(g)	Coal cost savings	tons	I	/ton	- \$0,0 83,∠15
	Total Direct Annual Costs:			DAC	\$7,081,919
Annual C	Departing Costs - Indirect Annual Costs				
(h)	Overhead	0% of TCI			\$0
(i)	Administrative Charges	2% of TCI			\$375,000
(i)	Property Taxes	0% of TCI			\$0
(i)	Insurance	1% of TCI			\$187,500
	Total Indirect Annual Costs:			IDAC	\$562,500
	Total Annual Costs:			TAC	\$7,644,419
	ontivones				
	Expected lifetime of equipment years	20			
(i)	Interest rate. %/vr	4.75%			
(i)	Capital recovery factor	0.079			
(i)	Total Capital Investment Cost \$1	18,750,000			
	Annualized Capital Investment Cost:				\$1,472,821
	Total Annualized Cost:				\$9,117,240
(j)	SO ₂ Reduction	97.3%			
	Pre-retrofit SO ₂	1,203 tons SO ₂ /yr			
	Post-retrofit SO ₂ Using Burner System	32.8 tons SO ₂ /yr			
	SO ₂ Removed	1,171 tons SO ₂ /yr			
	Annual Cost/Ton Removed:				\$7,788

(a) Based on project estimate performed by WestRock.
(b) Maintenance costs were estimated based on the U.S. EPA OAQPS Alternative Control Techniques Document - NOX Emissions from Process Heaters (Revised), Document No. EPA-453/R-93-034 (September 1993).

(c) 2019 WestRock Fernandina Beach cost to dispose of bark ash.

(d) Projected WestRock Fernandina Beach fuel costs.

(e) Projected WestRock Fernandina Beach fuel costs. Projecting that natural gas costs will be elevated (but less than ULSD) at least 24 days/year (518,400 MMBtu of heat input for 20 days of operation).

(f) Projected 2022 WestRock Fernandina Beach fuel costs. WestRock expects that natural gas costs will spike and exceed ULSD costs at least 3 days/year, so that WestRock will fire ULSD instead of natural gas on those days (479 thousand gallons of ULSD for 2 days of operation).

(g) 2019 WestRock Fernandina Beach coal cost.

(h) No charge taken here due to operational cost savings from removing coal.

(i) U.S. EPA Air Pollution Control Cost Manual, Section 1, Chapter 2. Any potential property tax costs have been excluded.

(j) Pre-retrofit SO2 emissions estimated based on projected 2028 actual throughput/fuel usage. Post-retrofit SO2 emissions estimated based on equivalent heat input and replacment of coal and bark ash with natural gas and as noted in footnote (f), ULSD. See Table A-1d for emission factors and calculations.

Table A-1c Fuel Switching Cost (No Solid Fuel) - WestRock Fernandina Beach No. 7 Power Boiler

CAPITA	AL COSTS				
Total Caj	pital Investment for New ULSD Burners and required infrastructure:	(a)	TCI	\$18,750,000	
ANNUA	LIZED COSTS				
	COST ITEM	COST FACTOR		UNIT COST	COST (\$)
Annual C	Dperating Costs - Direct Annual Costs				
(b)	Maintenance Costs	2.75% of TCI			\$515,625
(c)	Bark ash landfill disposal	tpy		/ton	\$295,466
Fuel					
(d)	Additional natural gas cost - Tier 3 usage rate	MMBtu		/MMBtu	\$6,328,829
(e)	Additional natural gas cost - elevated price days	MMBtu		/MMBtu	\$5,572,800
(f)	ULSD cost	thousand gal		/gal	\$1,052,414
(g)	Coal cost savings	tons		/ton	-\$6,683,215
	Total Direct Annual Costs:			DAC	\$7,081,919
Annual C	Derating Costs - Indirect Annual Costs				
(h)	Overhead	0% of TCI			\$0
(i)	Administrative Charges	2% of TCI			\$375.000
(i)	Property Taxes	0% of TCI			\$0
(i)	Insurance	1% of TCI			\$187,500
	Total Indirect Annual Costs:			IDAC	\$562,500
1	Total Annual Costs:			TAC	\$7,644,419
"					
	Expected lifetime of equipment years	30			
(i) (i)	Interest rate %///r	3 25%			
(i)	Capital recovery factor	0.053			
(i)	Total Capital Investment Cost \$1	8 750 000			
(.)	Annualized Capital Investment Cost:	0,100,000			\$987,782
	Total Annualized Cost:				\$8,632,201
					<i>\\\\\\\\\\\\\</i>
(j)	SO ₂ Reduction	97.3%			
	Pre-retrofit SO ₂	1,203 tons SO ₂ /yr			
	Post-retrofit SO ₂ Using Burner System	32.8 tons SO ₂ /yr			
	SO ₂ Removed	1.171 tons SO ₂ /vr			
	Annual Cost/Ton Removed:	,			\$7.374

(a) Based on project estimate performed by WestRock.

(b) Maintenance costs were estimated based on the U.S. EPA OAQPS Alternative Control Techniques Document - NOX Emissions from Process Heaters (Revised), Document No. EPA-453/R-93-034 (September 1993).

(c) 2019 WestRock Fernandina Beach cost to dispose of bark ash.

(d) Projected WestRock Fernandina Beach fuel costs.

(e) Projected WestRock Fernandina Beach fuel costs. Projecting that natural gas costs will be elevated (but less than ULSD) at least 24 days/year (518,400 MMBtu of heat input for 20 days of operation).

(f) Projected 2022 WestRock Fernandina Beach fuel costs. WestRock expects that natural gas costs will spike and exceed ULSD costs at least 3 days/year, so that WestRock will fire ULSD instead of natural gas on those days (479 thousand gallons of ULSD for 2 days of operation).

(g) 2019 WestRock Fernandina Beach coal cost.

(h) No charge taken here due to operational cost savings from removing coal.

(i) U.S. EPA Air Pollution Control Cost Manual, Section 1, Chapter 2. Yellow-highlighted values were selected in order to conform to the values used by Florida DEP in their Regional Haze SIP submittal. WestRock believes the expected useful life of the equipment is no more than 20 years, but has utilized 30 years in this set of calculations to conform to Florida DEP's Regional Haze SIP submittal. WestRock believes that the appropriate interest rate is 4.75%, which was the rate prior to the COVID-19 pandemic, but has utilized 3.25% to conform to Florida DEP's Regional Haze SIP submittal. Any potential property tax costs have been excluded.

(j) Pre-retrofil SO2 emissions estimated based on projected 2028 actual throughput/fuel usage. Post-retrofit SO2 emissions estimated based on equivalent heat input and replacment of coal and bark ash with natural gas and as noted in footnote (f), ULSD. See Table A-1d for emission factors and calculations.

Table A-1d SO_2 Fuel Switching Emissions Calculations - WestRock Fernandina Beach No. 7 Power Boiler

Projected 2028 Actual Thr	Projected 2028 Act	tual SO ₂ Emissions		
Cu				
Davis Ash	14,591	tpy	297	tax
Daik Asii	265,554	MMBtu/yr	387	цру
Cool	51,572	tpy	794	tax
Coai	1,340,872	MMBtu/yr	/ 04	џу
Natural Car	5,810	MMscf/yr	1.7	4
Natural Gas	6,082,548	MMBtu/yr	1./	ιру
LVHC NCG	41,818	ADTUBP	31	tpy
Total Emissions			1,203	tpy
Total Heat Input	7,688,974	MMBtu/yr		
	Post-change SO ₂ (N	o Solid Fuel)		
Natural Gag	7,328	MMscf/yr	2.20	tax
Naturai Gas	7,672,367	MMBtu/yr	2.20	цру
LILED (act. 2 days at 000 MMDty/kg)	478,370	gal/yr	0.05	
OLSD (est. 3 days at 900 MMBtu/hr)	64,800	MMBtu/yr	0.05	ιру
LVHC NCG	41,818	ADTUBP	31	tpy
Total Emissions			33	tpy
Total Heat Input	7,737,167	MMBtu/yr		
SO ₂ Remo	ved		1,171	tpy

Heat Content								
Bark Ash ¹	9,100	Btu/lb						
Coal ¹	13,000	Btu/lb						
Natural Gas ¹	1,047	Btu/scf						
ULSD	135,460	BTU/gal						

1 - Mill Specific Information

Bark Ash Emissions Factor ²							
Bark Ash Emission Factor	2.92	lb/MMBtu					

2 - Calculated from 2019 SO2 CEMS data:

(total SO2 emissions measured by the CEMS minus the SO2 emissions attributable to coal, natural gas and NCG) / (heat input from bark ash)

Coal Emissions Factor ³								
Coal Sulfur Content	0.8	% weight max expected						
Coal Emissions Factor	30.4	lb/ton						

3 - AP-42 Section 1.1

Natural Gas Emissions Factor ⁴								
Natural Gas Emissions Factor	0.6	lb/MMscf						

4 - AP-42 Section 1.4

No. 2 Fuel Oil (ULSD) Emissions Factor ⁵										
No. 2 Fuel Oil (ULSD) Emissions Factor	0.213	lb/10 ³ gal								

5 - AP-42 Section 1.4

NCG Emisions Factor ⁶									
Emission factor for combustion of scrubbed NCG	1.46	lb/ADTUBP							

6 - Calculated from the amount of TRS in LVHC NCG per NCASI Technical Bulletin 1050, Section 4.2.5 and white liquor scrubber control efficiency of 99% for H2S and 80% for methyl mercaptan (NCG passes through the white liquor scrubber prior to combustion in No. 7 Power Boiler).

-											T 1									1	1		
											+ +												
																							Downtime Net downtime assumes that
						Maintenance																	outage can be coordinated with scheduled
						labor &					Water,	wastewater,			Compress							Incremental	equipment downtime: net downtime is
	Good /					materials, % of	Energy, kw/feed rate at		Usage Manpower		gpm at	gpm at St	eam at		air at			Natural		General		Solid Waste	additional downtime beyond the normal
No.	Best	Pollutant	Equipment	Units	Type of chemical	TIC	design rate	units	Factor hr/dy	Testing	design rate	design rate ste	eam rate	units	design rate	units	Fuel cost	units gas usage	units	Utilities	Units	Disposal Units	scheduled outage - days
	Cood	DM	NDCE Kraft Recovery	NA	NA	2 50%	E46 62002	lou/Meelle DLC	70% 2.00	¢ = 000				NA		NA	¢	NA			NA	NA	2
	GOOd	PIM	NDCE Kraft Recovery	INA	INA	3.50%	540.05965	KW/WITHD DES	70% 3.00	\$ 5,000	-	-		INA	-	INA	ә -	- NA -	INA	-	INA	- INA	3
2	Rest	PM	Furnace	NA	NA	3 50%	683 29978	kw/Mmlb BLS	80% 3.00	\$ 5,000				NA		NA	s -	NA -	NA		NA	- NA	3
_	5000		NDCE Kraft Recovery			0.0070	000.20070		0070 0.00	\$ 0,000						101	Ť		101				
3	Good	SO2	Furnace	NA	NA	3.50%	440.92377	kw/Mmlb BLS	70% 3.00	\$ 5,000	148.00	14.80	-	NA	-	NA	\$ -	NA -	NA	-	NA	- NA	3
			NDCE Kraft Recovery																				
4	Best	SO2	Furnace	NA	NA	3.50%	440.92377	kw/Mmlb BLS	80% 3.00	\$ 5,000	148.00	14.80	-	NA	-	NA	\$ -	NA -	NA	-	NA	- NA	3
			NDCE Kraft Recovery																				
5	Good	NOx	Furnace	NA	NA	1.00%	20.14061	kw/Mmlb BLS	70% 0.75	\$ 5,000		-	-	NA	-	NA	\$ -	NA -	NA	-	NA	- NA	3
			NDCE Kraft Recovery							1.													
6	Best	NOx	Furnace	NA	NA	3.50%	4.26257	kw/Mmlb BLS	70% 3.00	\$ 5,000	3.00	-	-	NA	-	NA	\$ -	NA -	NA	-	NA	- NA	3
-			NDCE Kraft Recovery			0.000/	1 000 10		300/														<u>^</u>
/	Best	VOC	Furnace	NA	NA	2.00%	4.03243	KW/MINID BLS	70% 1.50	\$ 5,000		- \$	-	NA	-	NA	\$ -	NA -	NA	-	NA	- NA	3
	Cood	DM	DCE Kraft Recovery	NA	NA	2 50%	746 10010	lou/Masile DLC	70% 2.00	¢ = 000				NA		NA	¢	NA			NIA	NA	2
0	GOOD	PIM	DCE Kraft Bocovory	INA	INA	3.50%	746.10919	KW/IVITIID DLO	70% 3.00	\$ 5,000	-	-	-	INA	-	INA	ә -	INA -	INA	-	INA	- INA	3
9	Rest	PM	Furnace	NA	NA	3 50%	932 63649	kw/Mmlb BLS	80% 3.00	\$ 5,000				NA		NA	s -	NA -	NA		NA	- NA	3
	5000		DCE Kraft Recovery			0.0070	002.00010		0070 0.00	\$ 0,000						10.	Ť		101			100	, i i i i i i i i i i i i i i i i i i i
10	Good	SO2	Furnace	NA	NA	3.50%	601.81726	kw/Mmlb BLS	70% 3.00	\$ 5.000	68.00	6.80	-	NA	-	NA	\$ -	NA -	NA	-	NA	- NA	3
			DCE Kraft Recovery																				
11	Best	SO2	Furnace	NA	NA	3.50%	601.81726	kw/Mmlb BLS	80% 3.00	\$ 5,000	68.00	6.80	-	NA	-	NA	\$ -	NA -	NA	-	NA	- NA	3
			DCE Kraft Recovery																				
12	Best	NOx	Furnace	NA	NA	3.50%	9.27736	kw/Mmlb BLS	70% 3.00	\$ 5,000	3.00	-	-	NA	-	NA	\$ -	NA -	NA	-	NA	- NA	3
I .	_ · _		DCE Kraft Recovery					I T	700/								L	I		1			
13	Good	VOC	Furnace	NA	NA	3.00%	88.64235	кw/Mmlb BLS	70% 3.00	\$ 5,000		-	294.12	ib/hr/Mmlb BLS/day	-	NA	ş -	NA -	NA		NA	- NA	4
	Beat	VOC	DUE Kratt Recovery	NIA	NA	0.0001	001.00/05	lou/Meetle DLO	70%				(15.070)	lh/hr/Mmlk DLO/d		NA		NA	NA	1	NA	NA	20
14	Dest	DM	Smelt Dissolving top!	NA	INA NA	3.00%	264.96165	kw/Mmlb BLS	70% 3.00	\$ 5,000		-	(15,873)	ID/IT/IVITIID BLS/day		INA NA	ф - с	INA -	NA NA		NA NA	- NA	20
15	Best	PM	Smelt Dissolving tank	NA	NA	2.00%	//.4/384 85.22242	kw/Mmlb BLS	80% 1.50	\$ 5,000				NA	-	NA	s -	NA -	NA	1	NA	- NA	3
17	Good	PM	Lime Kilps	NA	NA	3 00%	03.22343	kw/tpd CaO	70% 2.25	\$ 5,000				NA		NA	\$ -	NA	NA	1 -	NA	- NA	3
1/	Best	PM	Lime Kilns	NA	NA	3.00%	0.77501	kw/tpd CaO	80% 2.25	\$ 5,000				NA	-	NA	\$ -	NA	NA	1 -	NA	- NA	3
19	Best	NOx	Lime Kilns	NA	NA	3.50%	0.31083	kw/tpd CaO	70% 3.00	\$ 5.000	35.00		1	NA	-	NA	\$ -	NA -	NA	1 -	NA	- NA	3
20	Best	NOx	Lime Kilns	NA	NA	2.00%	0.68643	kw/tpd CaO	70% 28.57	\$ 5,000	1.97		2.30	lb/hr/tpd CaO	0.05	cfm/tpd CaO	\$ -	NA -	NA	-	NA	- NA	5
21	Good	PM	Coal Boiler	NA	NA	3.00%	0.00444	hp/lb/hr stm	70% 3.00	\$ 5,000		-	-	NA	-	NA	\$ -	NA -	NA	-	NA	39.00 tpy of ash	3
22	Best	PM	Coal Boiler	NA	NA	3.00%	0.00555	kw/lb/hr/stm	80% 3.00	\$ 5,000	-	-		NA	· ·	NA	\$ -	NA -	NA	-	NA	77.00 tpy of ash	3
23	Good	HCI	Coal Boiler	NA	NA	5.00%	0.00270	kw/lb/hr/stm	70% 3.00	\$ 5,000	64.00	20.00	-	NA	-	NA	\$ -	NA -	NA	-	NA	- NA	3
24	Best	HCI	Coal Boiler	NA	NA	5.00%	0.00270	kw/lb/hr/stm	80% 3.00	\$ 5,000	64.00	20.00	-	NA	-	NA	\$ -	NA -	NA	-	NA	- NA	3
			Coal/Wood Boiler							1.													
25	Good	PM	(50/50)	NA	NA	3.00%	0.00444	kw/lb/hr/stm	70% 3.00	\$ 5,000			-	NA	-	NA	\$-	NA -	NA	-	NA	94.00 tpy of ash	3
	Deet	-	Coal/Wood Boiler			0.00%	0.00555	In calls the set of the set	0.00/ 0.00	. E 000												407.00 tour of each	0
20	Best	РМ	(50/50) Coal or Coal/Wood	NA	NA	3.00%	0.00000	KW/ID/NF/Stm	80% 3.00	\$ 5,000	-			NA		NA	э -	NA -	NA	-	NA	137.00 tpy of ash	3
27	Good	502	boiler (50/50)	ΝΔ	NA	3 50%	0.00381	kw/lb/br/stm	70% 3.00	\$ 5,000	1/2.86	14.20		NA		NA	¢ .	NA -	NA		ΝΔ	- NA	3
21	0000	002	Coal or Coal/Wood	11/3	10/3	0.0070	0.00001	KW/ID/III/3011	1070 0.00	φ 0,000	142.00	14.23	-		-	1965	Ψ -	-		-	1975	- 104	5
28	Best	SO2	boiler (50/50)	NA	NA	3.50%	0.00508	kw/lb/hr/stm	80% 3.00	\$ 5.000	142.86	14.29	-	NA	-	NA	s -	NA -	NA	-	NA	- NA	3
			Coal or Coal/Wood							+ 0,000							Ť		1				
29	Good	NOx	boiler (50/50)	NA	NA	2.00%	0.00081	kw/lb/hr/stm	70% 1.50	\$ 5,000		-	-	NA	-	NA	\$ -	NA -	NA	-	NA	- NA	3
			Coal or Coal/Wood																				
30	Best	NOx	boiler (50/50)	NA	NA	2.00%	0.00207	kw/lb/hr/stm	70% 28.57	\$ 5,000	7.43	- 0	0.006939	lb/hr/lb/hr stm	0.00015	cfm/lb/hr stm	\$ -	NA -	NA	-	NA	- NA	5
			Coal or Coal/Wood																				
31	Best	NOx	boiler (50/50)	NA	NA	1.00%	-	NA	0% 1.50	\$ 5,000	-	-	-		-	-	\$ -	NA 0.00120	Mmbtu/hr /Mlb/hr steam	-	NA	- NA	3
			Coal or Coal/Wood			5 000/																	
32	Best	Hg	boiler (50/50)	lb/hr	lime	5.00%	0.00109	kw/lb/hr/stm	70% 3.00	\$ 5,000	64.00	20.00	-		-	· · ·	\$-	NA -	NA	-	NA	15,779.65 tpy of lime & carbon	5
	Deet	~~	Coal or Coal/Wood			0.00%	0.00000	In calls the set of the set	70%	. E 000													0
33	Best	00	boller (50/50)	NA	NA	3.00%	0.00099	KW/ID/NF/Stm	70% 3.00	\$ 5,000			-	NA		NA	\$ -	NA -	NA	-	NA	- NA	3
24	Good	NOV	Gas bailer	NA	NA	2 0.0%	0.00147	kw/lb/br/ctm	70% 1.50	\$ 5,000				ΝΑ		NA	¢	NA	NA		NA	NA	3
35	Best	NOv	Gas boiler	NA	NA	2.00%	0.00197	kw/lb/hr/stm	70% 28.57	\$ 5,000	2.83	-	0.00660	lb/br/lb/br.etm	0.000142	cfm/lb/br stm	¢ -		NA		NA	- NA	5
36a	Good	NOx	Gas turbine	NA	NA	2.00%	0.06667	kw/MW	70% 1.50	\$ 5,000	10.00	-	-	-		-	\$ -	NA -	NA	-	NA	- NA	5
36b	Good	NOx	Gas turbine	NA	NA	2.00%	0.06667	kw/MW	70% 1.50	\$ 5,000	4.76	-	79.3800	lb/hr/MW	/	-	\$ -	NA -	NA	-	NA	- NA	5
37	Best	NOx	Gas turbine	NA	NA	2.00%	13.93333	kw/MW	70% 3.00	\$ 5,000	5.00	-	46.67	lb/hr/MW	1.00	cfm/MW	\$ -	NA -	NA	-	NA	- NA	5
38	Good	PM	Oil boiler	NA	NA	3.00%	-	NA	- 0%	\$ 5,000	-	-		-	1	-	\$ 21.21	\$/yr/lb/hr sti -	NA	-	NA	- NA	3
39	Best	PM	Oil boiler	NA	NA	3.00%	0.00813	kw/lb/hr/stm	70% 3.00	\$ 5,000	-	-	-	NA	-	NA	\$ -	NA -	NA	-	NA	99.00 tpy of ash	3
40	Good	SO2	Oil boiler	NA	NA	3.00%	0.00411	KW/Ib/hr/stm	70% 3.00	\$ 5,000	42.86	4.29		NA	-	NA	ş -	NA -	NA		NA	- NA	3
41	Best	502	UII DOIIER	NA	NA	3.00%	0.00548	KW/ID/Nr/stm	80% 3.00	\$ 5,000	42.86	4.29	-	NA	-	INA	\$-	INA -	NA		NA	- NA	3
40	Good	NOV	Oil boiler	NA	ΝΔ	2 0.0%	0.00140	kw/lb/br/stm	70% 1 50	\$ 5,000				NA		NA	¢	NA	ΝΑ	1	NA	- NA	2
42	Best	NOx	Oil boiler	NA	NA	2.00%	0.00112	kw/lb/hr/etm	70% 1.50	\$ 5,000	A 1A		0.00858	lb/hr/lb/hr etm	0.00019	cfm/lb/hr etm	\$ -	NA	NA	1	NA	- NA	5
43	Good	PM	Wood boiler	NA	NA	3.50%	0.00230	kw/lb/hr/stm	70% 3.00	\$ 5,000	(200.00)	(20.00)	-	NA	-	NA	\$ -	NA	NA	1 -	NA	551.00 toy of ash	5
45	Best	PM	Wood boiler	NA	NA	3.50%	0.00659	kw/lb/hr/stm	70% 3.00	\$ 5,000	-	-		NA	-	NA	\$ -	NA -	NA	1 -	NA	599.00 tov of ash	3
46	Best	PM	Wood boiler	NA	NA	2.00%	0.00083	kw/lb/hr/stm	70% 3.00	\$ 5,000		-	-	NA	-	NA	\$ -	NA -	NA	-	NA	116.00 tpy of ash	5
47	Good	NOx	Wood boiler	NA	NA	3.00%	0.00099	kw/lb/hr/stm	70% 1.50	\$ 5,000	-	-	-	NA	-	NA	\$ -	NA -	NA	-	NA	- NA	3
48	Best	NOx	Wood boiler	NA	NA	3.50%	0.00004	kw/lb/hr/stm	80% 3.00	\$ 5,000	3.00	-	-	NA	-	NA	\$ -	NA -	NA		NA	- NA	3
49	Best	NOx	Wood boiler	NA	NA	2.00%	0.00140	KW/Ib/hr/stm	75% 28.57	\$ 5,000	5.00	- 0	0.004676	Ib/hr/lb/hr stm	0.00010	ctm/lb/hr stm	\$ -	NA -	NA		NA	- NA	5
50	Dest	rig CO	Wood boiler		people limé	5.00%	0.00087	kw/ID/NF/Stm	70% 3.00	\$ 5,000	89.60	28.00	-	IN/A NA		INA NA	ф - с	- NA -	NA NA		NA	1,576.39 tpy of time & carbon	5
51	มตรเ	00		00	19/1	3.00%	0.00099	www.up/nit/Sun	1070 3.00	φ 3,000	·	-	-	11/1		1975	φ -	18/5	11/5		19/5	- NA	3
52	Good	voc	Paper machines	NA	NA	3.00%	0.86089	kw/tpd	70% 1.50	\$ 5,000	1 - 1	-		NA	-	NA	s -	NA -	NA		NA	- NA	5
53	Best	VOC	Paper machines	NA	NA	3.00%	0.31160	kw/tpd	70% 1.50	\$ 5.000	1 - 1	-	-	NA	-	NA	\$ -	NA 0.0047	Mmbtu/hr/tpd	-	NA	- NA	5
54	Best	VOC	Paper machines	NA	NA	3.00%	0.37975	kw/tpd	70% 1.50	\$ 5,000		-	-	NA	-	NA	\$ -	NA 0.00810	Mmbtu/hr/tpd	-	NA	- NA	5
	-																			T			
55	Good	VOC	Mechanical pulping	NA	NA	3.00%	0.32912	kw/tpd	70% 1.50	\$ 5,000	192.00	194.00	(188.51)	lb/hr/tpd pulp	-	NA	\$ -	NA -	NA	-	NA	- NA	3
56	Best	VOC	Mechanical pulping	NA	NA	3.50%	0.04476	kw/tpd	70% 2.25	\$ 5,000	10.00	10.00	-	NA	-	NA	\$ -	NA 0.00371	Mmbtu/hr/tpd	-	NA	- NA	3
57	Best	Various	Recovery Furnace	NA	NA	3.00%	****	KW/Mmlb BLS	70% -	\$ 5,000		650.00 #	*****	ib/hr/Mmlb BLS/day		NA	\$-	NA -	NÁ	0.10%	Of TIC	12.32 tons/day/Mm lb BLS	NA
	Beat	DM	NUCE Kraft Recovery		NA	0.000	04.00700	lou/Meetle DLO	70%	e = 0000				NA		NA			NA	1	NA		^
58	Dest	PIM	NDCE Kroft Deseurer	NA	INA	2.00%	81.08108	KW/MINID BLS	1.50	a 5,000		-	-	INA		INA	ф -	INA -	ANI		NA	- NA	3
50	Good	PM	Furnace	NA	ΝΔ	2 00%	74 22422	kw/Mmlb PI S	70% 1 50	\$ 5,000				NA		NA	¢	NA	NA	1	NA	- NA	2
59 60	Best	PM	Lime Kilns	NA	NA	2.00%	14.32432 0.41667	kw/tpd CaO	70% 1.50	\$ 5,000				NA		NA	ş - \$ -	NA -	NA	-	NA	- NA	3
50						1.0070	0.41007		2.20	\$ 0,000			-		-				1	-	1.0.1	1 1 1	5
61	Best	PM	Coal Boiler	NA	NA	1.00%	0.00183	kw/lb/hr/stm	70% 3.00	\$ 5.000	- I	-		NA	-	NA	\$ -	NA -	NA	- 1	NA	38.00 NA	3
			Coal/Wood Boiler	l	1				. 5.00	,	1 1					İ				1			-
62	Best	PM	(50/50)	NA	NA	1.00%	0.00167	kw/lb/hr/stm	70% 3.00	\$ 5,000	-	-	-	NA	-	NA	\$ -	NA -	NA	-	NA	43.00 NA	3
1		1	NDCE Kraft Recovery		1												1			1	1		
63	Best	NOx	Furnace	NA	NA	2.00%	147.71161	kw/Mmlb BLS	70% 28.57	\$ 5,000	6.54	-	494.73	lb/hr/Mmlb BLS/day	10.60	cfm/Mmlb BLS/day	\$-	NA -	NA	-	NA	- NA	5
			DCE Kraft Recovery						205														_
64	Best	NOx	Furnace	NA	NA	2.00%	209.03447	KW/MmIb BLS	70% 28.57	\$ 5,000	4.25	-	700.12	ib/hr/Mmlb BLS/day	25.50	ctm/Mmib BLS/day	\$-	NA -	NÁ		NA	- NA	5
07	Roct	VOC	Mochanical sulaina	NA	NA	3 500/	0.07000	kw/tod	70%	¢ = 000	202.00	204.00	(100 = 4)	lb/br/tod puls		NA	¢	NA	NA	1	NA	NA	2
65	มษรเ	VUL	wechanical pulping	N/A	INA	3.50%	0.37388	kw/ipu	/ 0% 2.25	ຸຈ ວ,000	202.00	204.00	(168.51)	ылплира ригр	<u> </u>	IN/A	ə -	IN/A -	INA		INPA	- NA	3
88	Good	voc	Mechanical nulping	NA	NA	3 00%	0 32012	kw/tpd	70% 1.50	\$ 5,000	192.00	38.80	(37 70)	lb/hr/tpd pulp	-	NA	\$ -	NA	NA	-	NA	- NA	
50	2000					0.0070	0.02012		1.00	\$ 0,000	.02.00	00.00	(01.10)		-					-			
I				1	1					1						1			1	1		1 1	
67	Best	VOC	Mechanical pulping	NA	NA	3.50%	0.39696	kw/tpd	70% 2.25	\$ 5,000	202.00	48.80	(37.70)	lb/hr/tpd/pulp	-	NA	\$ -	NA 0.00742	Mmbtu/hr/tpd	-	NA	- NA	
													/										
68	Best	VOC	Mechanical pulping	NA	NA	3.50%	0.34847	kw/tpd	70% 2.25	\$ 5,000	10.00	20.00	-	NA	-	NA	\$-	NA 0.0302	Mmbtu/hr/tpd	-	NA	- NA	

Mosaic Fertilizer, LLC South Pierce Facility 13830 Circa Crossing Drive Lithia, FL 33547

February 28, 2023

ELECTRONIC SUBMITTAL

Mr. Hastings Read Florida Department of Environmental Protection Division of Air Resources Management 2600 Blairstone Road Tallahassee, FL 32399

RE: Response to February 1, 2023 Regional Haze Rule Reasonable Progress Analysis Request Letter Mosaic South Pierce Facility Permit Nos. 1050055-035-AV

Dear Mr. Read:

This submittal serves as the Regional Haze Rule Reasonable Progress Analysis for the Mosaic Fertilizer, LLC (Mosaic) South Pierce facility in response to the February 1, 2023 request letter to complete and submit to the Florida Department of Environmental Protection (Department) an analysis regarding the availability of emission controls needed to ensure reasonable progress to visibility goals at Class I areas in and around the State of Florida. The February 1, 2023 Regional Haze Rule Reasonable Progress Analysis request letter includes background on the U.S. Environmental Protection Agency's (U.S. EPA's) Regional Haze Rule, the second implementation period (2018-2028), and the Department's SIP development process.

The South Pierce facility is located in South Pierce, Polk County, Florida and is currently operating under Title V Air Operation Permit No. 1050055-035-AV. The South Pierce facility is classified as a phosphate fertilizer manufacturing facility consisting of two sulfuric acid plants (SAPs). The SAPs manufacture sulfuric acid (H₂SO₄) that is then reacted with phosphate rock (P₂O₅) at nearby Mosaic phosphate fertilizer manufacturing facilities to produce phosphoric acid, which is then ammoniated and granulated to produce fertilizers and animal feed ingredients.

The units listed below are projected to emit more than 5 tons per year of SO_2 in 2028, and the Department requested that Mosaic provide either a reasonable progress four-factor technical analysis or an analysis demonstrating that the unit meets the "effectively controlled unit" exemption at the facility:

- EU 004 Sulfuric Acid Plant No. 10
- EU 005 Sulfuric Acid Plant No. 11

Mosaic has determined that a full four-factor technical analysis would likely result in the conclusion that no further controls are necessary, and this response provides the analysis demonstrating that the SAPs at the South Pierce facility meet the "effectively controlled unit" exemption.

Regional Haze Rule Reasonable Progress Analysis Subject Emission Units

Within the SAP process at the South Pierce facility, molten sulfur is combusted (oxidized) with dry air in the sulfur furnace. The resulting SO_2 gas is catalytically converted (further oxidized) to sulfur trioxide (SO_3) over a catalyst bed in a converter tower. The SO_3 is then absorbed in sulfuric acid. The remaining SO_2 , not previously oxidized, is passed over a final converter bed of catalyst and the SO_3 produced is then absorbed in H₂SO₄. The remaining gases exit to the atmosphere through a high-efficiency mist eliminator. The current permit production capacities and SO_2 emission limits are presented in Table 1.

	SAP # 10	SAP # 11			
	(EU 004)	(EU 005)			
Maximum Production Rate - TPD of 100% H ₂ SO ₄	3,000	3,000			
SO ₂ Emission Limit - Ib/ton of 100% H ₂ SO ₄	4	4			
SO ₂ Emission Limit - Ib/hr of 100% H ₂ SO ₄	500	500			
SO ₂ Emission Limit - ton/year	2,190	2,190			
SO ₂ Emission Limit- Ib/hr CAP	750° CAP, 24-hour block average				
	(6:00 a.m. to 6:00 a.m.)				

Table 1	: South	Pierce SAI	Production	Capacities	&	SO ₂	Emission	Limits
---------	---------	-------------------	------------	------------	---	-----------------	----------	--------

^aSO₂ CAP effective April 1, 2023 (Construction Permit No. 1050055-037-AC)

Effectively Controlled Units

Mosaic has determined that the South Pierce SAPs are effectively controlled with respect to SO₂ emissions and, therefore, they are not subject to a reasonable progress four-factor technical analysis. As outlined below, Mosaic has recently made significant expenditures to effectively control SO₂ emissions at each unit.

The South Pierce SAPs are double absorption sulfuric acid systems equipped with two absorption towers in series to react sulfur trioxide (SO₃) with water to generate sulfuric acid. The SO₂ generated in a double absorption system's sulfur furnace is catalytically oxidized to SO₃ over catalyst beds at a very high rate of 99.7% or greater, resulting in relatively low SO₂ emissions when compared to a single absorption system. A design feature that limits the overall SO₂-to-SO₃ conversion in a single absorption system is the fact that the reaction of SO₂ to SO₃ becomes less favorable as the SO₃ concentration in the system increases with SO₂ conversion efficiencies ranging from only 95% to 98%. The double absorption design improves SO₂-to-SO₃ conversion by using the first absorption tower, a heat recovery system (HRS) absorption tower, to remove SO₃, thereby bringing about a considerable shift in the SO₂-to-SO₃ reaction equilibrium towards the formation of SO₃ in the converter bed(s) located after the first absorption tower, which results in a very high overall SO₂-to-SO₃ conversion for the formation of SO₃ and the first absorption tower of SO₃ converse bed(s) located after the first absorption tower, which results in a very high overall SO₂-to-SO₃ conversion for the first absorption of SO₃ in the converter bed(s) located after the first absorption tower, which results in a very high overall SO₂-to-SO₃ conversion for the first absorption for the first absorption for the first absorption tower at the first absorption tower at the first absorption for
Permit No. 1050055-037-AC added a voluntary SO₂ lb/hr 24-hour block average facility cap that will assist towards the goal of the Regional Haze Rule during the second implementation period, the goal of the EPA's June 12, 2015 Startup, Shutdown, and Malfunction (SSM) SIP Call, and the continued assurance of the National Ambient Air Quality Standards (NAAQS) attainment. The standard catalysts used in sulfuric acid unit SO₂-to-SO₃ converter beds are comprised of potassium and vanadium salts supported on a silica carrier. Cesium-promoted catalysts are like these standard potassium-promoted catalysts, but the potassium promoter is replaced with cesium. The cesium helps to promote SO₂-to-SO₃ conversion at lower temperatures. In the South Pierce SAPs, a cesium-promoted catalyst is used in the SO₂-to-SO₃ converter bed located between each unit's two absorption columns because it promotes a high SO₂-to-SO₃ conversion rate at the lower inlet temperature that

may occur at this converter bed. By using a cesium-promoted catalyst in the last converter bed, the overall SO_2 -to- SO_3 conversion rate is increased, resulting in lower SO_2 emissions from the plant. Appendix 1 provides a summary per SAP of the amount, manufacturer, and type of catalyst installed.

A search of sulfuric acid plant (Process Code 62.015) entries dating back to January 1, 2000 in EPA's RACT/BACT/LAER Clearinghouse (RBLC) database indicates that the combination of dual absorption design and cesium-promoted catalysts represents the BACT for sulfur burning, non-single absorption column sulfuric acid plants. Appendix 2 is a compilation of the results of our search of the RBLC database for sulfur burning, non-single absorption column sulfuric acid plants. Appendix 2 is a compilation column sulfuric acid plants. BACT determinations have been in the range of 3.0 to 4.0 lb/ton for SO₂ emissions.

Additionally, Mosaic has replaced several major components within the South Pierce SAPs during the last decade. These comprehensive replacement activities reduced the SAPs' SO₂ emissions by renovating the units with gastight, more efficient components which improved its overall SO₂-to-SO₃ conversion efficiency. The construction permits authorizing improvements to overall SO₂-to-SO₃ conversion efficiency are presented in Table 2.

Table 2. Construction Permits Authorizing Overall SO₂-to-SO₃ Conversion Efficiency Improvements

Emission Unit	Construction Permit
SAP # 10 (EU 004)	1050055-030-AC
	1050055-037-AC
SAP # 11 (EU 005)	1050055-026-AC & 1050055-027-AC
	1050055-036-AC

In summary, sulfur dioxide emissions from the South Pierce SAPs are effectively controlled by the 750 lb SO_2 /hour, 24-hour block average (6:00 a.m. to 6:00 a.m.) cap, double absorption system technologies with vanadium catalyst for the 1st, 2nd, and 3rd beds and cesium catalyst for the 4th bed in the converters, the use of good combustion practices, and best operational practices to minimize excess emissions during startup and shutdown.

If you have any questions regarding this correspondence please do not hesitate to contact me at 863-800-9283, or email me at <u>Veronica.Figueroa@Mosaicco.com</u>.

Sincerely,

Veronica Firmeno

Veronica K. Figueroa, PE Engineer Lead, Air Permitting & Compliance

enc.

cc:

P. Kane S. Provenzano S. Sorenson J. Hilderman

B. Koplin D. Ford M. Wozniak SWD_AIR@dep.state.fl.us

Appendix 1 Catalyst Improvement Summary

No. 10 SAP (EU 004) Catalyst Conversion Completion Date: March 2019

No. 10 SAP (EU 004)	Catalyst Amount					
Bed	(Liters)	Manufacturer and Type				
A	127,000	GR-330				
В	154,000	XLP-110				
С	167,000	XLP-110				
D	207,000	VK-69				

No. 11 SAP (EU 005) Catalyst Conversion Completion Date: December 2021

No. 11 SAP (EU 005)	Catalyst Amount	
Bed	(Liters)	Manufacturer and Type
A	105,600	GR-330
В	96,000	GR-310
С	114,000	XLP-310
D	164,400	SCX-2000

Appendix 2 EPA RBLC Table for Sulfuric Acid Plants (Process Code 62.015)

RBLCID	FACILITY NAME	CORPORATE OR COMPANY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT		POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT		CASE-BY-CASE BASIS	POLLUTANT COMPLIANCE NOTES
FL-0253	NEW WALES PLANT/MULBERRY	IMC PHOSPHATES MP, INC	7/12/2002	ABSORBER		3,400	T/D	Sulfur Dioxide (SO2)	DOUBLE ABSORPTION PROCESS	3.5	LB/T	BACT-PSD	
FL-0260	PLANT CITY PHOSPHATE COMPLEX	CF INDUSTRIES, INC.	6/1/2004	ABSORBER		3,000	T/D	Sulfur Dioxide (SO2)	DOUBLE ABSORPTION PROCESS IS CONSIDERED AN INHERENT CONTROL TECHNOLOGY SINCE IT CONTROLS EMISSIONS OF SO2.	401	LB/H	BACT-PSD	3.2 LB/T
ID-0015	J R SIMPLOT COMPANY - DON SIDING PLANT	J R SIMPLOT COMPANY	4/5/2004	400 SULFURIC ACID PLANT		2,500	T/D	Sulfur Dioxide (SO2)	DOUBLE-CONTACT PROCESS	999	LB/3 H PERIOD	RACT	3.2 LB/T
MS-0090	MISSISSIPPI PHOSPHATES CORPORATION	MISSISSIPPI PHOSPHATES CORPORATION	11/9/2010	No. 2 Sulfuric Acid Plant (Emission Point AA- 001)	sulfur and air	1,800	T/D	Sulfur Dioxide (SO2)	This is a dual absorption plant with a 2-2 converter design. MPC will replace the vanadium catalyst with cesium catalyst in the 3rd and 4th passes of the converter.	3	LB/T OF 100% H2SO4	BACT-PSD	
MS-0090	MISSISSIPPI PHOSPHATES CORPORATION	MISSISSIPPI PHOSPHATES CORPORATION	11/9/2010	No. 3 Sulfuric Acid Plant (Emission Point AA- 017)	sulfur and air	1,800	T/D	Sulfur Dioxide (SO2)	Dual absorption. Replacing vanadium catalyst with cesium catalyst in 3rd and 4th passes of the 2/2 converter.	3	LB/T OF 100% H2SO4	BACT-PSD	
NC-0088	PCS PHOSPHATE COMPANY	PCS PHOSPHATE COMPANY	9/24/2003	SULFURIC ACID PLANT NO. 4		1,850	T/D	Sulfur Dioxide (SO2)	DUAL ABSORPTION CATALYST	3.7	LB/T	BACT-PSD	
NC-0099	PCS PHOSPHATE	PCS PHOSPHATE	7/14/2000	SULFURIC ACID PLANT NO. 3		2,000	T/D	Sulfur Dioxide (SO2)	Double-absorption sulfuric acid plant	4	LB/T	BACT-PSD	
TX-0519	AGRIFOS SULFURIC ACID PLANT	AGRIFOS FERTILIZER	11/10/2005	H2SO4 PLANT STACK (INCLUDING MSS)				Sulfur Dioxide (SO2)		525	LB/H	BACT-PSD	

RBLC Search Results - Process 62.015; Sulfuric Acid Plants; Sulfur Burning Double Absorption Sulfuric Acid Trains Sulfur Dioxide