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Management Summary (300 words or less) 

 

This study identified hydrographic connections between inland water sources in southeast 

Florida (Government Cut, Baker’s Haulover, Port Everglades, and Hillsboro) and coral 

reefs and investigated the environmental drivers and nutrients associated with bleaching 

and disease between 2018 and 2024. The most significant outcomes were: 1) analyte 

concentrations on the reef are increasing, 2) reefs northward of their adjacent inlet are most 

exposed to the water from that inlet, 3) Government Cut is a major transition between water 

quality seascapes, 4) increased exposure to terrestrial waters increases SCTLD lesions, 5) 

turbidity from high winds may help reduce bleaching, 6) mitigative actions in the Biscayne 

Bay system would have the most beneficial effect to water quality on the reefs, 7) nutrient 

differences in Biscayne may be affected by oceanside seagrass beds, and 8) the rate of 

increase in orthophosphates has slowed since the 2021 Miami-Dade County fertilizer 

restrictions. 

 

This study provides crucial insights into the hydrographic dynamics affecting coral reefs 

in Southeast Florida. By identifying key nutrient sources and their relationship to bleaching 

and disease, it lays the groundwork for effective management actions to mitigate coral 

disease and promote reef resilience. These findings highlight the importance of managing 

inland water quality to protect coral reefs. The model provides a detailed understanding of 

how nutrients from inland sources are transported to reefs, offering valuable insights for 

targeted intervention strategies. We recommend extending the model’s spatial footprint to 

capture the hydrodynamics of the entire FCR in the same way (currently funded by DEP). 

Then using subsequent modeled nutrient data, compiled environmental data, and reef 

monitoring data to conduct machine learning models of the relationships between factors 

relating to reef health for both corals and fishes (phase 2). This would provide a deeper 

understanding of the factors affecting reef health and the ability to target high impact 

mitigative actions and restoration strategies. 
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Executive Summary 

 

Reduced water quality on Florida’s Coral Reef (FCR) from anthropogenic sources has long 

been implicated in the decline of the reef system. Florida’s Coral Reef is experiencing 

significant coral declines due to thermal stress and disease, which is exacerbated by 

environmental factors such as nutrient pollution. This study identified hydrographic 

connections between inland water sources in southeast Florida (Government Cut, Baker’s 

Haulover, Port Everglades, and Hillsboro) and coral reefs and investigated the 

environmental drivers associated with bleaching and disease between 2018 and 2024.  

  

Our machine-learning models explained 41.5 – 78.9% of the variation in the water quality 

concentrations on the reef with many contributing factors in various analytes including 

inlet outflow, rainfall, and high winds, however year had a high influence in almost every 

test. In almost every case, while holding all other predictors at their mean, the model 

showed nutrient increasing over time. Orthophosphate showed a lower annual increase 

after 2021, supporting that the Miami-Dade county fertilizer restrictions may be helping to 

reduce the rate of annual increase. 

 

Hydrographic models showed that the reefs northward of their adjacent inlet are most 

exposed to the water from that inlet and from inlets further south, but there is also a seasonal 

non-negligible southern footprint extending tens of kilometers. Government Cut and 

Baker’s Haulover discharge the largest nutrient loads and reducing pollutant loads in the 

Biscayne Bay system would significantly reduce excess nutrients in the KJCAP. 

 

The machine-learning models explained 93% of the variation of partial bleaching of 5% or 

greater mostly driven by colony, landward winds, and temperature, which supports that 

some colonies are more sensitive than others and turbidity from high winds may help 

reduce bleaching. The SCTLD models explained 46% of the variation in lesions driven by 

colony, modeled silicate, and hot snaps, supporting some colonies are more disease 

resistant and that increased exposure to terrestrial waters increases SCTLD lesions. 

 

The highest SCTLD prevalence in five years on the monitored O. faveolata colonies was 

recorded in July 2023. In August, the colonies south of Government Cut had the highest 

recorded bleaching, which took about five months to recover (no mortality from bleaching 

was observed), whereas no colonies further north visibly bleached. Unbleached colonies 

continued to acquire SCTLD lesions in the north, whilst SCLTD quiesced on bleached 

colonies. Thus, it appears that high temperatures in early and mid-summer exacerbated 

SCTLD, but the higher temperatures south of Government Cut caused those corals to 

bleach, which quiesced SCTLD in those colonies 

 

Government Cut has been identified as a major transition between ecoregions in SE FL 

where significant Thalassia seagrass beds exist in the oceanside nearshore habitats further 

south (Biscayne ecoregion), but none further north. Seasonal analysis of the water quality 

sites indicated that the waters in the Biscayne ecoregion were distinctly different most of 

the time over five years on average having lower nitrate, nitrite, and TSS and higher silicate 

and orthophosphate. Sea grasses uptake large amounts of nutrients for seagrass growth and 
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can cause imbalances in their ratios, which can be exacerbated in warmer temperatures. 

Since the ratios of C: N: P: Fe determines the effect of nutrients on coral health, it is 

possible that the ocean side seagrass beds in Biscayne are affecting the water chemistry 

and increasing the corals susceptibility to thermal stress and bleaching. In 2023, nearshore 

reef temperatures south of Government Cut were warmer than further north, however there 

were also regional differences in nutrient concentrations. The water quality monitoring 

sites between Government Cut and Baker’s Haulover had much higher total phosphorus, 

nitrate, silicate, and nitrite than those south of Government Cut. A lack of phosphorus can 

inhibit Symbiodiniaceae cell division and metabolism weakening the corals resistance to 

stress. In the 2023 wet season, the average values of total phosphorus in Biscayne were 4.7 

times lower than normal and nitrate was 1.6 times lower.  

 

This study provides crucial insights into the hydrographic dynamics affecting coral reefs 

in Southeast Florida. By identifying key nutrient sources and their relationship to bleaching 

and disease, it lays the groundwork for effective management actions to mitigate coral 

disease and promote reef resilience. These findings highlight the importance of managing 

inland water quality to protect coral reefs. The model provides a detailed understanding of 

how nutrients from inland sources are transported to reefs, offering valuable insights for 

targeted intervention strategies. We recommend extending the model’s spatial footprint to 

capture the hydrodynamics of the entire FCR in the same way, which is currently being 

funded by DEP. Then using subsequent modeled nutrient data, compiled environmental, 

and reef monitoring data to conduct machine learning models of the relationships between 

factors relating to reef health for both corals and fishes (phase 2). This would provide a 

deeper understanding of the factors affecting reef health and the ability to target high-

impact mitigative actions and restoration strategies. 
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1. INTRODUCTION 

 

Spatiotemporal patterns of tropical coral bleaching and disease are driven by a complex 

array of interactive natural, anthropogenic, and host-specific factors, of which 

combinations can be beneficial or detrimental. The effects of anthropogenic eutrophication 

of coral reefs are dependent on the nutrient loads, ratios, sources, and background 

temperatures, where high nutrient concentrations can increase susceptibility to bleaching 

and disease. However, certain ratios of high nutrients can decrease bleaching susceptibility.  

 

In 2023, an extreme marine heatwave occurred causing many corals to bleach and die 

throughout the FL Keys. Monthly monitoring of many Orbicella faveolata colonies funded 

by DEP (C20F00, C00BAE, B96800, B7B6F3) showed that stony coral tissue loss disease 

(SCTLD) prevalence and incidence on the large O. faveolata colonies in southeast Florida 

was the highest ever recorded leading up to the bleaching. In August, all colonies south of 

Government Cut bleached extensively, whereas no colonies further north visibly bleached 

even though temperature stress was fairly equivalent. Unbleached colonies continued to 

acquire SCTLD lesions in the north, while SCLTD quiesced on bleached colonies. The 

most likely explanations for this differing bleaching response are differences in 

temperature, nutrient exposure, and the hosted Symbiodiniaceae communities. 

 

Degree heating weeks comparisons from regional NOAA coral reef watch virtual stations 

showed very little difference north and south of Government Cut (Figure 1), but the 

southern Biscayne site experienced slightly higher temperature stress. This indicates that 

regional water quality may have been a more important factor in the varying bleaching 

response, however a formal analysis of the in situ temperature data is needed for 

confirmation. Ongoing hydrographic modeling of inlet water in the Kristin Jacobs Coral 

Aquatic Preserve (KJCAP) (DEP C1FC2C) shows that the reefs northward of their adjacent 

inlet are most exposed to the water from that inlet and from inlets further south (Dobbelaere 

et al. 2024). Spatial and temporal statistical modeling (DEP B9CAF9) reef water quality 

sites found that inlet flow, rainfall, and wind predictors explained 79% and 55% of the 

overall variation in orthophosphate and nitrate concentrations, respectively (Whitall et al, 

In revision). Prior to the 2023 bleaching, Symbiodiniaceae communities in large Orbicella 

faveolata colonies showed spatial patterns associated with inlet exposures (Figure 2). A 

bootstrap analysis of 2021 symbiodiniaceae communities by Inlet Exposure showed that 

corals in the Biscayne and Government Cut areas harbored significantly different 

symbionts than the other northern areas even though they are closest in proximity to each 

other. The Biscayne colonies had higher densities of Breviolum and Cladacopium algal 

symbionts than the unbleached colonies further north that were historically exposed to 

nutrient-laden inlet waters.  

 

SCTLD persists in the shallow (<10 m) habitats in southeast Florida on intermediately 

susceptible species (Walker et al, 2025). Disease incidence varies temporally, with total 

infections highest during warm, wet season, and lowest in the dry season (DEP B9CAF9, 

C3D4C8). Statistical modeling showed that five predictors explained 60.6% of the model 

variation in the number of SCTLD lesions over time: mean temperature in the 90 days prior 

(36.7%), mean rainfall in the 90 (9%) and 30 (6.9%) days prior, the number of Hot Snap 
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events in the 60 days prior (5.7%), and flow out of the Inlet Contributing Areas (ICAs) 

inlets over the previous 7 days (2.3%). The Baker’s Haulover inlet exposure area has the 

highest mean number of new SCTLD incidences and frequency of infections (Figure 3). 

 

Symbiodiniaceae have been implicated as a key component of SCTLD and previous studies 

show that SCTLD quiesces with bleaching, however no studies have shown how this 

dynamic relates to varying responses across differing water quality seascapes. The 2023 

marine heatwave had the highest amount of SCTLD on these colonies in 4 years. SCTLD 

persisted and visible bleaching did not occur in the areas most exposed to inlet waters. In 

contrast, further south, SCTLD abated and bleaching occurred in all of the corals in 

Biscayne. These patterns exemplify the complex nature of the coral holobiont response to 

thermal stress and disease in the context of local anthropogenic impacts. We proposed to 

compile the recent relevant datasets to run statistical models to determine which variables 

drove the observed bleaching and SCTLD response patterns in 2023. 

 

Project Goals and Priorities: 

The goal of this work was to define water quality seascapes in the KJCAP using 

hydrographic modeling, in situ water quality data, and other environmental data (such as 

in situ temperature) to investigate the observed varying spatial coral bleaching responses 

and SCTLD during the 2023 marine heatwave.  

 

This work addressed the following FCRRP priorities: 

● To understand and conduct evidence mapping of the deleterious impacts of 

different known chronic and acute water quality stressors such as turbidity, 

sedimentation, and key nutrients (nitrogen and phosphorus) on coral physiological 

and reproductive processes.  

● Advance diagnostics related to coral diseases that are causing significant mortality, 

relative to other coral diseases, on Florida’s Coral Reef.  

● Research into the spatiotemporal patterns of coral diseases causing significant 

mortality on FCR, with an emphasis on SCTLD.  

● To identify traits indicative of resistant and resilient corals and understand what 

parameters (physical, chemical, and biological; individual and synergistic; 

organismal and environmental) drive these factors.  

 

It also addressed many long-standing SEFCRI LBSP management priorities (projects 18, 

28, 29) and Our Florida Reefs recommended management actions (N-71, N-97, S-28, S-

104), as well as the 2023 SCTLD Research Priorities 2 and 3, and the Resilience Action 

Plan for Florida’s Coral Reef (2021-2026) goal 1 objectives 1 and 3. 

 

The outcomes herein inform all aspects of future O. faveolata restoration planning for the 

KJCAP. They should be incorporated into an on-going coral disease response effort which 

seeks to improve understanding about the scale and severity of the coral disease outbreak 

on Florida’s Coral Reef, identify primary and secondary causes, identify management 

actions to remediate disease impacts, restore affected resources, and ultimately prevent 

future outbreaks.  
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Figure 1. NOAA coral reef watch virtual station degree heating weeks for July – Dec 2023. 

 

 
Figure 2. A bootstrap analysis of symbiodiniaceae communities by the nearest Inlet 

Exposure showing that corals in the Biscayne and Government Cut areas harbor different 

symbionts than the other areas even though they are closest in proximity to each other.  
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Figure 3. Mean number of new SCTLD treatments and frequency of infection are 

significantly higher in the Baker’s Haulover exposure area.  

 

 

2. METHODS 

2.1. Task 2: Compile relevant regional environmental data (temperature, rainfall, 

inlet flow, wind) from 2021 – 2023 

 

Based on previous analyses, a suite of environmental predictors were synthesized that were 

hypothesized to explain variations in coral bleaching and SCTLD affecting monitored large 

coral colonies in the KJCAP (Figure 4). The predictor datasets included data from January 

2021 through to the end of December 2023. When combined with previous data, this 

generated data spanning from January 2018 to December 2023. This time-series was then 

trimmed as necessary to align with the monitoring periods for bleaching and SCTLD in the 

KJCAP – see below). The core methods behind generating each of these environmental 

data sets is described below. 

 

2.1.1. Seawater temperature 

In situ temperature stress experienced by the coral colonies was quantified using data from 

sites BC1, DC1, DC6, and DC8 of the Southeast Coral reef Evaluation and Monitoring 

Project (SECREMP) (Figure 4). Each coral was spatially joined to the nearest logger. From 

the temperature time series, we calculated the seasonal mean and standard deviation for 

each summer period (July 1st – September 31st) and from this calculated the number of 

anomalously high temperature events using the “Hot Snap” metric, defined as any 

temperature event that exceeds 1SD of the long-term seasonal mean (Heron et al. 2010). 

We used a “period of accumulation” of 3, 7, 14, 30, 60 and 90 days, meaning that for each 

coral survey date we calculated the number of Hot Snaps over these temporal windows 

prior to the survey date. These summed numbers of Hot Snap events were then multiplied 

by two to estimate the number of exposure hours over each period (due to the 2-hr sampling 

resolution of the loggers, i.e., one event equals two hours, two events equal 4 hours and so 

on). 
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2.1.2. Seawater nutrient concentrations 

The water quality data used for this analysis were from a joint NOAA-Florida Department 

of Environmental Protection (FDEP) assessment program (Whitall et al. 2019). The central 

inlet and reef site sample data were used in the analysis (). To analyze water quality data 

at the reefs themselves, only water collected using Niskin bottles at the depth of the reef 

(not surface waters) were included in this analysis. The sampling protocol involved starting 

sample collection as far into the ebb tide as possible and at a minimum of two to three 

hours after the peak high tide. Sampling equipment was rinsed with deionized water three 

times between sites and then three times with site water once on site. Field clean equipment 

blanks were collected (at least one per day and at least one per 20 samples collected). 

Analytical chemistry was performed via standard methods (Whitall et al. 2019; Whitall and 

Bricker 2021).  

 

The database captures a suite of common nutrient parameter analytes (e.g., phosphate, 

nitrate). The number of non-detects (i.e. values falling below the minimum detection limits, 

MDL) within this database is often quite large (sometimes more than 50% of the water 

samples for any given analyte). We adjusted the analyte values to account for the MDLs 

using a modified version of the Flynn methodology (Flynn 2010). The approach maximizes 

the normality of a distribution of samples, after making a best-guess approach for values 

below a detection limit, setting the starting value for iterative calculations to half the 

reported detection limit for each analyte. Here, if an analyte had several different detection 

limits, the mean detection limit was used to approximate the best guess starting point for 

all values below the detection limit. Calculations were made using a R routine previously 

developed by this project team that combines four existing R functions (optim, readxl, 

dplyr, signal) with a novel function (named “shapiro_weights”) to calculate the Shapiro 

Weights used in Flynn (2010). We adapted the Flynn (2010) methodology to account for 

the time-series nature of the data set. An important consideration of the Flynn (2010) 

approach is that it estimates the values for samples of analytes below the MDL along the 

x-axis of a normal distribution built from those values above the MDL for that analyte 

(moving from left to right, i.e. from low to increasingly higher values) in the order in which 

the data are received. As such, if the data are inputted in time order, then estimated values 

later in the time series will be higher than those earlier in the time series. This results in a 

slow systematic ‘creep’ in analyte concentrations that becomes apparent when temporal 

trends in the nutrient data are then visualized. To overcome this, we permuted the order of 

the data set stratified by sampling station. This ensured that time was randomized when 

predicting values below the MDL within each sampling station but more importantly 

ensured that any underlying spatial gradients in nutrient concentrations across the KJCAP 

(and their relation to changes in concurrent flow, rainfall and wind) were maintained. These 

synthesized in situ nutrient data were used to parameterize the temporal extension of the 

hydrographic nutrient loading model (using a subset of the sampling stations clustered 

around the inlets: GOC002, BAK020, PEV040 and HIL050, Task 3) and examine temporal 

trends in water quality across the KJCAP (Task 5). 
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Figure 4. Map of the project area depicting the Inlet Contributing Areas, DBHydro flow 

stations, the inlet mouths, large corals, sewage outfalls, and water quality monitoring 

stations and reef temperature logger locations. 
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Table 1. Water quality monitoring sites used in this analysis from the NOAA-Florida 

Department of Environmental Protection (FDEP) assessment program. 

 

Site ID Latitude Longitude Type Inlet Contributing Area 

Inlet Exposure 

Area 

GOC002 25.76100000 -80.12842500 Inlet Government Cut Government Cut  

GOC005 25.84455000 -80.10415000 Reef Government Cut Government Cut  

GOC006 25.73414210 -80.10023920 Reef Government Cut Biscayne 

GOC007 25.84636670 -80.10323330 Reef Government Cut Government Cut  

GOC008 25.83518330 -80.10928330 Reef Government Cut Government Cut  

GOC009 25.66821730 -80.09874200 Reef Government Cut Biscayne 

GOC010 25.65916350 -80.09482490 Reef Government Cut Biscayne 

GOC011 25.71883000 -80.10008000 Reef Government Cut Biscayne 

BAK020 25.90000000 -80.11971400 Inlet Baker's Haulover Baker's Haulover 

BAK024 25.87298300 -80.10450000 Reef Baker's Haulover Government Cut  

BAK025 25.88526000 -80.11218000 Reef Baker's Haulover Government Cut  

BAK026 25.87570000 -80.10496670 Reef Baker's Haulover Government Cut  

BAK027 25.86261000 -80.10401000 Reef Baker's Haulover Government Cut  

BAK028 25.95145000 -80.10286700 Reef Baker's Haulover Baker's Haulover 

BAK029 25.93450000 -80.10250000 Reef Baker's Haulover Baker's Haulover 

PEV040 26.09300600 -80.09733300 Inlet Port Everglades Port Everglades  

PEV044 26.15998300 -80.09028300 Reef Port Everglades Port Everglades  

PEV045 26.11206700 -80.09883300 Reef Port Everglades Port Everglades  

PEV046 26.02060000 -80.11190000 Reef Port Everglades Baker's Haulover 

PEV047 26.14840000 -80.09520000 Reef Port Everglades Port Everglades  

PEV048 25.97240000 -80.10980000 Reef Port Everglades Baker's Haulover 

PEV049 25.95423000 -80.10117000 Reef Port Everglades Baker's Haulover 

HIL050 26.25659200 -80.08019700 Inlet Hillsboro Hillsboro Inlet  

HIL054 26.28915000 -80.07511670 Reef Hillsboro Port Everglades  

HIL055 26.21693000 -80.08620000 Reef Hillsboro Port Everglades  

HIL056 26.22868330 -80.08381670 Reef Hillsboro Port Everglades  

HIL057 26.24786670 -80.07821670 Reef Hillsboro Port Everglades  

HIL058 26.19612000 -80.09100000 Reef Hillsboro Port Everglades  

HIL059 26.25616670 -80.07691670 Reef Hillsboro Port Everglades  

 

 

2.1.3. Inlet flow 

The South Florida Water Management District’s DBHydro database 

(https://www.sfwmd.gov/science-data/dbhydro) stores hydrologic, meteorologic, and 

water quality data, and is the source of historical and up-to-date environmental data for the 

16-county region covered by the District. Using this database, we generated estimates of 

water flow from ICAs to our monitored corals in the KJCAP as a proxy for exposure to 

land-based sources of nutrients and pollutants. A subset of the DBHydro monitoring 

stations that independently captured the full extent of the flow within each Inlet 
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Contributing Area (ICA) were identified. Stations that were upstream or downstream from 

each other, and therefore were artificially inflating summed flow values, were identified 

using a map of the flow channel paths throughout the ICAs and one of each pair removed 

(Walker et al. 2022). Through this iterative pairwise process, 20 stations were identified 

for inclusion in the analyses and used to generate flow data for each ICA across the entire 

project period. Each large coral and in situ water quality monitoring site was then spatially 

joined to its nearest ICA directly south of its position owing to our previous hydrographic 

modeling work showing a predominantly northern flow out of the coastal inlets 

(Dobbelaere et al. 2024). The flow patterns for each coral/water quality site were then 

pulled from the ICA summary across a series of pre-defined temporal windows (1, 3, 7, 14, 

30, 60 and 90 days) prior to each survey date. This was then repeated for one-month 

increment windows over a full year prior to each coral/water quality site survey date.  

 

2.1.4. Rainfall 

Episodes of heavy rainfall can lead to land-based runoff to nearby coastal areas and 

contribute to the establishment and persistence of coral diseases. Furthermore, extreme 

events in shallow water can stir up deposited sediment and introduce new sediment sources 

from the land into suspension that can also exacerbate coral disease (Pollock et al. 2014). 

Here we used the South Florida Water Management District’s Daily Historical Rainfall 

database (www.sfwmd.gov/weather-radar/rainfall-historical/daily) to quantify the amount 

of rainfall experienced by each monitored coral and in situ water quality sample site over 

the same temporal windows as for inlet flow. Here, unlike inlet flow, each coral and water 

quality site were spatially attributed to the nearest ICA running directly to land from their 

position, as there was no prior expectation that land-based runoff (rather than inlet outflow) 

would be coming from a predominant spatial direction. 

 

2.1.5. Wind speed and direction 

High wind events can cause the resuspension of sediment on reefs (Priestas 2022) resulting 

in changes in water quality. Previous analyses within the KJCAP showed wind speed and 

direction (landward versus seaward) to explain a reasonable proportion of the 

spatiotemporal variation in some of the water quality analytes. We used NOAA’s tides and 

currents database (https://tidesandcurrents.noaa.gov/met.html) to quantify wind speed 

(mean and SD) and direction (0-179°, blowing towards land; 180-359°, blowing towards 

sea) for the KJCAP, as well as the number of high wind events (> 5 m sec-1). These metrics 

were computed using the 6-minute resolution wind data, averaged to daily values to 

estimate patterns over time for each ICA. Like for rainfall, each coral and water quality site 

were spatially attributed to the nearest ICA running directly to land from their position and 

rainfall values quantified over the same temporal windows prior to the survey dates as for 

flow and rainfall. 

 

2.2. Task 3: Update hydrographic modeling through 2024 

 

2.2.1. Task 3a: Simulating ocean dynamics from Sep. 2021 to Aug. 2024 

We simulated the ocean circulation along East Florida’s coastline with the multiscale ocean 

model, which has already been extensively applied and validated in Florida’s coastal waters 

(Frys et al., 2020; Dobbelaere et al., 2020; Dobbelaere et al., 2022). Here, we considered 
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an area of interest situated between Florida and the Bahamian Banks, and between 25.2°N 

and 27.5°N (Figure 5). The Government Cut, Baker’s Haulover, Port Everglades, and 

Hillsboro inlets were included in the area of interest as open boundaries through which 

water flow and analytes could enter in the model domain. SLIM uses an unstructured mesh 

whose resolution can be locally increased to accurately represent fine-scale flow features, 

such as those produced near the inlets and over the nearshore and offshore coral reefs.  The 

mesh was generated with GMSH (Geuzaine & Remacle, 2009) using the Python package 

seamsh. The model resolution reached 25 m around the inlets, 50 m along the coastlines, 

100 m over the coral reefs, and a few km further offshore, in the Florida Straits. The model 

bathymetry was obtained by combining data from NCEI Coastal Relief Model (3 

arcseconds) and NCEI Continuously Updated Digital Elevation Model (1/9 arcseconds). 

Reef polygons were extracted from FWC’s unified reef map. The model was forced with 

winds from ECMWF-ERA5, large-scale currents (including tides) from HYCOM-GoM 

and processed DBHydro flow rates at the inlet boundaries. The model was run between 

September 1, 2021, and September 1, 2024, with hourly exports of the simulated sea 

surface elevation and currents. 

 

2.2.2. Task 3b: Simulating plumes from the 4 main inlets  

We used the modeled currents to simulate the dispersal of inland plumes from the four 

primary inland water inlets—Government Cut, Baker’s Haulover, Port Everglades, and 

Hillsboro. Our inland water dispersal model employs a Eulerian approach, solving an 

advection-diffusion equation for each of the seven analyte concentrations released from 

each of the four inlets, resulting in a total of 28 equations. The seven analytes for which 

concentration measurements (in g/m³) were available at each inlet include nitrite, nitrate, 

total nitrogen, orthophosphate, total phosphorus, silicate, and total suspended solids (TSS). 

The model assumed that each analyte behaves as a passive, non-reactive tracer that does 

not decay in the water column due to biological consumption (in the case of nutrients) or 

sedimentation (for TSS). Additionally, the model considered the initial concentration of 

each analyte within the domain is zero, with the only sources being the four inlets. We 

computed the temporal average of the 28 simulated concentrations for the wet (May to 

October) and dry (November to April) seasons at all mesh nodes. These averages were then 

compared to highlight seasonal differences for each inlet 

 

https://git.immc.ucl.ac.be/jlambrechts/seamsh
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Figure 5. Model mesh and close-up views near the four ICA inlets, where the model 

resolution reaches 25 m. The inlet open boundaries where flow rates and analyte loads were 

imposed are highlighted with thick colored lines. The land is shown in light grey and reef 

polygons in dark grey. 

 

The simulated concentrations were validated against monthly water quality measurements 

from the reef water quality monitoring sites. Due to the disparity in temporal resolution 

(hourly vs monthly) and the water quality measurement uncertainty, this validation was 

performed by comparing the distributions of the observed and simulated concentrations at 

the monitoring sites.  We computed the first and third quartiles of the distributions of the 

observed and daily resampled simulated concentrations. We then defined three 

concentration levels: low below the first quartile, high above the third quartile, medium 

otherwise. We then defined an accuracy score by computing the proportion of simulated 

concentration levels matching the observed concentration levels. This score was first 
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computed using the predicted concentration level at the date of the observation. We then 

used a tolerance of at most 2.5 days between the observed and simulated concentration 

levels. Simulated concentration peaks occurring within 2.5 days before or after the date of 

the observed peaks were then considered correct. 

 

2.2.3. Task 3c: Estimating nearshore coral reef inlet exposure  

The 28 simulated concentrations (for the seven analytes originating from four different 

inlets) were also computed over reef polygons to estimate coral reef exposure to the 

analytes released at each of the inlets. Reef polygons were extracted from the coral and 

hardbottom layer of the Unified Reef Map (FWC-FWRI, 2017) and intersected with a 500 

m × 500 m grid. The resulting heat maps highlight reefs most exposed to inland water 

plumes and indicate the seasonal variability of this exposure . 

 

2.2.4. Task 3d: Identifying the analyte(s) and inland source responsible for 

disease occurrence  

Finally, we computed time series of the 28 analyte concentrations at reef sites monitored 

and treated for SCTLD (Whitall et al. 2019). To identify the most important source of 

analyte to each site and its potential impact on the occurrence of disease lesions, we 

computed the total accumulated analyte concentration at the sites during the ten days 

preceding the observation of new lesions. This period was chosen as it matches the disease 

incubation time obtained in laboratory experiments (Dobbelaere et al., 2020; Aeby et al., 

2021; Meiling et al., 2021). The contribution of each inlet was then obtained by computing 

the fraction of the total accumulated concentration coming from this inlet. 

 

2.3. Task 4: Quantify in situ temperature stress differences between Biscayne and 

further 

In situ temperature data was compiled for 2022 and 2023 at four nearshore SECREMP 

monitoring stations, BC1, DC6, DC1, and DC8 (Figure 4). These stations differed 

latitudinally along the coast. Raw temperature data between April and October each year 

were plotted and compared across sites and years to evaluate differences in temperature 

regimes between Broward and Miami-Dade counties and how temperature related to the 

2023 disease and thermal stress observations in the large Orbicella colonies. Non-

parametric analyses of variance with Kruskal-Wallace post hoc tests between pairs were 

used to determine significance between sites and years. 

 

2.4. Task 5: Quantify seasonal patterns in water quality by inlet exposures of each 

analyte through 2023 

Water quality data from the NOAA-Florida Department of Environmental Protection 

(FDEP) assessment program were used in a multivariate analysis to investigate spatial 

differences between inlet exposure areas. Due to temporal variation, data were analyzed 

for each wet and dry season individually. Because dry seasons spanned multiple years, they 

were assigned the latest year. For example, samples collected between November 1, 2020 

and May 1, 2021 were labeled Dry 2021.  

 

Corrected values for nitrate, nitrite, orthophosphate, total phosphorous, total suspended 

solids, and silicate for each sample period and location were input into Primer 7. Data were 
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4th root transformed and then normalized to account for differences in ranges between 

analytes. A Euclidean distance similarity matrix was produced which was used to test 

significance in a permutational multivariate analysis of variance (PERMANOVA) and 

create bootstrap averages plots of significant factors (Year, Season, IEA) with 100 

iterations. Similarity percentages on transformed data were calculated for IEAs for each 

season and compiled into a database. A Euclidean distance similarity matrix of the 

SIMPER results by season was produced which was used to test significance in 

PERMANOVAs and create a multidimensional scaling to evaluate the similarity between 

each IEA each season. Similarity percentages were calculated by IEA to determine the 

overall factors affecting differences between IEAs. 

 

2.5. Task 6: Build statistical models to investigate the possible links between water 

quality seascapes, SCTLD occurrence, and patterns of coral bleaching  

The analyses here aimed to test whether correlative links existed between water quality 

seascapes, patterns of SCTLD, and coral colony bleaching response during the 2023 marine 

heatwave. To do this, we built a series of statistical models that connected the various parts 

of this puzzle in different combinations in an iterative manner: 1) relationship between 

changes in water quality and changes in flow, rainfall, and wind (i.e. how local 

environmental factors drive water quality changes), 2) relationship between changes in 

water quality and spatiotemporal patterns of SCTLD (i.e. what specific changes in water 

quality result in increased or decreased SCTLD occurrence), and 3) relationship between 

water quality seascapes and thermal stress with patterns of coral bleaching during the 2023 

marine heatwave (i.e. what specific combinations of historical nutrient exposure and 

thermal stress result in either higher or lower bleaching). These analyses utilized all the 

various data layers generated through Tasks 2 – 5 as necessary to synthesize across them 

to advance our understanding of how local land-sea connections affect disease and 

bleaching dynamics on nearshore coral reefs, a critical area of ongoing research in coral 

reef ecology.  

 

All statistical models were built using a boosted regression tree (BRT) framework. Unlike 

many modeling techniques that aim to fit a single parsimonious model, BRT incorporates 

machine learning decision tree methods (Breiman et al. 1984) and boosting, a method to 

reduce predictive error (Elith et al. 2008), to build an additive regression model in which 

individual terms are regression trees, fitted in a forward stage-wise manner (i.e., 

sequentially fitting each new tree to the residuals from the previous ones). In summary, 

BRT gives two crucial pieces of information, namely the underlying relationship between 

the response and each predictor, and the strongest statistical predictors (among the 

simultaneously tested predictors) of the response variable in question. 

 

BRTs were constructed using the gbm.step routine (Elith et al. 2008) in the dismo package 

(Hijmans et al. 2017) for R (www.r-project.org) and all model outputs were visualized in 

ggplot2 using ggBRT (Jouffray et al. 2019). For the in situ water quality and coral bleaching 

models, the data were modeled using a Gaussian distribution. For the SCTLD models, the 

data were modeled using a Poisson distribution. We used a 10-fold cross-validation 

approach to test the model against withheld portions of the data (iterated thousands of 

times) and the cross-validated percentage deviance explained, calculated as (1 – (cross-

http://www.r-project.org/
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validated deviance/mean total deviance)), as our measure of model performance (Jouffray 

et al. 2019). To optimize model predictive performance, we varied three core parameters 

of the BRT algorithm: the bag-fraction (bf, proportion of training data to be selected at 

each step), the learning rate (lr), used to shrink the contribution of each tree as it is added 

to the model), and the tree complexity (tc), the number of terminal nodes in a tree). Using 

a customized loop routine (Richards et al. 2012), we identified the combination of these 

three parameters that resulted in the lowest cross-validation deviance (CVD) over bf-values 

0.5, 0.7, and 0.8, lr-values 0.001, 0.0001, and 0.00001, and tc-values 1–5, while 

maintaining a minimum of ≥ 1000 fitted trees and a maximum of 50,000 trees. To ensure 

the optimal bag fraction for each analyte did not result in high model performance because 

of overtraining (i.e. a high proportion of training data relative to test data), we also 

recalculated and report the overall model performance values with a bag fraction of 0.5 

(50% training data) in each case. For each final BRT model, the relative importance of 

each predictor was calculated based on the number of times a variable was selected for 

splitting, weighted by the squared improvement to the model, as a result of each split, and 

averaged over all trees (Friedman and Meulman 2003; Elith et al. 2008). 

 

Prior to model-fitting, the predictor variables were investigated for collinearity. We 

calculated pairwise Pearson’s correlations across the various temporal windows for inlet 

outflow, rainfall, and wind (landward and seaward) and excluded one of each pair where r 

>0.8. During this, we strived to retain either short (3, 7 days prior) or medium (30 days 

prior) over very short (1 day prior) or long (90 days prior) periods. We also included ‘depth’ 

as a predictor to account for any effect variations in depth across the water samples and 

coral locations might have and ‘Year’ (2019-2023) to account for any temporal effects not 

captured by temporal changes in our other predictors. Finally, we included three different 

spatial terms to capture any effects not captured by spatial changes in our other predictors: 

1) the inlet contributing area (ICA) directly to shore from the water quality sampling station 

or monitored coral location (Hillsboro, Port Everglades, Baker’s Haulover, Government 

Cut), 2) the ICA directly south of their location (because of the predominantly northern 

flow out of the inlets (Dobbelaere et al. 2024) (Port Everglades Baker’s Haulover, 

Government Cut, south of the ICA inlets), and 3) the inlet exposure area (IEA), which were 

assigned based on previous modeling efforts (Port Everglades, Baker’s Haulover, 

Government Cut, Biscayne).  

 

For the in situ water models, this resulted in the following 17 predictors included in the 

model fitting process: depth (m), Year (categorical: 5 levels), ICA (categorical: 4 levels), 

ICA south (categorical: 4 levels), IEA (categorical: 4 levels), summed inlet flow 

(calculated using IEA) (7, and 30 days prior), summed rainfall (calculated using ICA) (1, 

3, 7, 30 days prior), number of landward wind events >5 m sec-1 (7, 30 days prior) and 

number of seaward wind events >5 m sec-1 (1, 3, 7, 30 days prior).   

 

For the SCTLD and coral bleaching models, several other predictors were also included, 

namely ‘Colony’ as a categorical variable (to capture any colony-specific effects not 

captured by our colony-level estimates of the other predictor variables), the number of 

septic tanks within the radius of each coral location as a proxy for nearshore urbanization 

(Walker et al. 2022), mean seawater temperature, and the modeled summed nutrient 
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loading estimates for the six analytes generated from the hydrographic model in Task 3. 

After removing one of each pair where r >0.8, this resulted in the following 36 predictors 

included in the model fitting process: depth (m), Colony (42 levels), number of septic tanks 

within a 8, 13 and 21 km radius, Year (categorical: 5 levels), ICA (categorical: 4 levels), 

ICA south (categorical: 4 levels), IEA (categorical: 4 levels), mean seawater temperature 

(7 and 90 days prior), Hot Snap exposure (7, 30 and 90 days prior), summed inlet flow 

(calculated using IEA) (7, and 90 days prior), summed rainfall (calculated using ICA) (7, 

30, 90 days prior), number of landward wind events >5 m sec-1 (7, 30, 90 days prior), 

number of seaward wind events >5 m sec-1 (7, 30, 90 days prior), summed nitrate loading 

(7 and 30 days prior), summed nitrite loading (7 and 90 days), summed orthophosphate 

loading (30 and 90 days prior), summed phosphorus loading (7 and 90 days), summed 

silicate loading (7 and 90 days), and summed total suspended solids (7 and 90 days). 

 

For the SCTLD models, we modeled both the number of new treatments and number of 

new lesions over time. Unfortunately, the lack of nutrient input boundaries precluded our 

ability to use the hydrographic modeled nutrient data off Biscayne. Although shown to 

have lower nutrient values at the water quality monitoring sites, the hydrographic model 

didn’t have any inputs from lower or mid-Biscayne Bay. Therefore, we first modeled the 

entire geographic extent of the data set (across all four inlets) but with the modeled nutrient 

loading estimates excluded (because of high uncertainty in the nutrient loading estimates 

in the Biscayne IEA) (No Nutrients – NN). We then modeled a second scenario, where the 

Biscayne corals (n=17) were removed from the data set and the nutrient loading estimates 

for the remaining IEA included as predictors (No Biscayne – NB). The results were then 

compared. For coral bleaching, the focus here was on modeling the entire geographic extent 

because of our hypothesis that temperature stress in the southern regions was, in part, 

driving bleaching patterns. As such, the modeled nutrient loading estimates were once 

again excluded as predictors. We then modeled two bleaching response variables: one with 

all bleaching values less than 5% removed, and one with all bleaching values less than 10% 

removed. 

 

 

2.6. Task 7: Integrate the inlet exposures into the RRC data analyses 

 

A key part of using statistical inference to identify possible causal relationships in ecology 

is the correct design, application, and (perhaps most importantly) correct interpretation of 

statistical models. Here our team continued to provide key statistical oversight and targeted 

assistance to help those researchers from the RRC identify and execute appropriate 

statistical tests for their questions and hypotheses. This helped to ensure continuity in data 

analysis approaches across the RRC and ensure statistical rigor when it comes to data 

interpretation and peer-reviewed publication of the results. We provided this assistance 

through a series of online meetings and email exchanges with individual RRC team 

members. 
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3. RESULTS 

3.1. Task 3: Update hydrographic modeling through 2024 

 

3.1.1. Task 3a: Simulating ocean dynamics from Sep. 2021 to Aug. 2024 

The simulated ocean circulation patterns along East Florida’s coastline are predominantly 

northward under the influence of the Florida Current (Figure 6). The primary northward 

ocean circulation is however influenced by tidal currents, which introduce oscillatory 

dynamics that can alter the flow direction, occasionally causing it to reverse and move 

southward. Additionally, this northward circulation is affected by the passage of 

(sub)mesoscale baroclinic eddies, which induce meandering in the Florida Current and can 

further influence changes in its direction. In addition to these two physical processes, the 

ocean currents interact with the coral reefs along the coast. As those reefs are shallower 

and have a higher rugosity than the sandy seabed, they tend to slow down and deflect the 

ocean currents. The ocean circulation model outputs have been validated against 

observations at different stations within the area of interest (see Figure 7 for an illustration 

in January 2024). 

 

3.1.2. Task 3b: Simulating plumes from the four main inlets 

The changes and variability in the ocean circulation patterns in turn affect the dispersal of 

inlet plumes originating from the four inlets. While they tend to move north, they can also 

be flushed southward and hence affect reefs not directly downstream of the inlets (Figure 

6). The footprint of each inlet can be assessed for each of the analytes present in the inland 

water. For the sake of illustration, we only show here the results for silicate but the same 

has been done for the other six analytes for which we had load measurements at each inlet 

(see Appendix). We computed the mean silicate concentration over both the wet (May to 

October) and dry (November to April) seasons over the 3-year period that we simulated 

(Figure 8). While the analyte plumes extend mostly north of each of the source inlets, they 

also have a non-negligible southern footprint that extends over tens of kilometers. This is 

particularly the case for Government Cut and Baker’s Haulover inlets whose inland water 

plumes clearly intrude into Biscayne Bay. Government Cut and Baker’s Haulover also 

discharge the largest amounts of pollutants leading to inland water plumes with a higher 

analyte concentration. As these two inlets are further the southernmost, they have the most 

detrimental effect on the marine environment. When comparing wet and dry seasons, we 

observe that inland water plumes generally have a larger analyte concentration during the 

wet season. However, higher analyte concentrations were observed south of the inlet during 

the dry season, especially for Government Cut and Baker’s Haulover. 

 

3.1.3. Task 3c: Estimating nearshore coral reef inlet exposure 

When looking more specifically at the inlet source of analyte concentration over each reef, 

we see that Government Cut’s inlet not only has the largest footprint in terms of surface 

area but also exhibits the highest concentration of inland water over the reefs across that 

area (see illustration for silicate in November 2023 in Figure 9). This is due to both its 

southern location and its highest pollutant load. While Government Cut, Baker’s Haulover 

and Port Everglades inlets predominantly impact reefs north of the inlets, analyte 

concentrations from Hillsboro’s inlet are largest over reefs south of the inlet. 
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Figure 6. (A) Snapshot of the simulated currents near the inlets on September 26, 2022 at 6pm and (B) silicate plumes released from the 

different inlets. The land is shown in light gray and coral reefs in darker gray. This illustrates how the flow rates at the inlets and small-

scale eddies are captured by the model.
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Figure 7. Validation of the simulated sea surface elevation at three stations within the area 

of interest in January 2024.
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Figure 8. Seasonal mean concentration of silicate originating from the different inlets for the dry (left panels) and wet seasons (middle 

panels). The difference in concentration between wet and dry seasons is shown in the right panels. Silicate concentrations were higher 

during the wet season, while the simulated plumes extend further south during the dry season, especially near Government Cut.
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Figure 9. Illustration of coral reefs exposure to silicate in November 2023. Among the four 

inlets, Government Cut has the largest footprint, impacting most of the reefs in the KJCAP.  

 

We further validated the simulated analyte concentrations against measurements at 

DBHydro monitoring stations (Figure 10). The model performs best near the inlets, where 

boundary conditions from DBHydro were imposed. At these sites, accuracy scores of up 

to 75% were found. The accuracy scores decreased with increasing distance from the inlets. 

On average, the simulated concentration levels matched 41% of the observed silicate 

concentration levels when no lag was allowed. The lowest accuracy scores were found at 

the northernmost and southernmost monitoring sites, in regions probably also impacted by 

sources of analytes that were not included in the model (e.g. Saint Lucie Inlet). Allowing 

for a lag of at most 2.5 days between the simulated and observed concentrations slightly 

increased the model performance. It shifted the distribution of the accuracy scores to the 

right and increased the mean accuracy score from 0.41 to 0.50. 
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Figure 10. Validation of the simulated silicate concentration against measurements at 

monitoring stations. Three concentration levels (low, medium, high) were defined based 

on the first and third quartiles of the distributions of the observed and simulated 

concentrations. The accuracy score gives the fraction of simulated concentration levels 

matching the measured levels with no lag allowed (left), or with a tolerance of at most 2.5 

days between the simulated and measured concentration peaks (right). The model 

performance decreases with increasing distance from the inlets. The lowest accuracy scores 

are observed at the southernmost and northernmost sites. Allowing a lag between the 

measured and simulated concentrations slightly improves the accuracy score. 
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3.1.4. Task 3d: Identifying the analyte(s) and inland source responsible for 

disease occurrence 

For all the large corals where disease lesions were observed, we could use our model to 

identify which inlet contributed the most. These reef sites are ordered from south to north 

along the y axis in the four panels of Figure 14. Each panel represents an inlet, with its 

latitude highlighted by a dashed line on the y-axis. As Government Cut is the southernmost 

inlet, it had an impact on almost all the diseased reef sites. The other inlets, being further 

north, had a more limited impact, which further decreased with increasing inlet latitude. It 

is, however, noteworthy that these inlets could impact reefs located south of the inlet, which 

again shows that the ocean circulation along East Florida’s coastline is not a mere conveyor 

belt transporting disease agents northward. It however remains that Government Cut inlet 

had the largest detrimental effect, followed by Baker’s Haulover and then Port Everglades. 

On average, 78% of the silicate found at sites with lesions originated from Government 

Cut, while 17% and 4% came from Baker’s Haulover and Port Everglades, respectively. 

The relative contribution of Government Cut to the analyte concentration over the northern 

reef sites varies seasonally and was lower during the wet season.  

 

We also derived a complete time series of analyte concentrations on reefs where disease 

signs were observed. These time series were derived from the analyte dispersal simulations 

initiated at each inlet and cover the entire 3-year simulated period. They indicated the 

concentration of all analytes over the reef site for each of the four considered inlets. As an 

illustration, we show the time series of the concentrations of the 7 considered analytes at 

reef site LC-005 (Figure 11). This site is located north of Port Everglades and was mostly 

impacted by Government Cut and Baker’s Haulover (see Figure 12), with some punctual 

peaks of analyte concentrations from Port Everglades. 
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Figure 11. Time series of the contribution of each inlet to the modeled analyte 

concentrations over reef site LC-005. Dotted lines correspond to the observation dates of 

new lesions. Government Cut (GOV) and Bakers Haulover (BAK) were the main source 

of analytes to the reef site. Punctual peaks of analyte concentrations from Port Everglades 

(PEV) were observed. Hillsboro Inlet (HIL) had a negligible impact on the site. 
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Figure 12. Probability for each inlet to be a source of particles that reached the reef 

monitoring sites during the 10 days preceding the observation of new SCTLD lesions. The 

sites on the y-axis are ordered from south to north, the points correspond to the dates and 

locations of observation of new lesions and their color indicate the probability for particles 

to originate from the different inlets. The latitudes of the different inlets are indicated by 

colored dashed lines. 
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3.2. Task 4: Quantify in situ temperature stress differences between Biscayne and 

further north 

 

Significant differences in mean nearshore reef temperatures were found from April 

through October between BC1 (Fort Lauderdale) (28.6 ±0.04), DC6 (Haulover) (28.7 

±0.04), and DC8 (Key Biscayne) (28.9 ±0.04) in 2022 and in 2023 (BC1=28.8 ±0.03; 

DC6=28.9 ±0.03; DC8=29.3 ±0.03). Temperature differences were also significant at 

each site between years, with 2023 being higher in every case. Key Biscayne mean 

temperatures were the highest between sites four of seven months in 2022 (Figure 13) 

and six of seven in 2023 (Figure 14). The highest monthly mean temperatures were at 

Key Biscayne in July (31.4°C) and August (31.1°C) 2023. The distribution of 

temperatures in 2022 showed that Key Biscayne was equal to or greater than 31°C 12.1% 

of the time versus 8.5% in Haulover and 5.6% in Fort Lauderdale (Figure 15). In 2023, 

Key Biscayne was equal to or greater than 31°C 17.6% of the time (898 hours) versus 7.5 

% in Haulover, and 4.7% in Fort Lauderdale (Figure 16). In both years, Key Biscayne 

reached the 30.5°C bleaching threshold earlier than the more northern sites and reached 

the maximum temperature of all sites either year on August 9 and 10 2023 of 32.7°C 

(Figure 17 and 18). 

 

Monthly monitoring data on 59 large Orbicella faveolata colonies in the study area from 

September 2018 to July 2024 showed spatiotemporal patterns in the number of SCTLD 

treatments and percentage of bleaching per colony (Figure 19). The SCTLD seasonal 

variation in these corals has been reported many times, however the bleaching has not. 

Several corals had a high prevalence of low partial bleaching (e.g. LC-123, LC-120, LC-

059, LC-157) whereas LC-002 had higher partial bleaching percentages during 38 out of 

73 visits (52.6%) (Figure 20). The highest bleaching in the dataset occurred between 

August and December 2023 on corals south of Government Cut inlet (Figure 19). Figure 

18 illustrates the raw temperature values from the four stations with the large O. 

faveolata SCTLD and bleaching prevalence across the study period. SCTLD spiked on 

these colonies in July and dropped in consecutive months as bleaching prevalence rose. 

SCTLD prevalence and incidence on the large O. faveolata colonies in southeast Florida 

was the highest ever recorded leading up to the bleaching (Walker et al 2024). In August, 

all colonies south of Government Cut bleached extensively, whereas no colonies further 

north visibly bleached. Unbleached colonies continued to acquire SCTLD lesions in the 

north, whilst SCLTD quiesced on bleached colonies (Figure 21).  
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Figure 13. Mean monthly temperature by site between April and October for three 

nearshore SECREMP stations that differ by latitude in 2022. Error bars indicate standard 

error. 

 

 

 
Figure 14. Mean monthly temperature by site between April and October for three 

nearshore SECREMP stations that differ by latitude in 2023. Error bars indicate standard 

error. 
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Figure 15. Distribution of temperatures logged by site between April and October for three 

nearshore SECREMP stations that differ by latitude in 2022. 

 

 

 
Figure 16. Distribution of temperatures logged by site between April and October for three 

nearshore SECREMP stations that differ by latitude in 2023. 
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Figure 17. Raw temperature data from four in situ loggers at nearshore reef SECREMP stations combined with SCTLD and bleaching 

prevalence of the large priority monitoring O. faveolata colonies between April and October 2022. Left axis indicates temperature and 

right axis indicates percentage of afflicted colonies. Yellow dotted line indicates coral bleaching threshold. Note the significant dip in 

temperatures at sites north of Government Cut during Hurricane Ian.
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Figure 18. Raw temperature data from four in situ loggers at nearshore reef SECREMP stations combined with SCTLD and bleaching 

prevalence of the large priority monitoring O. faveolata colonies between April and October 2023. Left axis indicates temperature and 

right axis indicates percentage of afflicted colonies. Yellow dotted line indicates coral bleaching threshold. Red line indicates the only 

site south of Government Cut was substantially higher than more northern sites through much of the timeline. 
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Figure 19. Tile plots showing the number of SCTLD lesions (top) and percent bleached on 

colonies that bleached at least 5% (bottom) between Sept. 2018 and Dec. 2024. Colonies 

are sorted by descending latitude. Blue square outlines the 2023 bleaching event in both 

plots. Red dashed line indicates the corals north (above) and south (below) of Government 

Cut. Note the near absence of SCTLD in the corals that bleached and their slow recovery.  

 

 



 

 

  35  PO C3D88F 

         June 2025 
 

 

 
 

 
 

Figure 20.  The percentage of visits by colony that had at least 5% partial bleaching  (top) 

and at least one SCTLD lesion (bottom) sorted from high to low between September 2018 

and July 2024. 
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Figure 21. Large Orbicella faveolata colonies colored by the percent bleached (left) and 

the number of SCTLD treatments (right) in September 2023. All bleached colonies were 

south of Government Cut and SCLTD persisted in unbleached colonies.  
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3.3. Task 5: Quantify seasonal patterns in water quality by inlet exposures of each 

analyte through 2023 

 

A permutational multivariate analysis of variance (PERMANOVA) of the transformed 

and normalized water quality analytes at each site identified a significant combined 

interaction with three fixed factors: Year, Season, and Inlet Exposure Area (IEA) 

(p=0.001). When analyzed by individual season per year, Inlet Exposure Area was 

significant in every test except Dry 2020 (p=0.09) and Dry 2022 (p=0.21). Aside from 

those seasons, pairwise comparisons between IEAs showed that Biscayne water quality 

sites were significantly different than other areas in 23 out of 27 comparisons (85%). 

Conversely, the 27 comparisons between other IEAs yielded nine significant ones (33%). 

The majority of those were between Port Everglades and Government Cut which were 

significantly different seven out of eleven seasons (64%). Baker’s Haulover and 

Government Cut were only different one out of eleven seasons. 

 

Seasonal bootstrap averages plots of the analytes by samples based on the Inlet 

Contributing Areas aid in visualizing the differences (Figure 22 & 23). The plots 

illustrated the significant PERMANOVA results where in almost every season Biscayne 

water quality sites differed from locations further north. The plots also showed how the 

similarity of water quality between the IEAs differed over time. Some seasons (e.g. Dry 

2022) were all similar, whereas other seasons (e.g. Wet 2019) they were all different. 

During the wet season in 2023, Biscayne was significantly different from the other IEAs.  

A similarity percentages comparison of water quality analytes driving the difference 

between Government Cut and Biscayne during the 2023 wet season (summer) showed 

that Government Cut had much higher total phosphorus, nitrate, silicate, and nitrite 

(Table 3). A multivariate pairwise PERMANOVA of the similarity percentages of the 

IEA water quality analytes each season between IEAs found that Biscayne was 

significantly different from Government Cut (p=0.03), driven by higher nitrite, nitrate, 

and TSS in Government Cut and higher silicate and orthophosphate in Biscayne (Table 

4). An MDS plot of IEA seasonal similarity percentages of each analyte showed Biscayne 

in mostly on the right side indicating it had lower nutrients as compared to those further 

left (Figure 24). In Dry 2024 and 2021, Biscayne had higher orthophosphates than other 

IEAs and higher TSS in Wet 2021.  

 

Table 2. PERMANOVA p-values from post-hoc pairwise test across Inlet Exposure Areas 

by year and season. Bold shaded indicates a significant difference between areas for the 

season. 

Group comparisons 

Dry 

2019 

Wet 

2019 

Dry 

2020 

Wet 

2020 

Dry 

2021 

Wet 

2021 

Dry 

2022 

Wet 

2022 

Dry 

2023 

Wet 

2023 

Dry 

2024 

Biscayne, Government Cut 0.005 0.03 0.254 0.017 0.041 0.076 0.147 0.005 0.112 0.009 0.014 

Biscayne, Baker's Haulover 0.359 0.019 0.292 0.011 0.036 0.001 0.287 0.003 0.007 0.003 0.047 

Biscayne, Port Everglades 0.03 0.012 0.301 0.008 0.006 0.001 0.462 0.018 0.467 0.007 0.021 

Government Cut, Baker's Haulover 0.862 0.001 0.417 0.426 0.784 0.129 0.498 0.07 0.474 0.751 0.438 

Government Cut, Port Everglades 0.001 0.001 0.011 0.005 0.291 0.008 0.108 0.007 0.016 0.495 0.175 

Baker's Haulover, Port Everglades 0.105 0.271 0.292 0.025 0.449 0.06 0.274 0.226 0.005 0.383 0.754 
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Figure 22. Bootstrap averages plots by season (2019-2022) of the analytes at the reef water 

quality monitoring sites categorized by inlet exposure area. Note that Biscayne sites had 

distinct and significantly different water quality from those further north in most seasons.  
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Figure 23. Bootstrap averages plots by season (2023-2024) of the analytes at the reef water 

quality monitoring sites categorized by inlet exposure area. Note that Biscayne sites had 

distinct and significantly different water quality from those further north in most seasons. 

 

 

 

Table 3. Similarity percentages comparison of water quality analytes driving the difference 

between Government Cut and Biscayne during the 2023 wet season (summer). 

Government Cut had much higher Total Phosphorus, Nitrate, Silicate, and Nitrite. 

 

 Gov Cut Biscayne     
Analyte Av.Value Av.Value Av.Sq.Dist Sq.Dist/SD Contrib% Cum.% 

Total Phosphorus 0.141 -0.0285 1.33 0.28 38.19 38.19 

Nitrate 0.00492 -0.186 0.941 0.76 26.95 65.14 

Silicate 0.262 -0.268 0.585 0.81 16.75 81.9 

Nitrite 0.316 0.0398 0.428 0.52 12.25 94.15 

TSS -0.413 -0.507 0.179 0.76 5.13 99.29 

Orthophosphate 0.0452 0.0328 0.0249 0.59 0.71 100 
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Table 4. Similarity percentages comparison of IEA analytes by season driving the 

difference between Government Cut and Biscayne. Government Cut had much higher 

Nitrite, Nitrate, and TSS and Biscayne had higher Silicate and Orthophosphate. 

  

 Gov Cut Biscayne     
Analyte Av.Value Av.Value Av.Sq.Dist Sq.Dist/SD Contrib% Cum.% 

Nitrite 0.128 -0.12 0.603 0.6 25.32 25.32 

Nitrate 0.144 -0.29 0.46 0.59 19.33 44.65 

Silicate -0.00275 -0.508 0.406 0.99 17.04 61.69 

Orthophosphate -0.144 0.0806 0.353 0.59 14.84 76.53 

TSS 0.0091 -0.0337 0.338 0.61 14.2 90.74 

Total Phosphorus -0.103 -0.134 0.221 0.77 9.26 100 

 

 

 

 

 
Figure 24. MDS plot of IEA seasonal similarity percentages of each analyte showing the 

similarity between IEAs over time. Blue lines indicate the analytes driving the similarities. 

Note the Biscayne is mostly on the right side indicating it had lower nutrients as compared 

to those further left. In Dry 2024 and 2021, Biscayne had higher orthophosphates than other 

IEAs and higher TSS in Wet 2021. 
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3.4. Task 6: Build statistical models to investigate the possible links between water 

quality seascapes, SCTLD occurrence, and patterns of coral bleaching  

 

3.4.1. Modeling spatial and temporal variations in in situ water quality 

There was considerable variation among analytes in their concentrations across the 

KJCAP, as well as within any given analyte across space and time (Figure 25). Our 

statistical models explained between 42% and 79% of this variation (i.e., using the training 

data), and 22% to 64% of the variation when predicting to data the models had not seen 

before (i.e., using the test data) (Table 5). These patterns of model performance also 

remained largely unchanged when the models were trained on a lower portion of the 

training data (0.5 bag fraction results in Table 5). 

 

 
 

Figure 25. Variations in the MDL-adjusted log concentration of five of the six measured 

on-reef water quality analytes from Jan 2019 to Dec 2023 (total suspended solids not shown 

due to differences in scale) (n=1658 for each analyte).  
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Table 5. Boosted regression tree model performance statistics from predicting the on-reef 

variation in the concentration of six water quality analytes from Jan 2019 to Dec 2023 

across the KJCAP. cv, cross-validated; cvPercentage explained (cross-validated percentage 

deviance explained) is used to assess model performance. 

 

 
 

 

Across the six analytes, the predictor variables responsible for explaining their patterns of 

underlying variation differed (Table 6). Variations in nitrate were predominantly 

explained by variations in inlet exposure area (IEA) outflow, high wind events, survey 

year, and rainfall. Overall, nitrate concentrations were higher when inlet outflow was 

higher, when there were more seaward and landward high wind events, in later years 

(particularly 2021-2023), and when there was more rainfall (Figure 26). Variations in 

nitrite were predominantly explained by survey year, IEA outflow, and rainfall. Overall, 

nitrite concentrations were higher in later years (particularly 2022-2023), when inlet 

outflow was higher, and when there was more rainfall (Figure 27). Variations in 

orthophosphate were predominantly explained by variations in survey year, as well as 

some variation explained by depth, and high wind events. Overall, orthophosphate 

concentrations were higher in later years (particularly 2021-2023), at shallower depths 

(particularly shallower than 5 m), and some (weaker) evidence of being higher when the 

number of both seaward and landward high wind events increased (Figure 28). Variations 

in phosphorus were also predominantly explained by variations in survey year, as well as 

some variation explained by rainfall, and high wind events. Overall, phosphorus 

concentrations were higher in later years and showed more nuanced relationships with 

rainfall and seaward high wind events (Figure 29). Variations in silicate were 

predominantly explained by variations in depth, survey year, and IEA outflow. Overall, 

silicate concentrations were higher at shallower depths (particularly shallower than 5 m), 

in later years, and when there was higher IEA outflow (Figure 30). Variations in total 

suspended solids (TSS) were predominantly explained by variations in IEA outflow, 

survey year, rainfall, and high wind events. Overall, TSS concentrations were higher when 

there was higher IEA outflow, in 2021-2022 compared to 2019-2020, and especially when 

compared to 2023, and when there were more landward high wind events (Figure 31). The 

relationship between TSS and rainfall was harder to decipher, but TSS concentrations 

appeared to decrease with increasing rainfall.  
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Table 6. Relative (Rel) influence of predictor variables in predicting the on-reef variation 

in the concentration of six water quality analytes from Jan 2019 to Dec 2023 across the 

KJCAP. The top four predictors are shown in each case, or when their cumulative (Cumul) 

relative influence was less than 40%, six are shown. 

 

 
 



 

 

  44  PO C3D88F 

         June 2025 
 

 
 

Figure 26. Partial dependency response plots from boosted regression tree (BRT) model 

relating changes in nitrate concentration (log) to gradients in inlet outflow, wind, and 

rainfall over various temporal windows, and a series of space/time categorical predictors. 

The orange lines depict the modeled relationship in each case (the relationship between 

nitrate and the predictor in question, while holding all other predictors in the model at their 

mean). For the categorical ‘year’ predictor, the fitted function median is shown. The thin 

grey lines along the top of each plot indicate replication along the predictor variable x-axis 

in each case. The relative influence of each predictor on overall model performance is 

shown in brackets. 
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Figure 27. Partial dependency response plots from boosted regression tree (BRT) model 

relating changes in nitrite concentration (log) to gradients in inlet outflow, wind, and 

rainfall over various temporal windows, and a series of space/time categorical predictors. 

The orange lines depict the modeled relationship in each case (the relationship between 

nitrite and the predictor in question, while holding all other predictors in the model at their 

mean). For the categorical ‘year’ predictor, the fitted function median is shown. The thin 

grey lines along the top of each plot indicate replication along the predictor variable x-axis 

in each case. The relative influence of each predictor on overall model performance is 

shown in brackets. 
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Figure 28. Partial dependency response plots from boosted regression tree (BRT) model 

relating changes in orthophosphate concentration (log) to gradients in inlet outflow, wind, 

and rainfall over various temporal windows, and a series of space/time categorical 

predictors. The orange lines depict the modeled relationship in each case (the relationship 

between orthophosphate and the predictor in question, while holding all other predictors in 

the model at their mean). For the categorical ‘year’ predictor, the fitted function median is 

shown. The thin grey lines along the top of each plot indicate replication along the predictor 

variable x-axis in each case. The relative influence of each predictor on overall model 

performance is shown in brackets. 
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Figure 29. Partial dependency response plots from boosted regression tree (BRT) model 

relating changes in phosphorus concentration (log) to gradients in inlet outflow, wind, and 

rainfall over various temporal windows, and a series of space/time categorical predictors. 

The orange lines depict the modeled relationship in each case (the relationship between 

phosphorus and the predictor in question, while holding all other predictors in the model 

at their mean). For the categorical ‘year’ predictor, the fitted function median is shown. 

The thin grey lines along the top of each plot indicate replication along the predictor 

variable x-axis in each case. The relative influence of each predictor on overall model 

performance is shown in brackets. 
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Figure 30. Partial dependency response plots from boosted regression tree (BRT) model 

relating changes in silicate concentration (log) to gradients in inlet outflow, wind, and 

rainfall over various temporal windows, and a series of space/time categorical predictors. 

The orange lines depict the modeled relationship in each case (the relationship between 

silicate and the predictor in question, while holding all other predictors in the model at their 

mean). For the categorical ‘year’ predictor, the fitted function median is shown. The thin 

grey lines along the top of each plot indicate replication along the predictor variable x-axis 

in each case. The relative influence of each predictor on overall model performance is 

shown in brackets. 
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Figure 31. Partial dependency response plots from boosted regression tree (BRT) model 

relating changes in total suspended solids (TSS) concentration (log) to gradients in inlet 

outflow, wind, and rainfall over various temporal windows, and a series of space/time 

categorical predictors. The orange lines depict the modeled relationship in each case (the 

relationship between TSS and the predictor in question, while holding all other predictors 

in the model at their mean). For the categorical ‘year’ predictor, the fitted function median 

is shown. The thin grey lines along the top of each plot indicate replication along the 

predictor variable x-axis in each case. The relative influence of each predictor on overall 

model performance is shown in brackets. 

 

 

3.4.2. Modeling spatial and temporal patterns of coral bleaching  

Our statistical models explained between 92% and 93% of the variation in coral bleaching 

(i.e., using the training data), and 62% to 63% of the variation when predicting to data the 



 

 

  50  PO C3D88F 

         June 2025 
 

models had not seen before (i.e., using the test data) (Table 6). These patterns of model 

performance also remained largely unchanged when the models were trained on a lower 

portion of the training data (0.5 bag fraction results in Table 6). This variation was largely 

explained by coral colony identity and high wind events, as well as mean temperature and 

survey year (Table 4). Bleaching was more apparent in a subset of colonies (Figure 32) that 

did not appear to be strictly related to their north-south position along the coastline (Figure 

20). Landward high wind events appeared to reduce the likelihood of coral bleaching 

overall, while higher mean temperature exacerbated bleaching, specifically above 30°C 

(Figure 32). There was a weak effect of survey year (independent of changes in temperature 

and wind), with higher bleaching in 2023 compared to all other years (Figure 32). 

 

 

 
 

Figure 32. Partial dependency response plots from boosted regression tree (BRT) analyses 

relating changes in coral bleaching to gradients in inlet outflow, temperature, wind, and 

rainfall over various temporal windows (shown in circles as number of days prior to coral 

colony survey; C, categorical predictor variable), and a series of space/time categorical 

predictors. Solid orange lines represent the BRT fitted function with 95% confidence 

intervals (i.e., model uncertainty) shown in gray (corresponding to right-hand axes); for 

categorical predictors the median is shown. Open circles in plots represent the underlying 

raw data (corresponding to left-hand axes). The top and bottom set of plots show results 

with bleaching values less than 5% and 10% removed, respectively. NN, no nutrients - 

modeled nutrient loadings were not included in this analysis. 

 

 

3.4.3. Modeling spatial and temporal patterns of SCTLD  

Our statistical models explained between 43% and 58% of the variation in the number of 

new SCTLD treatments and lesions (i.e., using the training data), and 29% to 35% of the 

variation when predicting to data the models had not seen before (i.e., using the test data) 

(Table 7). These patterns of model performance also remained largely unchanged when 

the models were trained on a lower portion of the training data (0.5 bag fraction results in 
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Table 7). This variation was largely explained by coral colony identity, regardless of 

whether we modeled the entire geography (‘NN’ in   
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Table 8), or removed the southern Biscayne corals (‘NB’ in   
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Table 8), and whether the response was SCTLD treatments or number of lesions. Like coral 

bleaching, this colony effect did not appear to be strictly related to their north-south 

position along the coastline (Figure 33), but more a subset of colonies showing a higher 

propensity to develop SCTLD (Figure 20).  

 

When the geography was restricted, and the Biscayne corals removed, both SCTLD 

treatments and lesions were also predicted by changes in silicate concentrations and 

exposure to Hot Snap thermal stress events (  
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Table 8). SCTLD treatments and lesions were both higher when silicate loadings were 

higher and when there were more Hot Snap events over the prior 7 days (Figure 33). 

When the entire geography was modeled, and the nutrient loading predictors removed 

from the model-fitting process, mean temperature over the prior 7 days replaced silicate 

as one of the top three predictors for both SCTLD treatments and lesions (  
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Table 8), with SCTLD becoming suddenly higher at the extreme upper end of the mean 

temperature range captured (above 30-31°C) (Figure 33). Finally, SCTLD lesions were 

also predicted by ‘year’ when the entire geography was modeled, with slightly fewer 

lesions occurring through time, however this effect was not particularly strong (lower 

relative influence) and should be interpreted with caution. 

 

 

Table 7. Boosted regression tree model performance statistics from predicting the variation 

in coral bleaching and SCTLD across the KJCAP. cv, cross-validated; cvPercentage 

explained (cross-validated percentage deviance explained) is used to assess model 

performance. Bleaching_5, bleaching with all bleaching values less than 5% removed. 

Bleaching_10, bleaching with all bleaching values less than 10% removed. 
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Table 8. Relative (Rel) influence of predictor variables in predicting variations in coral 

bleaching and SCTLD across the KJCAP. The top four predictors are shown in each case, 

or the top three when this exceeded the cumulative (Cumul) relative influence of 70%. NN, 

no modeled nutrient predictors included in the model fitting process. NB, no Biscayne 

corals included as part of the response variable. Treat, treatments. 
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Figure 33. Partial dependency response plots from boosted regression tree (BRT) analyses 

relating changes in SCTLD (lesions and treatments) to gradients in inlet outflow, 

temperature, wind, and rainfall over various temporal windows (shown in circles as number 

of days prior to coral colony survey; C, categorical predictor variable), and a series of 

space/time categorical predictors. Solid orange lines represent the BRT fitted function with 

95% confidence intervals (i.e., model uncertainty) shown in gray (corresponding to right-

hand axes); for categorical predictors the median is shown. Open circles in plots represent 

the underlying raw data (corresponding to left-hand axes). NN, no nutrients - modeled 

nutrient loadings were not included in the analysis. NB, no Biscayne - all corals south of 

Government Cut were removed in this analysis. 
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3.5. Task 7: Integrate the inlet exposures into the RRC data analyses 

 

We continued to engage with researchers from the RRC throughout the project period (via 

email and online meetings) to advise on the use and integration of various statistical 

analyses into their workflow to test their questions and hypotheses (see Table of specific 

meetings and their purpose under Task 1). This helped to ensure continuity in data analysis 

approaches across the RRC and ensure statistical rigor in terms of interpretation. 

 

4. DISCUSSION 

 

Reduced water quality on Florida’s Coral Reef (FCR) from anthropogenic sources has long 

been implicated in the decline of the reef system. Over a century of replumbing the 

Everglades and coastal development has altered the historic water flows, leading to large 

scale ecosystem changes in south Florida. Residing downstream of the hydrographic flow, 

the FCR has experienced significant declines in the last 50 years, including the loss of over 

25% live coral cover. Most of the coral losses were attributed to various extreme temperate 

and disease events beginning in the late 1970’s and becoming more frequent over time, 

including stony coral tissue loss disease, which continues to decimate populations.  

 

In dynamic ecosystems like coral reefs, pulse events of decline are easier to attribute to 

losses than slower incremental changes in water quality, which are much harder to detect. 

Analyses of in situ water quality data are confounded by many factors that affect analyte 

concentrations at specific times and locations. These factors must be accounted for before 

trends in the data can emerge. By accounting for these factors in the model, this study 

revealed annual increases in analyte concentrations that were previously obscured by the 

variability of water quality sampling and by changing environmental conditions – such as 

wind and rainfall – that influence offshore concentrations. 

 

Our previous DEP and EPA funded projects found that inlet flow, rainfall, and wind 

predictors explained 79% and 55% of the overall variation in orthophosphate and nitrate 

concentrations at the KJCAP reef water quality sites from 2018 – 2021 (Whitall et al, In 

revision). Our machine-learning models on the larger dataset (2018-2024) in this study 

explained 41.5 – 78.9% of the variation in the water quality concentrations (training data) 

and 21.8 – 63.9% of the variation within data the model had not previously seen (test data). 

Many factors contributed to the changes in various analytes including inlet outflow, 

rainfall, and high winds, however year had a high influence in almost every test (8.1% for 

nitrate – 37% for orthophosphate). In almost every case, while holding all other predictors 

in the model (inlet outflow, wind, and rainfall over various temporal windows and a series 

of space/time categorical predictors) at their mean, the modeled relationship of each analyte 

showed increases by year, supporting previous studies in Biscayne Bay (Millette et al 

2019). This suggests that some other factor not accounted for in the models was affecting 

yearly increases in reef analyte concentrations. One factor not in the models that might 

account for this effect is population growth. Miami-Dade and Broward are Florida’s most 

populous counties totaling 4.88 million. From 2022 and 2024, there was a combined net 

increase of 270,353 new residents. Increases of this magnitude on already stressed 
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infrastructure could account for temporal decreases in water quality. Recognizing that 

excess nutrients cause a variety of environmental problems, Florida enacted county-level 

bans on nitrogen and phosphorus containing fertilizers in 2021. These restrict fertilizer 

application during the rainy season (May to October; Miami-Dade County 2021a) in the 

hope of improving water quality on nearshore coral reefs. Our models showed that the year 

effect in orthophosphate was lessened after 2021, indicating that implemented policies may 

be having a measurable, positive effect. Although on the right track, orthophosphates are 

still increasing on the reefs annually from our inland waterways and bays, so this action 

may not be enough to elicit system wide improvements.  

 

Our hydrographic modeling of inlet water spanning from 2018 to 2024 supported findings 

of the previous models spanning from 2018 to 2021 (DEP C1FC2C), showing that the reefs 

northward of their adjacent inlet are most exposed to the water from that inlet and from 

inlets further south (Dobbelaere et al. 2024). While the analyte plumes extend mostly north 

of each of the source inlets, they also have a non-negligible southern footprint that extends 

over tens of kilometers. This is particularly the case for Government Cut and Baker’s 

Haulover inlets whose inland water plumes clearly intrude into Biscayne Bay. Government 

Cut and Baker’s Haulover also discharge the largest amounts of pollutants leading to inland 

water plumes with a higher analyte concentration. As these two inlets are the southernmost, 

they have the largest effect on the marine environment far beyond their immediate locales. 

When comparing wet and dry seasons, the model showed that inland water plumes 

generally had a larger analyte concentration during the wet season. However, higher 

analyte concentrations were observed south of the inlet during the dry season, especially 

for Government Cut and Baker’s Haulover. Government Cut being the inlet with the 

southernmost position and the largest discharge, it had a significant impact on all 

considered reef sites. On average, 71.7% of the silicate reaching the reef sites originated 

from Government Cut. However, this fraction tended to be lower during the wet season, as 

the analyte load coming from the other sites became larger. Nonetheless, this suggests that 

reducing pollutant loads at Government Cut would significantly reduce the pollution over 

coral reefs in the KJCAP. 

 

The effects of these water quality analytes on reef systems deserve significant research 

attention. The effect of nutrients on coral health can be driven by the levels of nutrient 

pollution and the stoichiometric ratios of C: N: P: Fe (Zhao et al 2021) and a specific coral 

host phosphate to nitrogen ratio to maintain stable photosymbiosis (Ezzat et al 2016). 

Tropical corals typically thrive in nutrient-poor environments through symbiosis (Stambler 

1999; LaJeunesse et al 2018). High nutrient concentrations have been linked to increased 

coral bleaching and disease prevalence of white tissue loss diseases (Bruno et al 2007; 

Zhao et al 2021; Redding et al 2013) making it an important consideration for SCTLD. 

Nitrogen and phosphorous enrichment are linked to coral diseases in a variety of pathways 

(Zhao et al 2021). Increased nitrogen availability facilitates coral bleaching and disease 

(Redding et al 2013; Lapointe et al 2019; Wiedenmann et al 2013), likely by compromising 

the host-symbiont relationship, which is perhaps more specifically linked to anthropogenic 

nitrogen sources like nitrate (Zhao et al 2021; Donovan et al 2020; Burkepile et al 2020). 

Nitrate assimilation impairs the host-symbiont relationship by increasing oxidative stress, 

promoting phototrophic symbionts growth, and inducing phosphate starvation in the 
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symbionts (Zhao et al 2021). Anthropogenic nitrogen may also increase viral production 

in corals to the detriment of the host causing a virus-mediated vortex of coral reef decline 

(Vega Thurber et al 2008). 

 

The bleaching models from 2018-2024 explained 93% of the variation of partial bleaching 

of 5% or greater. The strong effect of colony identity on coral bleaching (36.8%) reflected 

inter-colony differences in bleaching susceptibility. This was mostly driven by a few 

colonies that had a high partial bleaching prevalence (Figure 20). The reasons for their high 

prevalence of bleaching are unknown, however these colonies also had a high SCTLD 

prevalence. Colony-specific bleaching and SCTLD differences could be driven by various 

factors such as symbiont communities, genetic susceptibilities, or some other aspect of the 

coral holobiont or localized environment that differs at inter-colony scales (Edmunds 1994; 

Berkelmans and van Oppen 2006; Sampayo et al. 2008; Álvarez-Noriega et al. 2025; Ward 

2007). These are being investigated as part of the SCTLD Resistance Research Consortium 

(Walker et al 2025). 

 

Interestingly, the models found more coral bleaching when there were fewer high wind 

events. Higher winds can reduce thermal stress by mixing surface waters, disrupting water 

stratification, and reducing temperatures (Smith 2001). Landward high wind events were 

associated with raised TSS levels across the KJCAP (Figure 31) supporting prior work 

showing increased turbidity can decrease UV stress to corals and ameliorate coral 

bleaching (Sully and van Woesik 2020), particularly during extreme wind events (Lucas et 

al. 2023). This might explain why low wind conditions can favor localized heating, lower 

TSS and therefore greater penetration of solar radiation that can exacerbate coral bleaching 

(Hendee et al. 2001). 

 

The tendency for bleaching to occur above a specific thermal threshold that we observed 

in the KJCAP corroborates numerous other studies from other geographies both in the 

Atlantic, Caribbean and Indo-Pacific (Fitt et al. 2001; Berkelmans 2002; Williams et al. 

2010; Mollica et al. 2019). The positive relationship between thermal stress and disease, 

whether mean temperature or Hot Snap exposure, is also well established in the literature 

(Bruno et al. 2007; Maynard et al. 2015), including our own prior work on SCTLD in the 

KJCAP (Walker et al. 2022). Corals south of Government Cut were visibly bleaching after 

four weeks of mostly consistent temperatures ≥30.5°C, whereas areas further north had 

much more inconsistent temperatures with several drops below 30.5°C for periods of time. 

Extreme temperatures can compromise coral host resistance and increase pathogen 

virulence, both of which can then increase the likelihood of disease occurrence (Maynard 

et al. 2015), however the relationship with thermal stress and SCTLD is more complicated. 

 

Several studies support evidence that SCTLD epidemiology is related to temperature, at 

least in intermediately susceptible species (e.g. Orbicella faveolata, Montastraea 

cavernosa) (Jones et al 2021; Walker et al 2021; Carreiro 2022). At the initial onset of 

SCTLD, pillar corals infected with a white syndrome were seen in February of 2014 (Jones 

et al 2021) before SCTLD was reported in the late summer of 2014 after significant 

temperatures stress (Precht et al 2016; Manzello 2015). Additionally, thermal stress and 

bleaching can slow and stop SCTLD lesions entirely (Meiling et al 2020; Neely et al 2025) 
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and daily infection rates of Montastraea cavernosa were significantly lower in times of 

lower heat stress (Walker et al 2021). Although persistent year-round in Florida, SCTLD 

incidence and prevalence was at least double in the wet summer seasons in the KJCAP 

(Walker et al, In prep; Toth et al 2024). 

 

In July 2023, the highest SCTLD prevalence on the monitored O. faveolata colonies was 

recorded in the five-year dataset. In August, the colonies south of Government Cut had the 

highest recorded bleaching, which took about five months to recover (no mortality from 

bleaching was observed), whereas no colonies further north visibly bleached. Unbleached 

colonies continued to acquire SCTLD lesions in the north, whilst SCLTD quiesced on 

bleached colonies. Thus, it appears that high temperatures in early and mid-summer 

exacerbated SCTLD, but the higher temperatures south of Government Cut caused those 

corals to bleach, which quiesced SCTLD in those colonies.  

 

Nutrient variability north and south of Government Cut may have also played a role in the 

SCTLD and bleaching observations. The NB SCTLD model including the modeled 

nutrient data explained 46% of the variation in lesions driven by colony, modeled silicate, 

and hot snaps. Silicates can be used as a proxy for terrestrial water sources, suggesting that 

increased exposure to terrestrial waters increases SCTLD lesions. Further, the seasonal 

analysis of the water quality sites indicated that the waters south of Government Cut were 

distinctly different most of the time. In 2023, the water quality monitoring sites between 

Government Cut and Baker’s Haulover had much higher total phosphorus, nitrate, silicate, 

and nitrite than those south of Government Cut. Government Cut has been identified as a 

major transition between ecoregions in SE FL where significant Thalassia seagrass beds 

exist in the oceanside nearshore habitats further south, but none further north (Walker 

2012; Walker and Gilliam 2013). Sea grasses uptake more nutrients in warmer 

temperatures (Lee et al 2007) and phosphorus is a key element needed for seagrass growth 

(Fourqurean et al 1992; Gras et al 2003). The stoichiometric ratios of C: N: P: Fe 

availabilities determine the ultimate effect of nutrients on coral health (Zhao et al 2021). 

Zhou et al (2025) explains that nitrate enrichment exacerbates bleaching under thermal 

stress (Burkepile et al 2020) and Symbiodiniaceae may provide less photosynthetically 

fixed carbon to the host (Ezzat et al 2016), while the lack of phosphorus inhibits 

Symbiodiniaceae cell division and metabolism weakening the corals resistance to stress 

(Rosset et al 2017). In the 2023 wet season, the average values of total phosphorus in 

Biscayne were 4.7 times lower than normal and nitrate was 1.6 times lower. Might the 

presence of the extensive seagrass beds in the southern Biscayne region have caused an 

imbalance in the available nutrients for corals and their symbionts lowering their bleaching 

threshold? More research is needed to investigate this possibility.  
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4. APPENDIX 

 

 

4.1. Plume arrival time to the reefs 

For each inlet, we estimated the time needed for inland water plumes to reach the reefs. 

Overall, that duration was always smaller than the 25-day backtracking simulation 

duration, hence justifying the choice for that duration. As an illustration, it did not exceed 

13 days in September 2020 for all four inlets (Fig. A1).  

 

Figure A1: Monthly-averaged time needed for an inland water plume originating from 

each of the four inlets to reach the surrounding reefs.  

 

 

4.2. Mean analyte concentrations 

Here we provide the mean analyte concentration for both the wet (May to October) and dry 

(November to April) seasons, and the difference between them, over the 3-year simulated 

period for nitrate (Fig. A2), nitrite (Fig. A3), orthophosphate (Fig. A4), phosphorus (Fig. 

A5), silicate (Fig. A6) and TSS (Fig. A7). 
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Figure A2: Seasonal mean concentration of nitrate coming from the different inlets for the 

wet (top panels) and dry seasons (bottom panels). The difference in concentration between 

wet and dry seasons is shown in the bottom panel. 
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Figure A3: Seasonal mean concentration of nitrite coming from the different inlets for the 

wet (top panels) and dry seasons (bottom panels). The difference in concentration between 

wet and dry seasons is shown in the bottom panel. 
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Figure A4: Seasonal mean concentration of orthophosphate coming from the different 

inlets for the wet (top panels) and dry seasons (bottom panels). The difference in 

concentration between wet and dry seasons is shown in the bottom panel. 
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Figure A5: Seasonal mean concentration of total phosphorus coming from the different 

inlets for the wet (top panels) and dry seasons (bottom panels). The difference in 

concentration between wet and dry seasons is shown in the bottom panel. 
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Figure A6: Seasonal mean concentration silicate coming from the different inlets for the 

wet (top panels) and dry seasons (bottom panels). The difference in concentration between 

wet and dry seasons is shown in the bottom panel. 
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Figure A7: Seasonal mean concentration of total suspended solids (TSS) coming from the 

different inlets for the wet (top panels) and dry seasons (bottom panels). The difference in 

concentration between wet and dry seasons is shown in the bottom panel. 

 

 


