COASTAL STRATEGIES FOR DRAINAGE RESILIENCE

FDOT'S APPROACH AND VISION

TODAY'S DISCUSSION

 \checkmark Current Concerns and Sea Level Rise

✓ Risk Tolerance and Design Considerations

✓ Long-Term Coastal Strategies

VICINITY MAP OF MIAMI BEACH

S.R. A1A - INDIAN CREEK DRIVE/COLLINS AVENUE, MIAMI BEACH

- ✓ Indian Creek Drive serves as the Southbound Lanes for S.R. A1A
- ✓ Between 24th Street and 39th Street
- EXISTING INTRA-COASTAL AREA IS CONNECTED TO BISCAYNE BAY
- Existing channel is lined with
 Seawall and Mangroves
- Existing roadway elevation for Indian Creek Drive varies between 1 and 3-feet, NAVD

INDIAN CREEK DRIVE AT 32ND STREET – MIAMI BEACH, SEPTEMBER 2015 Resilient Florida: Planning, Policy & Practice

KING TIDE FLOODING

✓ INFRA-STRUCTURE IMPACTS

✓ TRAFFIC IMPACTS

✓ FIRST RESPONDER COORDINATION

✓ MAINTENANCE & CLEANUP

✓ DAMAGE ASSESSMENT

Indian Creek Drive at 34th Street, September 2015

PROBABILITY EXCEEDANCE 1914-2015

Three regions can be observed:

- 1914-1954 0.8 ft/100 yr
- 1954-1994 0.05 ft/100 yr
- 1994-2014 1.5 ft/100 yr

In the last 10 year there is acceleration

2004-2014 – 3.3 ft/100 year

If only 2013-2014 year is considered the trend is 4 ft/100 years

SLR OBSERVATIONS AND FEDERAL GUIDANCE

From The Third National Climate Assessment. U.S. Global Change Research Program, 841 pp. doi:10.7930/J0Z31WJ2

Resilient Florida: Planning, Policy & Practice

 Next 10 years will be critical to determine if the increase continues to be exponential or linear.

 FHWA Guidance – HEC-25 for Coastal Roadways, 2.0-feet by the Year 2100

 FHWA Guidance – HEC-17 for Riverine Roadways

RISK ALLOWANCE

✓ SITE SPECIFIC

Extent of Inundation

✓ TEMPORARY UTILITY IMPACTS

Importance of Protection versus Environmental
 Impacts

✓ BUSINESS/TOURISM IMPACTS

✓ AGRICULTURAL IMPACTS

DESIGN CONSIDERATIONS

✓ Desired Service Life, i.e. 25, 50 or 100-Year

 Appropriate Design Frequency, i.e. 3, 5, 10, or 25-Year LOS for Shared Outfalls

✓ Tailwater Considerations, i.e. MHHW, MHW

✓ Tropical Systems and Storm Surge

Coastal FEMA Floodplain Map Updates

✓ Criteria for Pressurized Storm Sewer Systems

RESILIENCE PLANNING - LIVING SHORELINES AND PERMITTING

U.S. 98 along the Gulf of Mexico in Franklin County

LONG-TERM STRATEGIES

Collaborative
 Planning to address
 Protection Areas,
 Vulnerable Areas and
 Mitigation

 Planning for Registered Estuaries

✓ TYPE OF PROTECTION

 BACK-FLOW PREVENTION DEVICES

✓ DIKES/LEVEES/DUNES

LONG-TERM DESIGN STRATEGIES

Stormwater
 Management Designs
 to Protect Against
 Landward Saltwater
 Intrusion

- Multi-purpose designs,
 i.e. Parks and
 Recreation Areas
- Phased Designs to allow for adjustments in response to the localized Sea Level Rise
- Restore Coastal Inlets
 AND Relief Passes

LONG-TERM SHORELINE REGRESSION - CAPE SAN BLAS (1970'S)

LONG-TERM SHORELINE REGRESSION - CAPE SAN BLAS (2019)

LONG-TERM STRATEGIES FOR FDOT'S INVOLVEMENT

- ✓ Utility Relocations
- ✓ Infra-Structure Improvements
- Flexibility
 Amongst the
 Regulatory
 Agencies
- Early Project Identification
- Greater
 Stakeholder
 Engagement

Wastewater Plant on Virginia Key, Miami

FURTHER CONSIDERATION FOR COASTAL RESILIENCY???

Carlton Spirio, P.E. State Drainage Engineer Florida Department of Transportation 605 Suwannee Street Tallahassee, Florida 32399 (850) 414-4351 Carlton.Spirio@dot.state.fl.us

