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EXECUTIVE SUMMARY 
 
Stony Coral Tissue Loss Disease (SCTLD) was first discovered in the Southeast Florida Coral Reef 
Ecosystem Conservation Area (Coral ECA) in 2014 and has had a devastating impact on the coral 
communities throughout the region. Successful disease interventions north of Biscayne National Park have 
kept corals alive providing a unique opportunity to examine the patterns of novel infection (disease 
incidence) over time and space. New infections varied over time, with total infections higher during June 
– October; the warmest, wettest time of year. New infections were not consistent between corals of the 
same species. Some were highly infected and unresponsive to treatments. Some exhibited high numbers 
of infections every month. Some exhibited low infections intermittently. Some only needed one treatment 
and some were never infected. There was some evidence that corals in closer proximity to each other 
showed more similar patterns of infection over time, suggesting possible links to drivers of disease that 
may be spatially clustered. This report describes an effort to test whether there are predictable patterns of 
SCTLD incidence within a population of Orbicella spp. that relate to gradients in abiotic environmental 
and human drivers within the Coral ECA (Part I). We also test whether there are similar correlates of Dark 
Spot Disease (DSD) and Tissue Loss Disease (TLD) at much broader spatial scales over several hundred 
km. Data sources for tests included disease monitoring data collected yearly from 2005 to 2019 as part of 
the Florida Reef Resilience Program’s (FRRP) Disturbance Response Monitoring program (DRM, Part 
II).  
 
Within the ECA (Part I), we synthesized a number of predictor variables that we hypothesized could be 
linked to SCTLD incidence. These included several biological characteristics of the corals (e.g., width of 
colony, height of colony, proportion of live tissue), abiotic environmental drivers (e.g., depth, seawater 
temperature, seawater nutrient concentrations) and human drivers (e.g., density of septic tanks as a proxy 
for human coastal development), outflow from the Inlet Contributing Areas (ICA), and distance to 
offshore outfall locations). We calculated colony-specific (n=51) estimates of these predictor variables 
and built two statistical models to test their ability to explain spatial and temporal patterns in SCTLD 
infections. Overall, our models showed that spatial variations in SCTLD infection are best explained by a 
positive relationship with the number of septic tanks within a 21km radius, with a noticeable increase in 
infections occurring beyond ~7000 tanks. This suggests some link between SCTLD infection levels and 
potential pollutants or pathogens associated with the presence of septic tanks and other waste-water 
infrastructure. Over time, our models showed that SCTLD infection levels were best explained by the 
flow rate from the nearest Inlet Contributing Area (ICA) to the reef over the previous 7 days, suggesting 
that the amount of water flowing out of the inlets effects the amount of disease on the reef. These results 
indicate that a spatial link exists between southeast Florida coastal urbanized waterways and the condition 
of corals on the reef. The nature and extent of these links warrant urgent and immediate further 
investigation.  
 
Throughout Florida’s Coral Reef (Part II), we synthesized several human predictor variables hypothesized 
to be linked to spatial variations in dark spot disease (DSD) and tissue loss disease (TLD) prevalence. 
These predictors were identified through discussions across the project research team and partly informed 
by our findings from Project Part I and were: 1) The Nature Conservancy (TNC) – Ocean Wealth (as a 
proxy of reef “use” by people), 2) Wastewater, 3) Septic Tanks, 4) Land Use, 5) Water Quality, and 6) 
Human Population Density. These data were quantified using a range of metrics and across a range of 
scales and combined with depth, coral host abundance, survey year (to account for the temporal nature of 
the disease data), and a range of metrics to capture habitat types, resulting in 109 predictor variables in 
total. We built statistical models using a boosted regression tree (BRT) framework to test the ability of 
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our predictors to explain variation in disease ‘hotspots’ (areas of unusually high disease occurrence) and 
the number of diseased coral hosts at 2,508 sites for DSD and 2643 sites for TLD.  
 
Along Florida’s Coral Reef, our models explained ~64% of the underlying variation in the number of DSD 
cases. The number of DSD cases increased as both surface water silica concentration and coral host 
abundance increased, and became maximized where silica exceeded 1.15 uM/L and where there were 
>100 coral hosts. Silica in coastal waters is often used as a proxy for land-based run-off and this correlation 
with DSD warrants further investigation. DSD prevalence was higher in areas with >13x106 m2 septic area 
within 8km regardless of coral host abundance, but cases were highest where this coincided with >100 
coral hosts. The models explained ~40% of the underlying variation in DSD hotspot occurrence using 13 
predictors. DSD hotspot occurrence was notably higher in areas of aggregate reef, where there was mud 
with infrequent (<10%) live coral cover, pavement, and shallow sandy areas (i.e., areas of overall poor 
habitat quality). DSD hotspot occurrence was also higher in shallower waters, especially less than 20 ft 
depth, regardless of habitat type. In contrast, our ability to predict spatial variations in TLD cases was less 
than half that as for DSD. Variations in TLD cases were driven by variations in habitat type, were higher 
in survey years beyond 2015, and where there were higher numbers of susceptible coral hosts. There were 
no meaningful predictors of spatial variations in TLD hotspots. It is possible that the annual movement 
of SCTLD across the reef confounded the TLD relationships and more investigation is needed to tease 
this out. 
 
These investigations showed that coastal urbanization and water management influence the number of 
coral disease lesions on Florida’s Coral Reef at both large (100s km, across years) and small (within the 
ECA, across months) spatiotemporal scales. The strength of these relationships is concerning and 
intriguing and highlights the need for further research. In particular, predicting SCTLD patterns within 
the ECA (Part 1) could be greatly enhanced by: extending the timeline of the monitoring data (data 
presently exist); expanding the number of spatial scales over which we quantify the predictors; and, 
including additional predictor variables that capture a greater range of coastal human impacts to reefs 
(e.g., major sewage outbreaks, rainfall and coastal runoff). There is also a need to consider more detailed 
host-specific factors within the coral holobiont that might influence a particular colony’s ability to resist 
SCTLD. Identifying these biological factors and investigating how they interact in our models with abiotic 
environmental drivers may increase our ability to explain patterns of SCTLD within the ECA. These 
outcomes could identify the causative factors of increased coral disease and lead to effective management 
actions that reduce coral disease incidence and generally benefit coral health. 
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BACKGROUND 
 
In 2019-20, DEP funded NSU (PO# B558F2) to continue previous coral disease interventions with the 
expectation of adapting to new methodologies to improve intervention success in the Southeast Florida 
Coral Reef Ecosystem Conservation Area (Coral ECA). These actions included increasing the 
monitoring and continued treatment of the priority large corals to 90 corals, conducting broadscale strike 
team reconnaissance and disease interventions, further testing of permitted intervention techniques and 
materials, and the identification of unique coral disease survivor sites.  This information provided data 
on treatment effectiveness (i.e. which treatment saved the largest large colonies from extreme tissue 
loss); initiated probiotics testing; provided data on tissue loss rates, survivor sites, new infection rates 
through time, and classifying large corals into categories based on infection rates for future hypothesis 
testing.  
 
In August 2020, DEP funded NSU (PO# B7B6F3) to continue the previous tasks and include additional 
components using advanced statistical modeling approaches to analyze data and identify possible 
environmental correlates to the previously observed new infection patterns and hot spot coral disease 
clustering throughout Florida’s Coral Reef (Task 6). NSU contracted SymbioSeas and collaborated with 
Gareth J. Williams, Dr. Greta Aeby and Dave Whitall to help with the statistical modeling.  
 
This project used state-of-art statistical analyses to model the abiotic environmental and human drivers 
of stony coral tissue loss disease (SCTLD) in the Coral ECA and Dark Spot Syndrome (DSD) and Tissue 
Loss Disease (TLD) in the Coral ECA and Florida Keys. Project Part I modeled the spatial and temporal 
drivers of SCTLD incidence (the occurrence of novel infections over time) on 51 monitored corals in the 
Coral ECA. Project Part II modeled the spatial variation in DSD and TLD disease ‘hotspots’ (areas of 
unusually high disease occurrence) and the number of diseased colonies across over 2000 sites along SE 
FL and the FL Keys. First, we report the methods and results of Part I by task objectives. Objective 1 
reports on the data spatial processing of monitored corals and environmental predictors. Objective 2 
reports on modeling the environmental and human drivers of DSD and TLD disease hotspots and 
number of disease cases. Then, we report the methods and results of Part II by task objectives: Objective 
3 – Predictor variable synthesis and Objective 4 – Modeling drivers of regional disease hotspots. 
 

1. PART I – MODEL TEMPORAL AND SPATIAL DRIVERS OF LARGE CORAL LESIONS 
 

 Objective 1: Data processing of monitored corals and environmental/human predictors.  
 
To understand coral disease dynamics on reefs requires detailed information on the occurrence of novel 
disease cases in the population (disease incidence) (Work et al. 2008; Williams et al. 2010b). Here we 
used an unprecedented in situ monitoring data set of 51 of the 90 priority corals (Orbicella spp.) in the 
Coral ECA that were consistently visited monthly from September 2018 to April 2020 to record the 
occurrence of new SCTLD lesions. These monitoring efforts give us a measure of disease incidence 
through time that we could relate to colony-specific attributes (e.g., colony size, colony estimated live 
tissue) and concurrent spatial gradients in suspected environmental drivers of disease occurrence. Coral 
disease dynamics are often intricately linked to surrounding environmental conditions that can increase 
host susceptibility and pathogen virulence and in doing so drive patterns of disease prevalence and 
incidence across the seascape (Williams et al. 2010, Maynard et al. 2015, Aeby et al. 2020). Here we 
synthesized a number of data layers of suspected environmental drivers (both abiotic and human) of 
SCTLD dynamics over different spatial and temporal scales from a number of different sources, 
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including in situ oceanographic data (e.g., seawater temperature and nutrient concentrations) and online 
data repositories, including flow data from the South Florida Water Management District (DBHYDRO), 
and estimates of human stressors associated with coastal development from Southeast Florida Coral 
Reef Initiative’s (SEFCRI) Our Florida Reefs (OFR) marine planner. We also looked into the possibility 
of using satellite-derived data for estimates of water quality (chlorophyll-a from MODIS) and sea-
surface temperature (from Pathfinder). 
 
 

1.1.1. Objective 1.1 
 

1.1.1.1. Results 
 
There appeared to be a temporal signal in the number of novel SCTLD lesions developing on the 
monitored large corals (n=51) over time, with three distinct periods of higher disease levels in 
September 2018, December to January 2019, and June 2019 to August 2019 (Figure 1). Several colonies 
(n=18) experienced no SCTLD lesion development over the timeseries, leading to a highly zero-inflated 
data set. When examined as a total number of novel lesions across all corals, this temporal pattern was 
clearer (Figure 2). 
 
 

 
 
Figure 1. SCTLD disease incidence (number of novel SCTLD lesions over time) on 51 large corals monitored 
monthly from September 2018 to April 2020 (each line represents a different coral). Some corals (n=18) did not 
experience any lesion development over the timeseries. 
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Figure 2. SCTLD disease incidence (number of novel SCTLD lesions over time) across 51 large corals monitored 
monthly from September 2018 to April 2020 (shown as a total of all lesions across all corals). Some corals (n=18) 
did not experience any lesion development over the timeseries. 
 
 
 

1.1.2. Objective 1.2 – SECREMP in situ seawater temperature 
 

1.1.2.1. Methodology 
 
Subtle in situ variations in seawater temperature can have profound effects on the ecology of coral reef 
communities (Sheppard 2003; Williams et al. 2010a) including coral disease dynamics (Ben-Haim et al. 
2003; Ward et al. 2007; Heron et al. 2012). In particular, periods of extreme high temperatures have 
been linked to increased prevalence and incidence of coral diseases on reefs (Bruno et al. 2007; 
McClanahan et al. 2009; Williams et al. 2011). Here we quantified background variations in in situ 
variations in seawater temperature within the vicinity of our 51 monitored large corals using four 
HOBO© Pro temperature loggers deployed for the Southeast Florida Coral Reef Evaluation and 
Monitoring Project (SECREMP) with 2-hr temporal sampling resolution. The HOBO loggers covered a 
total period of August 2017 to September 2020, but there were discrepancies in temporal coverage 
between loggers (DC1 covered August 2017 – July 2018, DC6 covered August 2017 – August 2018, 
DC8 covered August 2019 to July 2020, and BC1 covered March 2019 – September 2020). Because of 
this, and the consistency in temperature temporal patterns between loggers, we treated the set of four 
loggers as one sampling unit. 
 
First, each HOBO logger was spatially joined to the nearest large coral location. We then extracted the 
seasonal mean and standard deviation (SD) for summer (July 1st – September 31st) from each HOBO 
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timeseries and from this calculated the number of anomalously high temperature events using the “Hot 
Snap” metric, defined as any temperature event that exceeded 1SD of the long-term seasonal mean 
(Heron et al. 2010). We used a “period of accumulation” (sensu Heron et al. 2010) of 3, 7, 30, and 90 
days, meaning that for each monthly coral survey across our disease survey timeline (September 2018 to 
April 2020), we calculated the number of Hot Snaps over the previous 3, 7, 30, and 90 days. We then 
multiplied this summed number of Hot Snap events by two to estimate the number of exposure hours 
(due to the 2-hr sampling resolution of the loggers, i.e., one event equaled two hours, two events equaled 
4 hours and so on) (Table 1). 
 

1.1.2.2. Results 
 
There was clear temporal variation in the number of in situ Hot Snap exposure hours across our disease 
survey period from September 2018 to April 2020, with the number of hours generally higher from July 
to October in both 2018 and 2019. Across the entire disease survey period, the number of in situ Hot 
Snap exposure hours for any individual three-month period prior to the monthly disease surveys ranged 
from 0 to 522, while mean temperatures ranged from 23.87 to 30.42 °C, with a standard deviation of 
0.41 to 1.91 °C and a maximum temperature ranging from 25.87 to 32.25 °C (Appendix 1). 
 
 
Table 1. Example summed number of Hot Snap events (expressed as total exposure hours) for one of our 51 
monitored large corals (LC-120) across the three months prior to each disease survey date from September 2018 to 
April 2020. Also given is the mean, standard deviation (1SD) and maximum temperature (°C) experienced over the 
three-month period prior to each disease survey date. Hot Snap values for each monitored large coral (n=51) can be 
found in Appendix 1. Survey date is day/month/year. 
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1.1.3. Objective 1.3 – Satellite-derived ocean color using MODIS 
 

1.1.3.1. Methodology 
 
Satellite-derived data can provide useful proxies for in situ environmental parameters in the ocean. For 
example, chlorophyll-a can serve as a useful proxy of phytoplankton biomass in ocean surface waters 
(Gove et al. 2013) and down through the photic zone (Gove et al. 2016) that are reflective of increased 
nutrient concentrations. Chlorophyll-a can be estimated using ocean surface color using NASA’s 
Moderate Resolution Imaging Spectroradiometer (MODIS), however these data are confounded by 
nearshore shallow-water phenomena like sand reflectance and albedo effects (Gove et al. 2013). 
Furthermore, MODIS imagery estimates near-surface ocean color and can therefore miss the impact of 
suspended sediment settling out, or it can overestimate poor water quality due to continued suspension 
of fine sediments that never actually settle out on to the reef.   
 
 

1.1.3.2. Results 
 
Having assessed the MODIS imagery for the Coral ECA, we decided the data were not of sufficient 
quality to estimate water quality experienced by our individual monitored corals due primarily to the 
spatial mismatch between the satellite images (4 km spatial resolution) and the spatial autocorrelation 
present within our coral disease data set (~250 m, see Objective 1.7). In short, multiple corals that 
showed different disease incidence patterns would fall within the same 4 km pixel and thus be attributed 
the same chlorophyll-a value making any discernible pattern between SCTLD incidence and 
chlorophyll-a within a statistical model obsolete. This, on top of the nearshore issues of pixel 
contamination, meant we did not pursue this further and concluded MODIS data were not appropriate in 
this case. 
 
 

1.1.4. Objective 1.4 – In situ seawater nutrient concentrations and water quality 
 

1.1.4.1. Methodology 
 
Increased nutrient concentrations in seawater can increase coral disease prevalence and severity within 
coral populations (Bruno et al. 2003; Voss and Richardson 2006). Here we quantified spatial variations 
in various in situ nutrient parameters from multi-year NOAA/FDEP water sampling stations in the Coral 
ECA and linked these measurements to our 51 monitored large corals (each large coral was spatially 
joined to the nearest five water sampling stations) (Figure 3). We quantified several analytes 
hypothesized to be linked to SCTLD dynamics (phosphate, nitrate, total nitrogen, total suspended solids) 
over four temporal windows: 3, 7, 30 and 90 days prior to each disease survey to match the periods of 
accumulation for our estimates of in situ seawater temperature stress (Table 2). After discussions across 
the research team, we decided to focus on measures of total nitrogen and total suspended solids due to 
their known links to coral disease dynamics on reefs (Bruno et al. 2003, Pollock et al. 2014). Upon 
examination of the data outputs, the 3- and 7-day temporal windows yielded too many missing data 
points and so only the 30 and 90 data temporal windows were included in subsequent analyses. 
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Figure 3. Location of our 51 monitored large corals (red dots) and NOAA/DEP water sampling stations (green 
dots) across our survey area. Each large coral was spatially joined to the nearest five water sampling stations. 
 
 
Table 2. Example in situ total nitrogen (TotalN, mg/L) and total suspended solids (TSS, mg/L) for one of our 51 
monitored large corals (LC-120) for the 90 days prior to each disease survey date. SD, standard deviation. Count, 
number of replicates. Survey date is day/month/year. 
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1.1.5. Objective 1.5 – Satellite-derived sea-surface temperature (SST) using Pathfinder 
 
After examining the spatial spread of our 51 monitored large corals and the extent of spatial clustering 
between them, we decided that 5-km resolution Pathfinder data would not be suitable for this Part I 
analysis due to the fact that: 1) multiple corals would receive the same Pathfinder pixel (and thus same 
SST values) and 2) that the in situ HOBO temperature data (Objective 1.2) was of superior quality for 
our disease incidence modeling. 
 
 

1.1.6. Objective 1.6 – additional host-specific, environmental, and human impact variables  
 

1.1.6.1. Methodology 
 
We synthesized a number of predictors identified as suspected drivers of SCTLD disease incidence on 
the 51 monitored large corals over time. These included depth, colony-specific morphometrics (planar 
length, planar width, planar height, linear length, linear width, colony surface area, estimated live tissue 
surface area), and human drivers associated with water nutrient pollution (DBHYDRO flow data, 
distance to septic tanks, distance to each outfall location). 
 
DBHYDRO flow data: 
 
We quantified a proxy for nutrient exposure to the 51 monitored large corals using the South Florida 
Water Management District’s DBHYDRO database (https://www.sfwmd.gov/science-data/dbhydro).  
This environmental database stores hydrologic, meteorologic, hydrogeologic and water quality data and 
is the source of historical and up-to-date environmental data for the 16-county region covered by the 
District. Using this database, we generated estimates of water flow from individual Inlet Contributing 
Areas (ICA) to the corals as a proxy for exposure to land-based sources of nutrients and pollutants. 
Previous analyses by NOAA show there to be a correlation between in situ water nutrient concentrations 
and flow data from the DBHYDRO database (Whitall et al. 2019). To generate colony-specific estimates 
of flow, we followed the following workflow: 
 

1. Initial station search using the following search parameters: 
v_procedure|show_dbkey_info.web_qry_form| 
v_category|SW| 
v_js_flag|Y| 
v_paramStr|data_type/frequency/statistic_type/agency/active_dbkeys| 
v_data_type|FLOW| 
v_frequency|DA| 
v_statistic_type|MEAN| 
v_agency|| 
v_active_dbkeys|Y| 
 
This gave a total returned rows of 1360. 
 

2. Spatial join to ICAs, using a nearest neighbor approach (Figure 4, polygons are the ICAs that 
were joined to the green coral locations. The red dots are the DBHYDRO monitoring stations 
that were joined to each ICA). 

 

https://www.sfwmd.gov/science-data/dbhydro
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Figure 4. Inlet Contributing Area (ICA) polygons, DBHYDRO monitoring stations (red dots) and the 51 monitored 
large corals (green dots). 
 

 
3. Remove points >79m (260 ft) from the ICAs due to the fact that some points are directly on the 

polygons and not picked up by our initial spatial join. This resulted in 160 remaining stations. 
 

4. Removed points that ended before 2020, leaving a total of 105 remaining stations. 
 

5. For each station we downloaded the flow data and used a custom-written R script to extract and 
sum each station for each date and ICA (Appendix 2). We did this for 4 temporal windows prior 
to the iterative survey dates for each individual coral (3, 7, 30 and 90 days). For an example, see 
Table 4. 

 
Distance to each outfall location and septic tank densities: 
 
We measured the linear distance (km) from each monitored large coral (n=51) to each outfall pipe 
(BAK030, PEV050, HIL060, BOC080, GOC014) location using a simple spatial join. The number of 
septic tanks were enumerated within a series of expanding radial buffers from each coral that followed a 
Fibonacci sequence: 1, 2, 3, 5, 8, 13, and 21 km (Figure 5). 
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Figure 5. Left: Location of outfalls (yellow dots) and the 51 monitored large corals (green dots). Right: Radial 
buffer method to link each of the 51 monitored large corals (green dots) to the number of septic tanks (red dots) in 
the vicinity. 
 
 

1.1.6.2. Results 
 
Depth and colony morphometrics: 
 
Depth of the colonies ranged from 5.2 m to 9.1 m. Planar length of the colonies ranged from 180 cm to 
460 cm, planar width from 120 cm to 445 cm, planar height from 50 cm to 255 cm, linear length from 
175 cm to 660 cm, and linear width from 140 cm to 575 cm. The surface area of the colonies ranged 
28,701 cm2 to 249,555 cm2, the proportion of live coral ranged from 0.1 to 1.0, and the estimated live 
tissue coverage of the colonies ranged from 14,268 cm2 to 201,244 cm2 (Table 3). 
 
DBHYDRO flow, distance to outfall locations, and septic tank densities 
 
Flow data were highly variable through time. For example, the estimated flow of the ICA linked to LC-
002 (in cubic feet per second) ranged from 0 to 4498 (3 days prior to survey date), 0 to 8926 (7 days), 
366 to 34501 (30 days) and 4463 to 96280 (90 days) from September 2018 to April 2020. Similarly, the 
estimated flow of the ICA linked to LC-003 (in cubic feet per second) ranged from 0 to 4498 (3 days 
prior to survey date), 0 to 8478 (7 days), 366 to 33789 (30 days) and 4463 to 96774 (90 days) from 
September 2018 to April 2020 (Table 4). For flow data for each individual large coral over the 
timeseries please see Appendix 3. Across the 51 colonies, the distance to each outfall pipe varied by 10s 
km (Table 5), and the number of septic tanks ranged from 5632 to 10247 (21 km radius), 108 to 5732 
(13 km radius), 7 to 1439 (8 km radius), 0 to 244 (5 km radius), 0 to 62 (3 km radius), 0 to 3 (2 km 
radius), and no tanks were observed within 1 km radius of any colony (Table 6). 
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Table 3. Summary of colony-specific morphometrics measured in April 2020 for 51 monitored large corals 
(Orbicella spp.) in the Coral ECA.  
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Table 4. DBHYDRO flow data (summed flow in cubic feet per second) for two of the 51 monitored large corals 
(LC-002 and LC-003) over 4 temporal windows prior to each successive survey visit. UID, unique ID for internal 
accounting. ICA, Inlet Contributing Area. These data were generated for all 51 colonies. For flow data for each of 
the 51 corals please see Appendix 3. Survey date is day/month/year. 
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Table 5. Pairwise distances (km) to each outfall pipe location from each of the 51 monitored large corals (LC).  
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Table 6. Number of septic tanks within a series of radial buffers from each of the 51 monitored large coral (LC) 
colonies. 
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1.1.7. Objective 1.7 
 
To test for spatial autocorrelation in the development of novel SCTLD lesions over time, we used 
normalized mark variograms using the markvario function in the R package spatstat (Baddeley et al. 
2015). The mark variogram gamma(r) of a marked point process X is a measure of the dependence 
between the marks of two points of the process a distance r apart, defined as: 

gamma(r) = E[(1/2) * (M1 - M2)^2 ] 

where E[ ] denotes expectation and M1,M2 are the marks attached to two points of the process a 
distance r apart. This allowed us to determine if corals closer in space had more similar SCTLD lesion 
incidence dynamics than those further apart. We found that the occurrence of novel SCTLD lesions 
occurring within any given month across the time series was spatially clustered, with corals within 250 
m of each other showing more similar disease incidence patterns than those further apart (Figure 6). 

 

 

 

 
 
Figure 6. Spatial autocorrelation of novel SCTLD lesions on 51 monitored large corals by month (September 2018 
to April 2020) measured as semivariance using normalized mark variograms. Most months reach their first peak 
and estimated total variance (1, horizontal dashed line) at a distance of ~250 m (vertical grey line), indicating that 
at smaller distances the points are autocorrelated. 
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To ensure the spatial autocorrelation signal was not being dominated by a single group of closely 
situated corals in the Fort Lauderdale area, we randomly subsampled the data points with a minimum 
spacing of 50 m, removing all but one point from the Fort Lauderdale cluster, as well as removing other 
very closely situated points elsewhere (n = 31). The spatial autocorrelation patterns remained similar 
(Figure 7), with the exception of a few months now showing an inverse pattern with increasing 
autocorrelation (decreasing variance) from 0 to 250 m. These months did include the two months with 
the most non-zero entries (September 2018 and December 2018) and the three months with the highest 
total number of novel lesions (September 2018, December 2018 and August 2019). This information on 
spatial autocorrelation in the SCTLD incidence patterns will inform our modeling efforts in Objective 2. 
 
 

 
 
Figure 7. Spatial autocorrelation of novel SCTLD lesions on 31 monitored large corals by month (September 2018 
to April 2020) measured as semivariance using normalized mark variograms on resampled data (minimum spacing 
of 50 m, n = 31). Most months reach their first peak and estimated total variance (1, horizontal dashed line) at a 
distance of ~250 m (vertical grey line), indicating that at smaller distances the points are autocorrelated. 
 
 
 

1.1.8. Objective 1.8 Data synthesis for statistical modelling 
 
Each of the 51 monitored large corals was spatially joined to our array of human/environmental 
predictors using the methods outlined above and summary tables were created for subsequent statistical 
modelling. 
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 Objective 2: Model environmental drivers of SCTLD incidence over time. 
 
Coral disease data are challenging to model due to the often zero-inflated nature of the data as a result of 
low overall disease prevalence and incidence within coral populations (Williams et al. 2010b; Aeby et 
al. 2011a; Aeby et al. 2011b). This means many traditional statistical modeling techniques are 
inappropriate. Distance-based permutation tests, however, have the flexibility to deal with such zero-
inflated data as they make no prior assumptions about the data distribution and therefore prerequisites 
such as normality do not have to be satisfied (McArdle and Anderson 2001). Here we modeled the 
disease incidence patterns observed across our 51 monitored large corals from September 2018 to April 
2020 (Figure 1) against a series of colony morphometrics, human and abiotic predictors hypothesized to 
be linked to SCCTLD incidence (summarized in Objective 1). The power of this monitoring data set is 
to be able to say with confidence whether corals experienced repeat infections over space and time. 
 

1.2.1. Methodology 
 
We quantified the number of novel SCTLD infections over time from monthly visits to our 51 large 
corals from September 2018 to April 2020. Based on their total number of infections over this time 
period, we classified them into 1 of 5 levels of infection: high, moderate, low, once, never (Table 7). 
 
Spatial and temporal model: We first modeled the total number of novel SCTLD infections across the 
entire disease timeseries (September 2018 to April 2020, Table 7) against our suite of colony 
morphometric, human and abiotic predictors (spatial model) using distance-based permutational 
multiple regression (McArdle and Anderson 2001). The approach carries out a partitioning of variation 
in a data set described by a resemblance matrix according to a multiple regression model. Predictor 
variables can be categorical or continuous and the technique makes no prior assumptions about the 
nature of the response variable distribution, meaning that normality does not have to be satisfied.  
 
We first investigated the predictor variables (n=26) for collineation using pairwise Pearson’s 
correlations (r) and removed one of the two predictors for any that equaled r > 0.8 (Table 8). This 
resulted in a total of 12 predictor variables: depth (m), linear width of the colony (cm), surface area of 
the colony (cm2), the proportion of live coral on the colony, the area of live tissue on the colony (cm2), 
DBHYDRO 30 and 90 days prior to each survey date (mean value of these across all survey dates for 
each large coral), number of septic tanks within 5 km and 21 km, mean total suspended solids 30 days 
prior to each survey date (mean value of these across all survey dates for each large coral), and linear 
distance to nearest outflow (km) (note that we also examined the effect of adding the distance to each 
outfall as separate predictors in the model but this did not change the results presented here). The 12 
predictors were normalized to account for variations in their data range and units. We calculated all 
possible candidate models (unique combinations of the predictors) and ranked them based on Akaike 
Information Criterion (Akaike 1973) with a second-order bias correction applied (AICc) (Hurvich and 
Tsai 1989; Burnham and Anderson 2004) to account for the relatively large number of predictor 
variables relative to independent response variables. We then repeated this entire process above to 
model the relationship between the predictors and the total number of SCTLD infections by month over 
time from September 2018 to April 2020 (temporal model). 
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Table 7. Our 51 monitored large corals, their total number of SCTLD infections from September 2018 to April 
2020, and our designated categorical level of infection (5 levels). Note the “level of infection” is for display purposes 
only; it was not used as a variable in the statistical modelling. 
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Table 8. Pairwise Pearson’s correlation (r) values for our suite of colony morphometric, human and abiotic predictor variables. We removed one of the two 
predictors for any pairwise comparisons that equaled r > 0.8. Note that distance to outflow was chosen above number of Hot Snap exposure hours due to our 
hypothesis that variations in temperature are more likely to be linked to changes in disease dynamics over time rather than across space over such small 
distances.  
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1.2.2. Results 
 

1.2.2.1. Spatial model 
The total number of SCTLD infections ranged from 0 to 49 on any individual large coral 
colony from September 2018 to April 2020 (Table 7) and this spatial variation was best 
explained by three predictors (Table 9), namely the number of septic tanks within a 21 
km radius (35.1% variation explained), the proportion of live coral on the colony (11.2% 
variation explained), and to a lesser extent depth (6.4% variation explained).  
 
Overall, this model explained 52.7% of the spatial variation in the total number of 
SCTLD infections over the entire time period (Table 10). SCTLD infections showed a 
positive correlation with the number of septic tanks within a 21 km radius, with a 
noticeable increase in infections occurring beyond ~7000 tanks (Figure 8). SCTLD 
infections showed a negative correlation with the proportion of live coral on a colony, 
with colonies having more than 60% live tissue having fewer infections (Figure 9). There 
were deviations from the mean trend in both cases, and some of these outliers should be 
investigated further to determine why some of these corals are more susceptible or more 
resistant to infection. These model results can provide guidance for such targeted future 
investigation. Patterns with depth were less clear, although suggestive of corals at mid-
depths (6-7 m) having more infections than those shallower or deeper. However, depth 
contributed relatively little to overall performance of the optimal model and this 
relationship should be interpreted with caution. These results remained largely unchanged 
when the Ft Lauderdale coral cluster was removed, the only difference was that depth no 
longer formed part of the optimal model and overall model performance dropped by 7.1% 
to 45.6% overall variation explained. 
 

1.2.2.2. Temporal model  
The total number of novel SCTLD infections (disease incidence) varied over time and 
ranged from 2 to 60 in any given month from September 2018 to April 2020 (Figure 2). 
There were 11 predictors for which we had temporal estimates: DBHYDRO flow over 
3/7/30/90 days prior to the disease survey date, total number of Hot Snap exposure hours 
3/7/30/90 days prior, mean total suspended solids and mean total nitrogen over the 
previous 90 days (mean total nitrogen over the previous 30 days had one time point 
missing data and so was excluded). Of these, seven were included in our model fitting 
process following pairwise calculations for colinearity, namely DBHYDRO 7 and 90 
days prior, total number of Hot Snaps over the previous 7 and 90 days and mean total 
suspended solids over the previous 3 months (Table 11). The temporal variation was best 
explained by a model containing a single predictor (Table 12), namely the mean summed 
total DBHYDRO flow over the previous 7 days, that explained 49.7% of the variation in 
the number of SCTLD infections over time (Table 13). The number of SCTLD infections 
over time was positively correlated with mean flow and appeared extremely linear 
(Figure 10). Two months in particular deviated from this mean trend, namely December 
2018 and January 2019, which had higher than expected disease levels. This warrants 
further investigation. 
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Table 9. Spatial model output. Predictor variables included in the model fitting process (trial) and 
those excluded due to high colinearity, the optimal model solution for each unique number of 
predictor variables, and the overall optimal model solutions ranked by their Akaike Information 
Criterion (AIC)c scores and the top model that balances model performance and parsimony shown 
in bold. 
 
Predictor variables for model fitting 
 1 Depth (m) Trial 
 2 Planar Length (cm) Exclude 
 3 Planar Width (cm) Exclude 
 4 Planar Height (cm) Exclude 
 5 Linear Length (cm) Exclude 
 6 Linear Width (cm) Trial 
 7 Surface Area Coral (cm) Trial 
 8 Proportion Live Coral Trial 
 9 Live Tissue (cm2) Trial 
10 dbHydro_3 Exclude 
11 dbHydro_7 Exclude 
12 dbHydro_30 Trial 
13 dbHydro_90 Trial 
14 OutFlow_KM Trial 
15 Septic_21km Trial 
16 Septic_13km Exclude 
17 Septic_8km Exclude 
18 Septic_5km Trial 
19 HotSnap_total_3 Exclude 
20 HotSnap_total_7 Exclude 
21 HotSnap_total_30 Exclude 
22 HotSnap_total_90 Exclude 
23 TSS_mean_30 Trial 
24 TSS_mean_90 Exclude 
25 TN_mean_30 Trial 
26 TN_mean_90 Exclude 
 
Optimal solution for each number of variables 
    AICc      R2        RSS             No.Vars  Selections 
    226.92   0.35137    4015.6     1   15 
    219.48   0.4637      3320.2     2   8,15 
     215.4    0.5273      2926.4     3   1,8,15 
    216.34   0.54128    2839.9     4   1,8,15,25 
    216.63   0.56137    2715.5     5   1,8,12,13,15 
    215.73   0.5912      2530.8     6   1,8,12,13,15,25 
    216.15   0.61004    2414.2     7   1,8,12-15,25 
    216.28   0.6311      2283.8     8   1,7,9,12-15,25 
    218.31   0.63885    2235.8     9   1,7,9,12-15,18,25 
    221.15   0.64187    2217.1     10   1,7-9,12-15,18,25 
    224.41   0.64315    2209.2     11   1,6-9,12-15,18,25 
    227.99   0.64345    2207.4     12   1,6-9,12-15,18,23,25 
 
Overall optimal solutions 
    AICc      R2            RSS         No.Vars  Selections 
    215.4      0.5273     2926.4     3   1,8,15 
    215.73    0.5912     2530.8     6   1,8,12,13,15,25 
    216.15    0.61004   2414.2     7   1,8,12-15,25 
    216.28    0.6311     2283.8     8   1,7,9,12-15,25 
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    216.34   0.54128    2839.9         4  1,8,15,25 
    216.63   0.56137    2715.5         5  1,8,12,13,15 
    216.94    0.6263    2313.5         8  1,7,8,12-15,25 
    217.07   0.53463      2881         4  1,8,15,18 
    217.45   0.57717    2617.7         6  1,8,12-15 
    217.75   0.52839    2919.7         4  1,7,9,15 
 

 
Figure 8. Correlation between total number of SCTLD infections from September 2018 and April 
2020 and the number of septic tanks within 21km radius (n=51). 
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Figure 9. Correlation between total number of SCTLD infections from September 2018 and April 
2020 and the proportion of live coral on a colony (n=51). 
 
 
Table 10. Optimal spatial model summary, showing statistics for each of the three predictors 
included in the optimal spatial model, the proportion of variation in the response variable matrix 
they explain (Prop.) and the cumulative proportion of variation in the response variable matrix they 
explain (Cumul.). Overall, these three predictors explain 52.7% of the spatial variation seen in total 
SCTLD infections from September 2018 to April 2020. 
 

Predictor AICc SS(trace) Pseudo-F P   Prop. Cumul. res.df 
Septic_21km 226.92 2175.3 26.544 0.0001 0.35137 0.3514 49 

Proportion Live 
Coral 

219.48 695.4 10.053 0.003 0.11233 0.4637 48 

Depth (m) 215.4 393.8 6.324 0.0176 0.06361 0.5273 47 
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Table 11. Pairwise Pearson’s correlation values for our human and abiotic predictor variables for 
which we had temporal data and that were considered for our temporal model. We removed one of 
the two predictors for any pairwise comparisons that equaled r > 0.8.  
 

 
 

 
Table 12. Temporal model output. Predictor variables included in the model fitting process (trial) 
and those excluded due to high colinearity, the optimal model solution for each unique number of 
predictor variables, and the overall optimal model solutions ranked by their AICc scores and the 
top model that balances model performance and parsimony shown in bold. 
 
Predictor variables for model fitting 
 1 dbHydro_3 Exclude 
 2 dbHydro_7 Trial 
 3 dbHydro_30 Exclude 
 4 dbHydro_90 Trial 
 5 HotSnap_total_3 Exclude 
 6 HotSnap_total_7 Trial 
 7 HotSnap_total_30 Exclude 
 8 HotSnap_total_90 Trial 
 9 TSS_mean_30 Trial 
10 TSS_mean_90 Trial 
11 TN_mean_90 Trial 
 
Optimal solution for each number of variables 
      AICc       R2        RSS    No.Vars    Selections 
    96.315   0.49693  1951.2      1    2 
    97.319      0.54    1784.1       2    2,10 
     98.67   0.57993    1629.3     3    2,9,10 
    101.66   0.59293    1578.8    4    2,4,9,10 
    105.78   0.59409    1574.3    5    2,4,6,9,10 
    110.53   0.59657    1564.7    6    2,4,6,9-11 
    116.26   0.59703      1563     7    2,4,6,8-11 
 
Overall optimal solutions 
      AICc       R2        RSS   No.Vars  Selections 
    96.315   0.49693    1951.2         1  2 
    97.319      0.54    1784.1         2  2,10 
    98.347   0.51573    1878.3         2  2,4 
    98.545   0.51092    1896.9         2  2,9 
     98.67   0.57993    1629.3         3  2,9,10 
    98.786     0.505    1919.9         2  2,8 
    99.049   0.49844    1945.3         2  2,11 
    99.095   0.49729    1949.8         2  2,6 

    100.15   0.54776      1754         3  2,4,10 
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Table 13. Optimal temporal model summary, showing statistics for the single predictor included 
in the optimal temporal model, the proportion of variation in the response variable matrix it explains 
(Prop.). Overall, this single predictor explained 49.7% of the temporal variation seen in total 
SCTLD infections monthly from September 2018 to April 2020. 
 

Predictor   AICc SS(trace) Pseudo-F      P   Prop.  Cumul. res.df 
dbHydro_7 96.315    1927.4    17.78 0.0032 0.49693 0.49693     18 

 
 

 
 
Figure 10. Correlation between temporal variation in SCTLD infections from September 2018 and 
April 2020 and mean DBHYDRO flow (summed flow in cubic feet per second) over the previous 
seven days. This relationship was robust to the removal of the Ft Lauderdale coral cluster. 
 

 Part I Summary 
 
Overall, our models show that spatial variations in SCTLD infection levels at any single 
point in time in the Coral ECA are best explained by a positive relationship with septic 
tank density within the vicinity, suggesting some link between disease levels and 
potential pollutants or pathogens associated with the presence of septic tanks. This idea is 
supported by our temporal model which shows that over time, SCTLD infection levels 
are best explained by the flow rate from the Inlet Contributing Areas (ICA) to the reef, 
providing a spatial link between terrestrial septic tanks and the reef itself. These 
hypotheses warrant further investigation, particularly whether wastewater from septic 
tanks contain harmful pathogens that are reaching corals via ICA flushing and the 
broader impacts this might be having to reef habitats and reef communities in the study 
area. As new large coral monitoring data become available, these models can be updated, 
in particular the temporal model for which additional survey months will capture another 
full seasonal cycle and therefore increase the rigor of the model.  
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2. PART II - MODEL TEMPORAL AND SPATIAL DRIVERS OF DISEASE 
HOT SPOTS 

 
Coral disease can peak in occurrence due to a number of environmental and human 
drivers that may be intricately correlated to one another, resulting in complex non-linear 
patterns of disease-environment relationships that can be challenging to quantify 
(Williams et al. 2010b). Furthermore, biotic variables like host density and cover also 
play key roles in dictating the occurrence of coral disease prevalence on reefs (Bruno et 
al. 2007; Williams et al. 2010b; Aeby et al. 2011b). Here we modeled the occurrence of 
Dark Spot Syndrome (DSD) and Tissue Loss Disease (TLD) along the entirety of 
Florida’s Coral Reef using disease monitoring data collected as part of the Florida Reef 
Resilience Program’s (FRRP) Disturbance Response Monitoring program (DRM). 
Disease surveys were conducted yearly from 2005 to 2019. We identified ‘hotspots’ of 
disease occurrence – areas of unusually high disease occurrence surrounded by other 
areas with high disease occurrence. This was done using the ‘hotspot’ analysis tool Getis-
Ord Gi* (Ord and Getis 1995; Getis and Ord 2010) in ArcGIS. The Moran’s I index 
(Moran 1950) was used to determine the distance threshold to be used in the hotspot 
analysis and ‘inverse distance’ was used as the ‘Conceptualization of Spatial 
Relationships’ parameter. Below we provide a summary of the methods used to model 
the occurrence of these disease hotspots against a suite of suspected drivers, our results 
and a summary interpretation of our findings. We also report on modeling the occurrence 
of DSD and TLD as the number of diseased coral colonies at each location to examine 
what effect this had on the predictive performance of our models. 
 

 Objective 3 – Predictor variable synthesis  
 

2.1.1. METHODOLOGY 
We synthesized several human predictor variables hypothesized to be linked to spatial 
variations in DSD and TLD occurrence along Florida’s Coral Reef. These were identified 
through discussions across the project research team and partly informed by our findings 
from Project Part I. In summary, we identified the following six predictors of interest: 1) 
The Nature Conservancy (TNC) – Ocean Wealth, 2) DEP Wastewater, 3) Septic Tanks, 
4) Land Use, 5) Water Quality, and 6) Human Population Density. Below we describe the 
variables we synthesized under each of these groups and how we quantified them.  
 

2.1.1.1. TNC Ocean Wealth Data 
Here we used the concept of coral reef “use” to estimate the interactions between reefs 
along Florida’s Coral Reef and people. We used the TNC Ocean Wealth Data database 
(https://oceanwealth.org) to quantify tourism in two ways: 1) total visits, and 2) total 
spend – both within 30 km of reefs, excluding urban areas (Spalding et al. 2017). Raw 
data were provided directly to our team from TNC and were then subjected to a series of 
spatial processing steps. First, we undertook a simple value extraction of total visits 
(FL_Visit) and total spend (FL_Spend) at the point location for each disease survey by 
year (n = 2,508 for DSD, n = 2,643 for TLD) using the Extract Multi Values to Points 
tool in ArcGIS Pro 2.7.1. The problem with this approach was that some disease survey 
locations were outside of the bounds of the Ocean Wealth data layer, and there was a tiny 

https://oceanwealth.org/
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difference in the location of the FL_Visit and FL_Spend data layers provided by TNC 
(Figure 11). Our second approach was to use a simple Fibonacci sequence (1, 2, 3, 5, 8, 
13, 21) to generate buffer distances (in km) from each disease survey location using the 
Buffer tool in ArcGIS Pro 2.7.1 (Figure 12). We then used the Zonal Statistics as Table 
tool in ArcGIS Pro 2.7.1 to generate the mean, SD and count of Ocean Wealth data cells 
that fell within each buffer distance. The smaller buffer sizes did not capture all 
observations and resulted in some missing data on all extractions. To normalize the 
observations, we used R (www.r-project.org) to do some basic matching and to add NAs 
for missing locations on all files. 
 
 
 

 
 
Figure 11. Spatial offset between FL_Visit (orange) and FL_Spend (pink) caused by tiny 
differences in the data layers, but that are enough to cause some disease locations to only land 
within one layer. 
 

 
 
Figure 12. Example 21 km buffer (in blue) generated for each disease survey location along 
Florida’s Coral Reef overlaid on the TNC Ocean Wealth data layers (color ramp). 

http://www.r-project.org/
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All data were summarized in a series of output files containing the following meta-data: 
 
Output File(s) 

• Extract_Values.csv 
o 4 columns 

 Site - Site ID column 
 Year - Sampled year column 
 fl_visit - Extracted value from the FL_Visit layer 
 fl_spend - Extracted value from the FL_Spend layer 

Output File(s) 
• Buffer_Spend/Visit_1/2/3/5/8/13/21.csv 

o 4 columns 
 Site - Site ID column 
 Latitude – Latitude (WGS84) 
 Longitude – Longitude (WGS84) 
 Year - Sampled year column 
 ZONE_CODE – Unique ID for the cells that fall inside the buffer 
 COUNT – Count of cells that fall inside the buffer 
 AREA – Area of cells found inside the buffer (sq m) 
 MEAN – Mean of value 
 STD – standard deviation of value 

 
2.1.1.2. Wastewater 

 
Here we used the locations of wastewater treatment facilities within Florida provided by 
DEP as a proxy of human presence/influence and thus impacts to coastal areas. 
Specifically, we quantified the number of wastewater treatment facilities and their 
capacity to treat water and how much they are permitted to process across our spatial 
buffers. We used our Fibonacci buffers (1, 2, 3, 5, 8, 13, 21 km) around each disease 
survey location to undertake a spatial join with these data (Figure 13). Only the 13 and 21 
km scales contained sufficient data for further analysis. The output summary file 
contained the following meta-data: 
 
Output File(s) 

• Step_2_DEP_1/2/3/5/8/13/21km.csv 
o 4 columns 

 Site - Site ID column 
 Latitude – Latitude (WGS84) 
 Longitude – Longitude (WGS84) 
 Year - Sampled year  
 count_wwtf – Count of all facilities falling inside the buffer 
 mean_design_cap – Mean of the design capacity of the facility 
 sd_design_cap – SD of the design capacity of the facility 
 mean_permitted – Mean allowed discharge from the facility 
 sd_permitted – SD allowed discharge from the facility 
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Figure 13. Location of wastewater treatment facilities in Florida (red circles), disease survey 
locations (black circles), and our radial buffers of varying spatial extents (blue circles). 
 

2.1.1.3. Septic Tanks 
 
We used two web-based resources to obtain 67 counties worth of data (from 2018) 
pertaining to the distribution of wastewater origins, namely: 
 

• http://www.floridahealth.gov/environmental-health/onsite-
sewage/research/flwmi/index.html 

• http://ww10.doh.state.fl.us/pub/bos/Inventory/FloridaWaterManagementInventory/ 

From this, we extracted 8 categories of wastewater origin: 1) Known sewer, 2) Likely 
sewer, 3) Known septic, 4) Likely septic, 5) SWL sewer, 6) SWL septic, 7) Conflicting 
data, and 8) Unknown. We again used the Fibonacci buffers (1, 2, 3, 5, 8, 13, 21 km) 
around each disease survey location to undertake a spatial join with the Septic layer ( 
Figure 14). This proved extremely computationally challenging as every single building 
in the data set is a separate polygon. In a single thread, some of the buffers around 
disease survey locations had > 200,000 joins. This, multiplied by the number of buffers 
and between 2-20 min per join meant it would take several weeks to run even on a high-
performance desktop computer. We overcame this by programming the spatial joins and 
data extractions at a supercomputing facility. This generated >300 GB of output files 
which were then processed to create summary statistics and saved in a manageable 
summary file size format (~3 MB).  
 

http://www.floridahealth.gov/environmental-health/onsite-sewage/research/flwmi/index.html
http://www.floridahealth.gov/environmental-health/onsite-sewage/research/flwmi/index.html
http://ww10.doh.state.fl.us/pub/bos/Inventory/FloridaWaterManagementInventory/
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Figure 14. Total septic contributing area shown in pink/grey and disease survey locations along 
Florida’s Coral Reef shown in black. 
 
 
The output summary file contained the following meta-data: 
Output File(s) 

• Step_3_Septic_area/count_1/2/3/5/8/13/21km.csv 
o 11 columns 

Units for area are square meters of areas that intersect with the buffer, count are the 
number of “areas” that intersect the buffer ( 

o Figure 15). 
 Site - Site ID column 
 Latitude – Latitude (WGS84) 
 Longitude – Longitude (WGS84) 
 Year - Sampled year  
 KnownSeptic - Areas known to drain to septic  
 KnownSewer - Areas known to drain to sewer 
 LikelySeptic - Areas likely to drain to septic 
 LikelySewer - Areas likely to drain to sewer 
 SWLSeptic - Specific designation for one county - septic 
 SWLSewer - Specific designation for one county - sewer 
 UNDT - Undetermined 
 UNK - Unknown 
 NULL - Null value 
 Septic - Calculated sum of KnownSeptic, LikelySeptic and SWLSeptic 
 Sewer - Calculated sum of KnownSewer, LikelySewer and SWLSewer 
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Figure 15. Example spatial buffer (1 km) around coral disease survey location O2206 (solid black 
point). The units for area are square meters of area that intersect with the buffer and the ‘count’ are 
the number of “areas” that intersect the buffer. In this example, the large island and the two small 
areas on the island to the right are all counted (3 count, 660,300 sq m area). 
 
 

2.1.1.4. Land Use 
 
Here we used the NOAA Coastal Change Analysis Program (C-CAP) regional Land 
Cover and Change Dataset, a 30 x 30 m resolution satellite-based product that contains 
information on a variety of land uses across the Florida region (last updated in 2016) 
(Figure 16). The dataset contains multiple land cover classes, however our focus was on 
estimating some degree of human development (urbanization) that could contribute to 
coastal runoff and pollution that might in turn trigger and exacerbate coral disease 
(Kaczmarsky 2006; Haapkylä et al. 2011). As such, we focused on two of the classes 
pertaining to ‘Developed Land’, namely ‘Developed High Intensity’ and ‘Developed 
Medium Intensity’.  
 
‘Developed High Intensity’ contains significant land area and is covered by concrete, 
asphalt, and other constructed materials. Vegetation, if present, occupies less than 20 % 
of the landscape. Constructed materials account for 80 – 100 % of the total cover. This 
class includes heavily built-up urban centers and large constructed surfaces in suburban 
and rural areas with a variety of land uses. ‘Developed Medium Intensity’ contains areas 
with a mixture of constructed materials and vegetation or other cover. Constructed 
materials account for 50 – 79 % of total area. This class commonly includes multi- and 
single-family housing areas, especially in suburban neighborhoods, but may include all 
types of land use (https://coast.noaa.gov/digitalcoast/data/ccapregional.html).  

 
 

https://coast.noaa.gov/digitalcoast/data/ccapregional.html
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Figure 16. Spatial gradients in land use categorized by NOAA’s Coastal Change Analysis Program 
(C-CAP) regional Land Cover and Change Dataset, with the location of our coral disease surveys 
shown as red circles. 
 
 
We then calculated the total area of these two classes (in m2) within our Fibonacci buffers 
(1, 2, 3, 5, 8, 13, 21 km) around each disease survey location using the Tabulate Area 
tool in ArcGIS Pro 2.7.1 and generated output summary files containing the following 
meta-data: 
 
Output File(s) 

• Step_4_Land_cover_1/2/3/5/8/13/21km.csv 
o 1 data column 
o Units for area are square meters of land cover area that intersect with the 

buffer, essentially it is the count of the number of 30 x 30 m grid cells. 
 Site - Site ID column 
 Latitude – Latitude (WGS84) 
 Longitude – Longitude (WGS84) 
 Year - Sampled year  
 Urban_m2 - Sum of area for CONUS categories 2 and 3 (high and 

medium density, respectively) 
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2.1.1.5. Water Quality 
 
To quantify water quality, we used Florida International University’s (FIU) Southeast 
Environmental Research Center’s Water Quality Monitoring Network database 
(http://serc.fiu.edu/wqmnetwork/) as it provided data across SE FL and the Keys in a 
single source. Two limitations immediately emerged with these data: 1) limited temporal 
range (1994 – 2014), and 2) limited spatial extent (Figure 17). In this case, we only 
utilized the more recent records for 2013, which were WQMP surveys 71 to 74. We 
extracted both bottom (B) and surface (S) values from the database and identified the 
following key water quality variables, of which five were retained for further analysis 
(shown in bold):  
 

Abbreviation Variable 
N+N Nitrate+Nitrite-Nitrogen 
NO2-N Nitrite-Nitrogen, Dissolved 
NH4-N Ammonium-Nitrogen 
SRP Soluble Reactive 

Phosphorus 
TP* Phosphorus, Total 
TP- soil Phosphorus, Total - Soil 
Si Silica 
TOC Total Organic Carbon 
TN - ANTEK 9000 Nitrogen, Total 
CHL-a  Chlorophyll-a 

 
 

 
 

http://serc.fiu.edu/wqmnetwork/
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Figure 17. Distribution of water quality monitoring stations (red) and locations of coral disease 
surveys (black), showing the lack of spatial coverage in FIU’s database for water quality data for 
the more northerly disease surveys. The red dots in this case represent WQMP surveys 73 and 74. 
We again used our Fibonacci buffers (1, 2, 3, 5, 8, 13, 21 km) around each disease survey 
location to undertake a spatial join analysis, exported the data to a table and created a 
summary data file using R with the following meta-data: 
 
Output File(s) 

• Step_5_WQ_1/2/3/5/8/13/21km.csv 
o 29 data columns 
o Units are in uM per liter, except for CHLA which is in ug per liter. 

 Site - Site ID column 
 Latitude – Latitude (WGS84) 
 Longitude – Longitude (WGS84) 
 Year - Sampled year  
 TP_S/B_mean/sd/count - Total Phosphorus (S = surface, B = 

bottom) 
 TN_S/B_mean/sd/count - Total Nitrogen (S = surface, B = bottom) 
 Si_S/B_mean/sd/count - Silica (S = surface, B = bottom) 
 TOC_S/B_mean/sd/count - Total Organic Carbon (S = surface, B = 

bottom) 
 CHLA_mean/sd/count – Chlorophyll-a 

 
 

2.1.1.6. Human Population  
 
To quantify human populations within the vicinity of our coral disease survey locations 
we used the 2010 U.S. Census Population and Housing Unit Counts dataset for Florida ( 
Figure 18) (https://www.census.gov/geographies/mapping-files/2010/geo/tiger-
data.html). We extracted total population and the sum of all housing units within our 
Fibonacci buffers (1, 2, 3, 5, 8, 13, 21 km) around each disease survey location, 
generating an output file with the following meta-data: 
 
Output File(s) 

• Step_6_Population_1/2/3/5/8/13/21km.csv 
o 2 data columns 
 Site - Site ID column 
 Latitude – Latitude (WGS84) 
 Longitude – Longitude (WGS84) 
 Year - Sampled year  
 pop_sum - Sum population of all census locations that fall inside the 

buffer 
 house_sum - Sum of all housing units that fall inside the buffer 

 
 
 
 

https://www.census.gov/geographies/mapping-files/2010/geo/tiger-data.html
https://www.census.gov/geographies/mapping-files/2010/geo/tiger-data.html
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Figure 18. U.S. Census Population and Housing Unit Counts dataset for Florida for 2010, with the 
location of our coral disease survey locations shown in black. 
 
 

 Objective 4 – Modeling drivers of regional disease hotspots 
 

2.2.1. METHODOLOGY 
Our use of multiple buffers of different spatial scales for each predictor, in combination 
with the fact that all predictors had various versions of the defined variable, resulted in a 
total of 98 predictor variables across our categories 1 – 6 for possible inclusion in the 
DSD and TLD models. In addition to these, we included a suite of predictor variables to 
capture aspects of the habitat in each survey location for both DSD and TLD. Depth can 
have a profound effect on coral disease dynamics as numerous biophysical variables 
change predictably with depth, including temperature, light and wave energy (Williams et 
al. 2013). The surveys varied in depth from 3.6 to 70.9 ft (average = 27.4 ft) for DSD and 
3.6 to 70.9 ft (average = 27.2 ft) for TLD, and so depth was included as a continuous 
predictor. Host abundance/density can also drive patterns of coral disease, including 
disease outbreaks (Bruno et al. 2007; Myers and Raymundo 2009; Aeby et al. 2011b). 
We therefore included the number of colonies vulnerable to each disease condition in 
each survey location. To capture aspects of the habitat, we included: Reef Zone (13 
levels), URM GeoForm (11 levels), URM GeoFormDet (34 levels), and URM ClassLv0-4 
(various levels) (see Appendix 4 for descriptions of each of these). Finally, we included a 
‘Year’ term to account for the temporal spread of the data. This resulted in 109 
predictor variables in total. Despite our knowledge that some of the predictor variables 
likely collineated, given the large replication in the response variable, in addition to the 
fact that boosted regression trees are robust to the inclusion of spurious predictors, we 
included all predictors in the model fitting process.  
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2.2.1.1. Boosted Regression Tree Modeling 
 
We modeled the power of our chosen predictors to explain spatial variations in TLD and 
DSD along Florida’s Coral Reef using a Boosted Regression Tree (BRT) modeling 
framework. Unlike many modeling techniques that aim to fit a single parsimonious 
model, BRT incorporates machine learning decision tree methods (Breiman et al. 1984) 
and boosting, a method to reduce predictive error (Elith et al. 2008), to build an additive 
regression model in which individual terms are regression trees, fitted in a forward stage-
wise manner (i.e., sequentially fitting each new tree to the residuals from the previous 
ones) (Williams et al. 2010b). In summary, BRT gives two crucial pieces of information, 
namely the underlying relationship between the response and each predictor, and the 
strongest statistical predictor (among the simultaneously tested predictors) of the 
response variable in question. Due to their flexible use and improved predictive power, 
the use of BRT has increased over the past few years to model non-linear ecological 
relationships at a range of spatial scales as computing power has increased, including 
modeling coral reef-environment associations (Williams et al. 2010b; Gove et al. 2015; 
Aston et al. 2019). Our team recently updated a number of the BRT routines within the R 
package ggBRT to include more rigorous estimates of model uncertainty and to link to 
updated graphics packages available in R, such as ggplot (Jouffray et al. 2019). These 
updated routines were used throughout our analyses.  
 
Due to problems with assigning real probabilities in BRTs (there are no p-values) a key 
approach is to use validation processes that require a proportion of the data set to be held 
back (Elith et al. 2008). However, instead of splitting the data into training and test data 
sets, we used a cross-validation approach that allowed all the data to be used to train the 
algorithm and ultimately test model performance (Williams et al. 2010b; Aston et al. 
2019). We used a 10-fold cross-validation approach to test the model against withheld 
portions of the data (1000s of times) and used the cross-validated percentage deviance 
explained, calculated as (1 – (cross-validated deviance/mean total deviance)), as our 
measure of model performance (Jouffray et al. 2019).  
 
We calculated the relative importance of each predictor based on the number of times a 
variable was selected for splitting, weighted by the squared improvement to the model as 
a result of each split and averaged over all trees (Friedman and Meulman 2003; Elith et 
al. 2008). To assess the relative contribution of each predictor, we only considered 
predictors with a relative influence above that expected by chance (100/number of 
variables) (Müller et al. 2013) and then rescaled their influence to 100%. Partial 
dependency plots were used to visualize the relationships between the most influential 
predictors and the response variable, while keeping all other predictors at their mean (i.e., 
to visualize the conditional effect of each predictor). We calculated the 95% confidence 
intervals obtained from 100 bootstrap replicates around the functional fit as a measure of 
model uncertainty (Buston and Elith 2011, Jouffray et al. 2019); we limited the number 
of unique bootstraps to 100 due to the high computational power required to run these 
routines. Finally, we quantified the relative interaction strength between the predictors by 
measuring residual variation between pairwise model predictions with and without 
interactions (Pinsky and Byler 2015) and used bootstrap resampling to test the 
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significance of the strongest interactions. Again, we limited the number of unique 
bootstraps to 50 due to the high computational demand required to run these routines. For 
each bootstrap, we randomly resampled the response variable before re-fitting the BRT 
model and then recorded the size of the interactions to generate a distribution under the 
null hypothesis of no interaction among predictors (Pinsky and Byler 2015; Jouffray et al. 
2019). If significant, the interaction value can also be thought of as the relative 
contribution of the interaction between the two predictors towards the overall predictive 
performance of the model.  
 
We classified DSD and TLD disease survey sites along Florida’s Coral Reef as either 
being a disease ‘hotspot’ (1) or not (0) and modelled their occurrence using a Bernoulli 
distribution. We also investigated using the number of diseased colonies as the response 
variable and modelled this using a Poisson distribution for both DSD and TLD.  
 

2.2.1.2. Model optimization 
 
To optimize model predictive performance, we varied three core parameters of the BRT 
algorithm: the bag-fraction (bf, proportion of data to be selected at each step), the 
learning rate (lr, used to shrink the contribution of each tree as it is added to the model), 
and the tree complexity (tc, the number of terminal nodes in a tree). Using a customized 
loop routine (Richards et al. 2012), we identified the combination of these three 
parameters that resulted in the lowest cross-validation deviance (CVD) over bf-values 
0.5, 0.7, and 0.8, lr-values 0.001, 0.0001, and 0.00001, and tc-values 1–5, while 
maintaining a minimum of ≥ 1000 fitted trees (and a maximum of 50000 trees). This 
resulted in the following optimal settings for DSD and TLD: 
 
DSD hotspots: bag fraction = 0.7, learning rate = 0.001, tree complexity = 4 (Figure 19), 
 
DSD #cases: bag fraction = 0.8, learning rate = 0.001, tree complexity = 2 (Figure 20), 
 
TLD hotspots: bag fraction = 0.8, learning rate = 0.001, tree complexity = 2 (Figure 21), 
 
TLD #cases: bag fraction = 0.8, learning rate = 0.001, tree complexity = 5 (Figure 22). 
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Figure 19. Relationship between the number of trees and predictive deviance for the optimal BRT 
parameter settings for DSD hotspots, showing the decreasing cross-validation deviance remaining 
in the response variable following the addition of individual trees (solid black line), and the error 
around the cross-validation deviance (dashed black lines). This optimal model included 3300 trees 
(vertical green line) and resulted in a cross-validation deviance of 0.311 (horizontal red line). 
 

 
Figure 20. Relationship between the number of trees and predictive deviance for the optimal BRT 
parameter settings for DSD (#cases), showing the decreasing cross-validation deviance remaining 
in the response variable following the addition of individual trees (solid black line), and the error 
around the cross-validation deviance (dashed black lines). This optimal model included 12,350 
trees (vertical green line) and resulted in a cross-validation deviance of 1.019 (horizontal red line). 
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Figure 21. Relationship between the number of trees and predictive deviance for the optimal BRT 
parameter settings for TLD hotspots, showing the decreasing cross-validation deviance remaining 
in the response variable following the addition of individual trees (solid black line), and the error 
around the cross-validation deviance (dashed black lines). This optimal model included 1000 trees 
(vertical green line) and resulted in a cross-validation deviance of 0.35 (horizontal red line). 
 

 
Figure 22. Relationship between the number of trees and predictive deviance for the optimal BRT 
parameter settings for TLD (#cases), showing the decreasing cross-validation deviance remaining 
in the response variable following the addition of individual trees (solid black line), and the error 
around the cross-validation deviance (dashed black lines). This optimal model included 3750 trees 
(vertical green line) and resulted in a cross-validation deviance of 1.006 (horizontal red line). 
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 RESULTS 
 

2.3.1. DSD - Hotspots 
 
The optimal DSD hotspot model included 24 predictor variables (Table 14) and explained 
40.7% of the underlying deviance in DSD hotspot presence/absence across the entire 
dataset. The training data AUC (area under the curve) value equaled 0.95 (values 
exceeding 0.9 are considered “outstanding”). When predicting to new data from the 
training data, however, the cross-validated percentage deviance explained dropped to 
13.7% and the cross-validated AUC to 0.73 (considered “acceptable”). For context, an 
AUC value of 0.5 suggests no ability for the model to discriminate between a binomial 
response variable like we have here. 
 
Three predictors heavily dominated the relative influence in the full DSD hotspot model, 
namely year (relative influence = 19.1%), habitat type (URM ClassLv4, relative influence 
= 17.4 %), and depth (relative influence = 12.2%). The probability of DSD hotspot 
occurrence increased through time (Figure 23). Four habitats in particular showed an 
increased probability of DSD hotspot occurrence, namely aggregate reef, mud with 
infrequent live coral (<10% live coral), pavement, and shallow sand (Figure 24). The 
probability of DSD hotspot occurrence was also higher in shallower waters, in particular 
in less than 20 feet of water (Figure 25). Depth and year interacted (interaction strength = 
13.8) and this was statistically significant. The probability of DSD hotspot occurrence 
was highest in later years in shallower depths, but this was emphasized particularly after 
2010 in the timeseries (Figure 26). The plotting of this interaction emphasized the 
importance of depth relative to year, despite year having the slightly higher relative 
influence within the full model. 
 
In summary, while there was an ability to explain ~41% of the DSD hotspot 
presence/absence across the full dataset using 24 predictors, our ability to predict to new 
data was just over the threshold for ‘acceptable’, and resulted in a drop of ~27% 
predictive performance. Overall, our results suggest that DSD hotspot occurrence has 
been increasing over time, particularly in shallow areas within particular habitats. 
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Table 14. Relative influence (%) of the 24 significant predictor variables for DSD hotspots that 
together explained 40.7% of the underlying deviance in the response variable (cross-validated 
percentage deviance explained = 13.7%). 
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Figure 23. Effect of Year (survey year) on the probability of DSD hotspot occurrence. Values 
higher on the y-axis indicate an increased probability of a DSD hotspot. Mean effect (orange line) 
and 95% bootstrapped (n=100) confidence intervals (grey) shown. Response variable replication 
along x-axis shown by the light grey deciles along the top of the plot. Y-axis plotted on common 
scale to Fig. 4.7. 

 
Figure 24. Effect of habitat type (URM ClassLv4) on the probability of DSD hotspot occurrence. 
Values higher on the y-axis indicate an increased probability of a DSD hotspot. Four habitats stand 
out as having a higher chance of DSD hotspot occurrence, namely: 2. Aggregate Reef, 23. Mud, 
Live coral (infrequent, <10%), 26. Pavement, and 43. Sand (shallow). See Appendix 4 for full 
habitat list. 
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Figure 25. Effect of depth (feet) on the probability of DSD hotspot occurrence. Values higher on 
the y-axis indicate an increased probability of a DSD hotspot. Mean effect (orange line) and 95% 
bootstrapped (n=100) confidence intervals (grey) shown. Response variable replication along x-
axis shown by the light grey deciles along the top of the plot. 
 

 
 
Figure 26. Interaction between year and depth on the probability of a DSD hotspot. The probability 
of DSD hotspot occurrence was highest in later years in shallower depths, but this was emphasized 
in particular after 2010 in the time series and in particular in 2016 and 2018. 
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2.3.1. DSD – Number of diseased colonies 
 
The optimal model included 18 predictor variables (Table 15) and explained 64.4% of the 
underlying deviance in the number of DSD cases across the entire dataset. When predicting 
to new data from the training data, the cross-validated percentage deviance explained 
dropped to 47.1%, suggesting a reasonable ability to predict to new data. The relative 
influence of the predictors was more evenly distributed, but three predictors accounted for 
45.5% of the relative influence in the model, namely the concentration of silica in the 
surface waters within a 13km radius, the total number of susceptible coral hosts, and the 
septic area within an 8km radius (Table 15). The number of DSD cases was higher where 
there was a greater number of susceptible coral hosts, with disease levels peaking in areas 
that had >50 coral hosts (Figure 27). The effect of silica in the surface waters and septic 
area was less apparent, and required that we examined the predictor variable interactions – 
all three of the top predictors interacted with each other and these were all statistically 
significant. The probability of DSD occurrence increased as both surface water silica 
concentration within a 13km radius and coral host abundances increased, and became 
maximized where silica exceeded 1.15 and where there were >100 coral hosts (Figure 28). 
DSD occurrence was also higher in areas with >13M m2 septic area within 8km regardless 
of coral host abundance, but was highest where there were also >100 coral hosts (Figure 
29). 
 
 
Table 15. Relative influence (%) of the 18 significant predictor variables for DSD cases that 
together explained 64.4% of the underlying deviance in the response variable (cross-validated 
percentage deviance explained = 47.1%). 
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Figure 27. Effect of Siderastrea abundance on the number of DSD cases. Values higher on the y-
axis indicate an increased probability of higher DSD levels. Mean effect (orange line) and 95% 
bootstrapped (n=100) confidence intervals (grey) shown. Response variable replication along x-
axis shown by the light grey deciles along the top of the plot. 

 
Figure 28. Interaction between surface silica concentration within a 13km radius and Siderastrea 
abundance on the probability of a DSD occurrence. The probability of DSD occurrence increases 
as both silica concentration and coral host abundance increase.  
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Figure 29. Interaction between septic area within 8km and Siderastrea abundance on the number 
of DSD cases. The probability of DSD occurrence was highest in areas with >13M m2 septic area 
within 8km regardless of coral host abundance, but was highest where there were also >100 coral 
hosts. 
 
 

2.3.2. TLD - Hotspots 
 
The optimal TLD hotspot model included 16 predictor variables (Table 16), but only 
explained 9.7% of the underlying deviance in TLD hotspot occurrence across the entire 
dataset. The training data AUC (area under the curve) value equalled 0.79 (values 
exceeding 0.7 are considered “acceptable”). When predicting to new data from the 
training data, model performance was even worse and the cross-validated percentage 
deviance dropped to 2.1% and the cross-validated AUC to 0.62 (considered “poor”). For 
context, an AUC value of 0.5 suggests no ability for the model to discriminate between a 
binomial response variable like we have here. 
 
A single predictor heavily dominated the relative influence in the full TLD hotspot 
model, namely habitat type (URM ClassLv4, relative influence = 51.9%) (Figure 30). 
Five habitats in particular showed an increased probability of TLD hotspot occurrence, 
namely Aggregate Reef, Algae (Continuous); Aggregate Reef, Live Coral (Sparse); Reef 
Rubble, Algae (Continuous); Sand, Algae (Discontinuous); and Scattered Coral/Rock in 
Unconsolidated Sediment. In summary, we could only explain 9.7% of the variation in 
TLD hotspot presence/absence across the full dataset using 16 predictors, and our ability 
to predict to new data was extremely poor.  
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Table 16. Relative influence (%) of the 16 significant predictor variables for TLD hotspots that 
together explained 9.7% of the underlying deviance in the response variable (cross-validated 
percentage deviance explained = 2.1%). 
 

 
 

 
 
Figure 30. Effect of habitat type (URM ClassLv4) on the probability of TLD hotspot occurrence. 
Values higher on the y-axis indicate an increased probability of a TLD hotspot. Five habitats stand 
out as having a higher chance of TLD hotspot occurrence, namely: 5. Aggregate Reef, Algae 
(Continuous), 9. Aggregate Reef, Live Coral (Sparse), 38. Reef Rubble, Algae (Continuous), 47. 
Sand, Algae (Discontinuous), 54. Scattered Coral/Rock in Unconsolidated Sediment. See Appendix 
5 for full habitat list. 
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2.3.3. TLD – Number of diseased colonies 
 
The optimal model included 19 predictor variables (Table 17) and explained 52.1% of the 
underlying deviance in the number of TLD cases across the entire dataset. When 
predicting to new data from the training data, the cross-validated percentage deviance 
explained dropped to 20.6%, suggesting a low/reasonable ability to predict to new data. 
Two predictors in particular dominated the full model, namely habitat type (URM 
ClassLv4) and year, and together contributed 46.9% of the relative influence; the total 
number of susceptible colonies also contributed a further 9.4% of the relative influence 
(Table 17). Seven habitats in particular were associated with higher TLD occurrence, 
namely areas of Aggregate Reef, Algae (Continuous), Aggregate Reef, Live Coral 
(Sparse), Pavement with Seagrass (Continuous), Reef Rubble, Algae (Continuous), Sand 
(Shallow), Scattered Coral/Rock in Unconsolidated Sediment, and Scattered Coral/Rock 
in Unconsolidated Sediment, Live Coral (Discontinuous) ( 
Figure 31). TLD cases were also higher in survey years after 2015 (Figure 32) and where 
there were higher numbers of susceptible hosts (although the association was weak 
compared to that of DSD cases and host abundance) (Figure 33). 

 
Table 17. Relative influence (%) of the 19 significant predictor variables for TLD cases that 
together explained 52.1% of the underlying deviance in the response variable (cross-validated 
percentage deviance explained = 20.6%). 
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Figure 31. Effect of habitat type (URM ClassLv4) on the probability of TLD cases. Values higher 
on the y-axis indicate an increased probability of a TLD hotspot. Seven habitats stand out as having 
a higher chance of TLD occurrence, namely: 5. Aggregate Reef, Algae (Continuous), 9. Aggregate 
Reef, Live Coral (Sparse), 31. Pavement with Seagrass (Continuous), 38. Reef Rubble, Algae 
(Continuous), 45. Sand (Shallow), 54. Scattered Coral/Rock in Unconsolidated Sediment, and 56. 
Scattered Coral/Rock in Unconsolidated Sediment, Live Coral (Discontinuous). See Appendix 5 
for full habitat list. 
 

 
Figure 32. Effect of year on the number of TLD cases. Values higher on the y-axis indicate an 
increased probability of higher TLD cases. Mean effect (orange line) and 95% bootstrapped 
(n=100) confidence intervals (grey) shown. Response variable replication along x-axis shown by 
the light grey deciles along the top of the plot. 
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Figure 33. Effect of coral host abundance on the number of TLD cases. Values higher on the y-
axis indicate an increased probability of higher TLD cases. Mean effect (orange line) and 95% 
bootstrapped (n=100) confidence intervals (grey) shown. Response variable replication along x-
axis shown by the light grey deciles along the top of the plot. 
 
 

 Part II Summary 
 
We modeled the occurrence of Dark Spot Syndrome (DSD) and Tissue Loss Disease 
(TLD) ‘hotspots’ and the number of diseased colonies along Florida’s Coral Reef using 
yearly disease monitoring data (2005 to 2019) collected as part of the Florida Reef 
Resilience Program’s (FRRP) Disturbance Response Monitoring program (DRM). To 
achieve this, we synthesized a total of 109 human impact and habitat related predictor 
variables across varying spatial scales (1 – 21km) for 2,508 and 2,643 DSD and TLD 
survey locations, respectively. We used a machine-learning modeling framework 
(Boosted Regression Trees) to identify spatial links between the predictors and DSD and 
TLD hotspot occurrence and number of disease cases. Our goal was to identify the 
conditions that increase the probability of either DSD or TLD in order to guide future 
survey designs and management actions aiming to understand and manage the occurrence 
of DSD and TLD along Florida’s Coral Reef. 
 
Overall, the spatial variation in disease hotspots was more challenging to explain than 
variations in the number of diseased coral hosts, and was harder still for TLD than for 
DSD. We explained ~40% of the underlying variation in DSD hotspot occurrence across 
the full dataset using 13 predictors, and over half of this variation was explained by 
variations in habitat type and depth. DSD hotspot occurrence was notably higher in areas 
of aggregate reef, where there was mud with infrequent (<10%) live coral cover, 
pavement, and shallow sandy areas. These habitat types appear to be more vulnerable to 
DSD hotspots and we recommend targeted surveys/surveillance in these habitat types 
along Florida’s Coral Reef to monitor for future DSD outbreaks. DSD hotspot occurrence 
was also higher in shallower waters, in particular in less than 20 ft of water, regardless of 
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habitat type. There could be various reasons for this linked to depth-related gradients in 
biophysical drivers (e.g., light intensity). Importantly, our ability to predict the 
occurrence of DSD hotspots across novel data when the model was constructed on 
portions of the full data set (i.e., training data) was poor to acceptable and resulted in a 
drop of ~30% predictive performance. In contrast, modeling the number of DSD cases 
resulted in improved predictive performance (64.4% of the underlying deviance in the 
number of DSD cases explained across the entire dataset) that remained fairly robust 
even when predicting to new data (47.1% cross-validated percentage deviance 
explained). The number of DSD cases increased as both surface water silica 
concentration and coral host abundance increased, and became maximized where silica 
exceeded 1.15 and where there were >100 coral hosts. DSD occurrence was also higher 
in areas with >13M m2 septic area within 8km regardless of coral host abundance, but 
cases were highest where this coincided with >100 coral hosts. In contrast, we found no 
meaningful predictors of spatial variations in TLD hotspots and our ability to predict 
spatial variations in TLD cases was less than half that as for DSD. The full model 
explained 52.1% of the underlying deviance in the number of TLD cases across the entire 
dataset, but our ability to predict to new data was low/reasonable (20.6% cross-validated 
percentage deviance explained). Variations in TLD cases were driven by variations in 
habitat type, were higher in survey years beyond 2015, and where there were higher 
numbers of susceptible coral hosts. 
 
Our results raise a number of points for future investigation and consideration. First, there 
appear to be some consistent conditions under which the probability of DSD and TLD 
occurring increase and this could help identify other areas along Florida’s Coral Reef at 
risk of future disease occurrence and outbreaks. Second, the poor performance of the 
‘hotspot’ models as compared to modeling the number of diseased colonies require we 
re-visit how disease hotspots are defined/computed and to critically ask whether they are 
ecologically meaningful. The improvement in model performance was particularly 
noticeable for DSD when using the number of diseased colonies as the model response 
variable. Finally, while our models were able to explain some of the underlying variation 
in disease cases, there remained substantial variation left unexplained, in particular for 
TLD. Given the number and varying types of predictors included in our models, in 
addition to our detailed exploration of variations in scale, our suggestion is to consider 
exploring possible host-specific biological drivers of DSD and TLD occurrence. It might 
be that these biological factors interact with some of the abiotic environmental drivers 
identified here to drive DSD and TLD patterns along Florida’s Coral Reef. The methods 
developed and data layers produced as part of this project should be relevant to a number 
of future projects examining patterns of coral disease occurrence along Florida’s Coral 
Reef and we have therefore provided DEP with all data summaries for possible future 
use. 
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3. FUTURE RESEARCH 
 
These investigations showed that coastal urbanization and water management influence 
the number of coral disease lesions on Florida’s Coral Reef across a number of spatial 
and temporal scales. The strength of those relationships is concerning and intriguing and 
highlights the need for further research to guide management actions to ameliorate coral 
disease in the region. Our larger-scale modeling efforts of DSD and TLD occurrence are 
considered complete and we intend to move forward with publishing our results for DSD 
in particular. Our models examining spatial and temporal patterns of SCTLD incidence 
(Part 1), however, could be greatly improved by: 1) extending the timeline of the 
monitoring data (data presently exist); 2) expanding the number of spatial scales over 
which we quantify the predictors; and, 3) including additional predictor variables that 
capture a greater range of coastal human impacts to reefs.  
 
Fourteen additional months of monitoring data exist for the 51 large O. faveolata corals 
in the ECA collected from May 2020 to June 2021. Adding these additional data will 
increase the replication of the temporal model from n=20 to n=34, therefore improving its 
strength/rigor and importantly capturing another full seasonal cycle of SCTLD incidence 
(SCTLD incidence appears to peak in the summer months). Our confidence in the model 
results shown here will increase if we find a robust quantitative correlation between 
SCTLD incidence and ICA flow rates after including these additional data.  
 
The relationship of the predictor variables to the SCTLD incidence within the Coral ECA 
varied spatially and temporally. For example, the ability of the number of septic tanks to 
explain spatial variations in SCTLD incidence was strongest when the number of tanks 
was quantified within a radius of 21km. The ability of flow rates from the ICAs to 
explain temporal variations in SCTLD incidence was strongest when flow rates were 
quantified over a 7-day period prior to the disease surveys. However, the scales over 
which we quantified these predictors was not exhaustive and we recommend expanding 
the number of scales over which these predictors are quantified and including these 
additional scales in our models. This might increase the amount of variation in SCTLD 
incidence the models can explain and also highlight in more detail the scales over which 
these human impacts are affecting SCTLD patterns on the reefs.  
 
It is highly likely that other factors not quantified here could also play a role in predicting 
SCTLD incidence across scales within the Coral ECA. Our use of septic tanks as a proxy 
of coastal development could be expanded to include other metrics of coastal 
urbanization that also facilitate land-based runoff to coastal reefs, for example rainfall 
and the degree of impervious surfaces. Also, while we included some metrics to capture 
variations in coral host size and shape in our SCTLD models that we thought might 
influence disease susceptibility, we recommend quantifying more detailed host-specific 
factors that might affect patterns of SCTLD susceptibility. These could include 
underlying genetic differences and differences in endosymbiont communities between 
coral hosts. Identifying and quantifying these biological factors and investigating how 
they interact with abiotic environmental and human drivers may increase our ability to 
explain variations in SCTLD incidence and develop more meaningful management 
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actions to benefit coral health. Some of these investigations have begun with the recently 
formed and funded SCTLD Resistance Research Consortium (RRC). 
 
The SCTLD RRC is a DEP-funded collaborative coral sampling effort including data 
collected on host genotypes, microbiomes, metabolomics, proteomics, and 
transcriptomics, as well as cellular histopathology and endosymbionts. The goal is to 
understand the genetic, biochemical, and physiological underpinnings in the holobiont of 
individuals between infection categories to characterize risk factors that are driving 
differences in SCTLD infection rates. These findings are needed to understand the 
resistance and susceptibility factors of corals to SCTLD. The work will provide a 
fundamental understanding of O. faveolata holobiont at gross morphologic, genetic, 
biochemical and molecular scales at three time points across SE FL, Looe Key, and Sand 
Key. We have a unique opportunity to leverage these data for inclusion in our spatial and 
temporal models of SCTLD incidence. Combining abiotic environmental, human, and 
host-specific drivers of SCTLD susceptibility in a single statistical modeling framework 
should enhance our ability to predict disease patterns and advise on appropriate 
management actions for mitigation. 
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APPENDIX 1. Summed number of Hot Snap (Heron et al. 2010) exposure hours for our 
51 monitored large corals (LC) across the three months prior to each disease survey from 
September 2018 to April 2020. Also given is the mean, standard deviation (1SD) and 
maximum temperature (°C) over the three-month period prior to each disease survey date. 
Note dates are in “day, month, year” format. 
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LC-007 
Summed number of Hot Snap (Heron et al. 2010) exposure hours for our 51 monitored 
large corals (LC) across the three months prior to each disease survey from September 
2018 to April 2020. Also given is the mean, standard deviation (1SD) and maximum 
temperature (°C) over the three-month period prior to each disease survey date. Note dates 
are in “day, month, year” format.
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APPENDIX 2. Custom R script to extract and sum each DBHYDRO station flow data for 
any defined date and Inlet Contributing Area (ICA) from the South Florida Water 
Management District’s DBHYDRO database (https://www.sfwmd.gov/science-
data/dbhydro).   
 
library(dplyr) 
library(lubridate) 
 
setwd("/Volumes/Current_Projects/Spatial_Coral_Landscape/Florida/Predictors_Geo
Database/Predictors_ICA_Flow/") 
ica_flow_stations <- 
read.csv("Full_Station_List_Mean_Daily_inc_USGS_Joined_ICA_Only_Inside_ICA_Max_
Year_2020.csv") 
flow_data <- read.csv("Consolidated_All_ICA_Contributing_Stations.csv") 
coral_locations <- read.csv("Priority_Monitoring_2019_with_nearest_ICA.csv") 
coral_locations_date <- read.csv("Coral_Disease_Monitoring_Data_ID_Date.csv") 
 
date_ica <- merge(x = coral_locations_date, y = coral_locations) 
length(unique(date_ica$Name)) #Should be 51 
length(unique(date_ica$Name_1)) #Should be 51 
date_ica$Date <- lubridate::mdy(date_ica$AssessDate) 
 
date_ica <- date_ica[, c("Name", "Date", "ICA_NAME", "UUID")] 
 
flow_data_ica <- na.omit(merge(x = flow_data, y = unique(ica_flow_stations[ , 
c("Station", "ICA_NAME")]), all.x=TRUE)) 
 
flow_data_ica$Date <- lubridate::dmy(flow_data_ica$Daily_Date) 
 
 
for(i in 1:nrow(date_ica)) { 
   
  target <- lubridate::ymd(date_ica[i, "Date"]) 
   
  ica <- as.character(date_ica[i, "ICA_NAME"]) 
   
  flow_data_ica_subset <- filter(flow_data_ica, ICA_NAME==ica)  
 
  date_ica$ica_flow_data_3_days[i] <- as.character(flow_data_ica_subset %>% 
filter(between(Date, target - 3, target)) %>%  
    summarise(sum_flow_3 = sum(Data_Value))) 
  date_ica$ica_flow_data_7_days[i] <- as.character(flow_data_ica_subset %>% 
filter(between(Date, target - 7, target)) %>%  
    summarise(sum_flow_7 = sum(Data_Value))) 
  date_ica$ica_flow_data_30_days[i] <- as.character(flow_data_ica_subset %>% 
filter(between(Date, target - 30, target)) %>%  
    summarise(sum_flow_30 = sum(Data_Value))) 
  date_ica$ica_flow_data_90_days[i] <- as.character(flow_data_ica_subset %>% 
filter(between(Date, target - 90, target)) %>%  
    summarise(sum_flow_90 = sum(Data_Value))) 
} 
 
date_ica_merge <- merge(x = coral_locations_date, y = date_ica, all.x = TRUE) 
write.csv(date_ica_merge, "Coral_Flow_Data.csv", row.names = FALSE) 
 
 
 

https://www.sfwmd.gov/science-data/dbhydro
https://www.sfwmd.gov/science-data/dbhydro
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APPENDIX 3. DBHYDRO flow data (in cubic feet per second) across 4 temporal 
windows prior to each individual coral survey date for our 51 monitored large corals from 
September 2018 to April 2020. Corals are ordered from high to low SCTLD incidence from 
top to bottom. UID, unique ID for internal accounting. ICA, Inlet Contributing Area. These 
data were generated for all 51 colonies. Note dates are in “day, month, year” format. 
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APPENDIX 4. Habitat variables included in the boosted regression tree modelling for 
DSD. 
 

 
 



 

Office of Resilience and Coastal Protection 121    June 2021  
 

 

 



 

Office of Resilience and Coastal Protection 122    June 2021  
  



 

Office of Resilience and Coastal Protection 123    June 2021  
 

APPENDIX 5. Habitat variables within URM ClassLv4 for TLD. 
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