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Management Summary

Disease outbreaks have caused mass coral mortality on Florida’s Coral Reef (FCR) and continue
to threaten the persistence of coral populations. Spatiotemporal variations in disease dynamics
suggest environmental conditions influence disease susceptibility. Understanding these may allow
us to identify the environmental factors which underpin coral health and predict future disease
dynamics. We took an integrative approach, combining field observations and statistical modelling
to identify the environmental drivers of disease susceptibility and severity on FCR, and performed
lab experiments under these conditions to understand their effect on immunity in Montastraea
cavernosa. Disease susceptibility was most strongly influenced by the interactions between
maximum temperature and maximum chlorophyll-a concentration the month prior to the disease
survey, and between maximum chlorophyll-a concentration and three month mean PAR. Disease
probability was highest when chlorophyll-a concentration (nutrients proxy) exceeded ~6 mg m?
and maximum temperatures were low (<30 °C) or when PAR and chlorophyll-a concentrations
were high. Disease severity had a significant negative relationship with maximum temperature,
where a colony had a 50% chance of dying unless temperatures exceeded 31.08 °C. Lab
experimentation was conducted under conditions experienced on FCR to investigate the influence
of temperature and nutrients on immune response. After one month of environmental
manipulation, coral fragments were immune challenged to assess immune response. Heat stress
largely drove broad suppression of constitutive immunity (peroxidase, phenoloxidase, and
antibacterial activity), but increased catalase activity, which suggests stress within the host. These
results suggest further disease outbreaks are likely as ocean temperatures increase. Corals exposed
to moderate levels of ammonia (0.01 mg/1) induced the strongest immune responses (catalase and
phenoloxidase activity), but that ceased under high concentrations (0.05 mg/l). Experimental
nutrient enrichment conditions are experienced on FCR, and results suggest reducing ammonia in
these locations could improve coral immunity and reduce the likelihood of another disease
outbreak.
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Executive Summary

Disease outbreaks have caused mass coral mortality on Florida’s Coral Reef (FCR) and
continue to threaten the persistence of coral populations. Spatiotemporal variations in disease
dynamics suggest environmental conditions influence susceptibility, the probability of contracting
disease, and severity, the probability of dying from disease. Understanding these variations may
allow us to identify the factors which underpin coral health and predict future disease dynamics.
We combined field observations and statistical modelling to identify the environmental conditions
that influenced disease dynamics during the SCTLD outbreak, and performed lab experiments
under these conditions to understand their effect on immunity in Montastraea cavernosa.

Disease susceptibility was quantified using data collected during the peak SCTLD
outbreak. Disease severity was calculated as the change in M. cavernosa abundance at CREMP
and SECREMP sites in the first two years following the outbreak. Environmental predictors were
quantified using in situ and satellite data. Disease susceptibility and severity were modelled against
these predictors in a two-step process using random forests and generalized linear mixed models.

Disease susceptibility was most strongly influenced by the interactions between maximum
temperature and maximum chlorophyll-a concentration (nutrient proxy) the month prior to the
disease survey, and between maximum chlorophyll-a and three-month mean PAR prior to the
disease survey. Disease probability was highest when chlorophyll-a concentration exceeded ~6 mg
m> and maximum temperatures were below 30 °C or when mean PAR and chlorophyll-a
concentrations were high. Disease severity had a negative relationship with maximum temperature,
such that unless temperatures exceeded 31.08 °C there was an over 50% chance of a colony dying.

Lab experimentation investigated the impact of temperature and nutrients, the interaction
identified as most strongly influencing disease susceptibility, on coral immune response. A crossed
design with six treatments reflective of conditions experienced on FCR was used: temperature
(high or ambient) and nutrients (none, moderate or high). After one month of environmental
manipulation, coral fragments were immune challenged by pathogenic stimuli or placebo to assess
immune response. Multivariate analysis revealed strong impacts of temperature, nutrients
(ammonia concentration), and the interaction of nutrients and immune challenge. Heat stress
largely drove broad suppression of constitutive immunity (peroxidase, phenoloxidase, and
antibacterial activity), but increased catalase activity. Corals exposed to moderate levels of
ammonia (0.01 mg/1) induced the strongest immune responses (catalase and phenoloxidase
activity), but this benefit was lost at high concentrations (0.05 mg/1).

Our results suggest temperature played the primary role in SCTLD susceptibility and
severity and that it strongly influences immune response. Temperatures which likely induced
bleaching were related to reduced SCTLD severity, strengthening findings that suggest it initially
affected Symbiodiniaceae before causing host tissue loss. However, lab experiments found
multiple immune metrics were suppressed at elevated temperatures, while enhanced catalase
activity suggests stress within the coral, suggesting further disease outbreaks are likely as ocean
temperatures rise. Both methods suggest that under eutrophic conditions immune response is lower
and disease susceptibility increases. The experimental eutrophic conditions are experienced on
FCR, and our results suggest reducing ammonia in these locations could improve coral immunity
and reduce the likelihood of another major disease outbreak.
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1. Introduction

Disease outbreaks, such as Stony Coral Tissue Loss Disease (SCTLD), have caused mass stony
coral mortality on Florida’s Coral Reef (FCR) in recent decades and continue to threaten the
persistence of coral populations. While the broadscale impacts of SCTLD have been severe,
spatiotemporal differences in disease susceptibility and severity in FCR and the wider Caribbean
(e.g., Alvarez-Filip et al. 2019; Rippe et al. 2019; Muller et al. 2020; Williams et al. 2021) suggest
local environmental conditions exacerbated SCTLD susceptibility and enhanced coral mortality.
To date, no clear environmental pattern has been identified to explain the spatiotemporal variations
in SCTLD etiology or epidemiology. Initial outbreak reports suggested an environmental trigger,
primarily prolonged heat stress (Precht et al. 2016; Jones et al. 2021), and while there are
suggestions that the subsequent spread and peaks in SCTLD elsewhere in Florida were not
associated with heating (Muller et al. 2020; Williams et al. 2021), elsewhere in the Caribbean poor
water quality has been implicated as exacerbating coral mortality (Alvarez-Filip et al. 2019;
Alvarez-Filip et al. 2022). Regardless of the exact trigger, it remains plausible that environmental
conditions predisposed coral communities in Florida to disease, as has been found in other diseases
and in other locations (Voss & Richardson 2006; Lesser et al. 2007; Muller & van Woesik 2009;
Ban et al. 2014; van Woesik & Randall 2017; Muller et al. 2018; Lapointe et al. 2019; Donovan
et al. 2021) and that they will continue to increase disease susceptibility and reduce coral recovery
potential (Jones & Gilliam 2024).

Spatiotemporal differences in multi-species disease outbreaks can be compounded by variability
in community composition and interspecific variation in susceptibility. This makes it difficult to
disentangle the environmental drivers of disease from spatial variations in diversity. Hence,
studying disease dynamics in a single, widely distributed species increases confidence that
spatiotemporal patterns are related to environmental conditions, and not stony coral community
composition (i.e., the proportion of highly susceptible species). Montastraea cavernosa is a
moderately SCTLD susceptible, massive species which is found widely across FCR. Previous
studies assessing the effect of SCTLD on M. cavernosa found temporal (Shilling et al. 2021) and
spatial (Aeby et al. 2019) variability in lesion development and lesion progression rates, both of
which raise the potential of environmental influence on both disease susceptibility (i.e., the
probability of a colony becoming diseased) and disease severity (i.e., the probability of colony
mortality once infected).

Identifying the specific environmental conditions which influenced disease susceptibility and
severity during the SCTLD outbreak may also allow us to identify the environmental factors which
underpin coral health and predict future disease dynamics. A number of environmental conditions,
including thermal stress (e.g., Bruno et al. 2007; Miller et al. 2009), nutrient enrichment (e.g., Vega
Thurber et al 2014) and suspended sediments/turbidity (e.g., Pollock et al. 2014) have been
associated with inducing and exacerbating disease outbreaks. These relationships have generally
been identified through field data, which identify correlations, but not causation, or laboratory
experiments, which may not be ecologically relevant. By integrating both approaches, it may be
possible to identify ecologically meaningful environmental variables and experimentally validate
that they influence disease. Furthermore, by taking a laboratory approach grounded in
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understanding the effects of identified environmental covariates on coral immunity and pathogen
susceptibility generally (as opposed to purely a specific disease such as SCTLD), the results
provide generalizable insight regarding the impacts of environmental conditions on general coral
disease susceptibility. The results of the combined approach can be used to create predictive
models which have the ability to identify locations more susceptible to future disease outbreaks
and to inform management actions.

In this study, we used the SCTLD outbreak as a case study and took an integrative approach
to identify environmental conditions that influence disease susceptibility and severity in M.
cavernosa. We combined field observations, statistical modelling and lab experimentation to
answer three research questions: 1) Did environmental conditions exacerbate SCTLD
susceptibility and severity in M. cavernosa? 2) If so, do these environmental variables actually
influence M. cavernosa immunity and general pathogen susceptibility? Then, using the identified
environmental conditions which influenced disease susceptibility, 3) Where are locations
predicted to be more or less susceptible to future disease outbreaks?

2. Goal 1: Identify environmental drivers of disease
2.1. Methods
2.1.1. Coral disease data

Disease susceptibility was quantified as disease prevalence (i.e., the proportion of M. cavernosa
colonies with SCTLD) at individual sites surveyed as part of the Coral Reef Evaluation and
Monitoring Project (CREMP), Southeast Florida Coral Reef Evaluation and Monitoring Project
(SECREMP) and the Florida Reef Resilience Program’s (FRRP) Disturbance Response
Monitoring (DRM). If sites had multiple transects, M. cavernosa abundance and disease
prevalence were summed to the site level. As the spread of SCTLD varied spatiotemporally across
FCR, disease prevalence data was filtered to capture the peak disease outbreak period in each FCR
subregion using previously documented timelines (e.g., Walton et al. 2018; Muller et al. 2020;
Williams et al. 2021; Hayes et al. 2022) and by visually assessing spatiotemporal variation in
disease prevalence. The peak disease outbreak period was considered to be from 2014-2016
throughout the Kristin Jacobs Coral Aquatic Preserve (Coral AP): Martin, Palm Beach, Deerfield,
Broward, Miami and Biscayne; from 2016 to 2018 in the Upper and Middle Keys, from 2018 to
2019 in the Lower Keys and Marquesas; from 2019 to 2022 in the Marquesas-Tortugas transition
zone and from 2020 to 2022 in the Dry Tortugas.

Disease severity was quantified as the mortality rate (i.e., the relative change in M. cavernosa
abundance) during the initial two years of the SCTLD outbreak at CREMP and SECREMP sites.
Abundance at CREMP sites was counted on four, 10 m x 1 m transects, and at SECREMP sites on
four, 22 m x 1 m transects. At each site, abundance was summed per site per year. The mortality
rate was calculated as the change in abundance from year 0 to year 2, divided by the initial
abundance (i.e., relative change (% yr!)). Only colonies > 4 cm maximum diameter were counted
to avoid capturing colonies that recruited during the disease outbreak. Two years was considered
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sufficient time for colonies which became diseased during the peak outbreak period to have died
and to avoid capturing recruits that grew into the adult dataset by the second year (e.g., Jones &
Gilliam 2024). To capture the peak in mortality rate at each site, mortality rates were calculated
for multiple two-year periods and the period chosen, that during which the largest relative change
in M. cavernosa abundance occurred at each site. The period generally stayed consistent within a
subregion such that the chosen period was 2014 to 2016 in Broward, Miami and Biscayne, 2015
to 2017 in Martin, Palm Beach and Deerfield, 2016 to 2018 in the Upper and Middle Keys, 2017
to 2019 in the Lower Keys and 2020 to 2022 in the Dry Tortugas.

2.1.2. Environmental predictors

Environmental data prior to the peak disease outbreak and during the outbreak period were
compiled from in situ and satellite data, and specific environmental predictors calculated for their
relevance to stress responses in stony corals at each benthic sampling site. Data from NASA’s
Moderate Resolution Imaging Spectroradiometer satellite (MODIS Aqua) was used to measure
solar irradiance, diffuse attenuation coefficient (turbidity proxy) and chlorophyll-a concentration
(nutrients proxy). Irradiance was obtained as the surface downwelling photosynthetic flux in air
(Photosynthetically Available Radiation (PAR) einstein m™ s™') and diffuse attenuation coefficient
as kD490 (m'). Data were extracted from NASA’s Ocean color database
(https://oceancolor.gsfc.nasa.gov/13/) as the monthly mean for each metric at 1/25™ resolution
throughout Florida. Data was visually assessed and any obvious outliers removed. Temperature
data was obtained from satellite and in situ sampling. Degree heating week data was obtained from
NOAA’s Coral Reef Watch (NOAA CRW 2018). Daily in situ temperature data was collected by
HOBO v2 temperature loggers at CREMP and SECREMP sites throughout FCR.

The environmental regime at each benthic sampling site was calculated using a spatial join with
the in situ and satellite data. Each benthic site was joined with the three closest satellite sites and
the monthly mean of each variable calculated per benthic site. To calculate the temperature regime
at DRM sites which were used in the disease susceptibility analysis, a spatial join was made to the
nearest CREMP/SECREMP site. If the closest CREMP/SECREMP site had missing data then a
spatial join was made to the closest two sites. After the database with the environmental regime at
each benthic site was created, multiple environmental predictors were created to represent
conditions either leading up to the disease susceptibility surveys or in the time between disease
severity surveys.

For the disease susceptibility analysis, each environmental variable: chlorophyll-a concentration,
PAR, kD490 and temperature, the maximum and mean values were quantified within the month
prior, within the prior three months and within the prior year to the benthic survey. To further
capture the temperature regime at a site, the minimum temperature one month, three months and
one year prior to the benthic survey and specific thermal stress predictors were calculated. Thermal
thresholds were calculated independently for each subregion using modelled SST data from the
Hybrid Coordinate Ocean Model (HY COM) from 2014 to 2022, as 1 °C above the maximum of
the mean summertime (July-September) SST, or 1 °C below the minimum of the mean wintertime
(January-March) SST as per Jones et al. (2020). The heat stress or cold stress durations were
calculated for each site as the number of days in situ water temperature exceeded thermal
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thresholds in the month, three months and year before a benthic survey. This gave 31
environmental predictors, which were tested for collinearity by calculating the Spearman’s rank
correlation coefficient, which is well suited to assess non-linear relationships and data which are
non-normal. Correlations were considered significant at a threshold of 0.8 and one of the collinear
predictors removed prior to statistical analysis. An attempt was made to keep at least one predictor
of a variable at each time point. All chlorophyll-a and kD490 predictors were highly collinear and
all removed except maximum chlorophyll-a the month prior to the survey as this was hypothesized
to have the greatest effect on disease susceptibility. The removal of other collinear predictors left
15 environmental predictors which were used in statistical analysis (Table 1).

Table 1. Environmental summary of predictors used in disease susceptibility full random forest
model. Variable = type of environmental variable, predictor = metric of that variable, time period
= temporal duration predictor calculated over. e.g., chlorophyll-a maximum, is the maximum
chlorophyll-a concentration within one month prior to the disease survey.

Variable Predictor Time period Mean | SD

Chlorophyll-a (mg m™) Maximum One month 3.82 | 5.12
PAR (Einstein m? day!) | Maximum One month 48.16 | 6.11
PAR (Einstein m? day!) | Maximum Three months | 56.68 | 2.50
PAR (Einstein m? day!) | Maximum One year 58.23 | 1.93
PAR (Einstein m? day') | Mean Three months | 51.74 | 3.16
PAR (Einstein m? day') | Mean One year 43.42 | 1.52
Temperature (°C) Maximum One month 30.75 | 1.01
Temperature (°C) Maximum One year 31.36 | 0.61
Temperature (°C) Mean Three months | 29.44 | 1.30
Temperature (°C) Mean One year 27.13 | 0.61
Temperature (°C) Minimum One year 21.51 | 1.70
Thermal stress Heat stress One month 093 |2.77
Thermal stress Heat stress Three months | 2.44 | 5.89
Thermal stress Cold stress One year 1.99 |5.43
Thermal stress DHW At survey 1.34 1.81

For the disease severity analysis, the same environmental variables were used, but environmental
predictors (e.g., maximum or mean temperature) were calculated over the year leading up to the
initial benthic survey and in the two years between survey events. This gave 23 environmental
predictors, which were tested for collinearity and removed in the same way as described above.
The removal of collinear predictors gave 14 environmental predictors which were used in
statistical analysis (Table 2).
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Table 2. Environmental summary of predictors used in disease severity full random forest model.
Variable = type of environmental variable, predictor = metric of that variable, time period =
temporal duration predictor calculated over. e.g., Chlorophyll-a maximum year prior, is the
maximum Chlorophyll-a concentration within the year prior to the initial benthic survey used to
count Montastraea cavernosa abundance. PAR maximum during, is the maximum PAR

measurement in the two years between monitoring surveys.

Variable Predictor Time period Mean | SD
Chlorophyll-a (mg m™) Maximum Year prior 8.88 10.95
PAR (Einstein m? day!) | Maximum During 59.09 | 1.32
PAR (Einstein m? day') | Mean During 43.52 | 1.55
Temperature (°C) Maximum Year prior 31.07 | 0.9
Temperature (°C) Maximum During 31.37 | 0.71
Temperature (°C) Mean Year prior 2697 | 0.94
Temperature (°C) Mean During 27.07 |0.35
Temperature (°C) Minimum Year prior 21.89 | 1.93
Temperature (°C) Minimum During 2124 | 1.3
Thermal stress Heat stress Year prior 4.03 7.41
Thermal stress Heat stress During 6.68 11.89
Thermal stress Cold stress Year prior 2.21 6.15
Thermal stress Cold stress During 4.39 10.36
Thermal stress Maximum DHW | During 1.73 2.15

2.1.3. Statistical analysis

To assess the relationship between disease susceptibility and disease severity with environmental
predictors, univariate modelling was conducted in a two-step process in R (R Core Team, 2024).
First, for each response metric, a random forest regression model was used to identify the most
important predictors in variation in each response variable. The predictors which accounted for
75% of the variation in the full random forest model were retained and a backwards stepwise
regression performed to identify the most important environmental predictors for stage two using
the R2. Partial regression plots were inspected for any evidence of quadratic relationships. The
selected predictors were then modelled as either a binomial Generalized Linear Model (GLM), or
binomial Generalized Linear Mixed Model (GLMM), which incorporated any potentially
meaningful interactions between predictors.

Disease susceptibility (n = 939) was modelled as disease prevalence (i.e., the proportion of
diseased M. cavernosa colonies at the time of sampling) in both the random forest and GLMM. In
the GLMM, the abundance of M. cavernosa at a site was fitted as weights. Sub-region nested
within year was fitted as a random effect to account for spatiotemporal variation in disease spread,
as sites close together were predicted to be more likely to encounter SCTLD at the same time.
Disease severity (n = 62) was modelled as mortality rate (i.e., the proportion of M. cavernosa
colonies which died over the two-year peak outbreak period). In the random forest regression
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model, the response variable was fitted as the relative change in abundance (% yr™'). In the GLM,
the response variable was fitted as the proportion that died (i.e., change /initial abundance), with
the weights as the initial M. cavernosa abundance at the site. Model selection was conducted using
a backwards stepwise approach from the full model, containing all predictors and meaningful
interactions, by inspecting model summaries and comparing the Akaike Information Criteria
(AIC).

Random forest model reliability and goodness of fit were visually assessed by plotting the cross-
validation error rate against the number of trees, the root mean squared error (calculated using the
out of bag samples) against fitted predictions and fitted model predictions against the observed
data. The minimum adequate GLM was validated by plotting deviance residuals against fitted
values, and deviance residuals against each significant variable in the fitted model. The fitted
GLMM was validated using the package DHARMa with residual diagnostics, including
overdispersion and heterogeneity, conducted on the fitted model (Hartig 2017). Overdispersion
was detected in the disease severity GLM, the model refit with a quasibinomial distribution and
model selection repeated as above. Two outliers were detected and removed. Model validation
indicated no further problems. The variance inflation factor (VIF) was used to check fitted models
for multicollinearity.

2.2. Results
2.2.1. Disease susceptibility

Disease prevalence was most strongly influenced by the interactions between maximum
temperature and maximum chlorophyll-a concentration the month prior to the disease survey, and
between maximum chlorophyll-a concentration and three-month mean PAR prior to the disease
survey. Disease probability increased with maximum temperature until maximum chlorophyll
concentration exceeded ~2 mg m~, with colonies 50-60% more likely to be diseased with each
unit increase in temperature (Figure la). Around the mean regional maximum chlorophyll-a
concentration (3.8 mg m™), there was a slight negative relationship between maximum temperature
and disease prevalence, but this was not significantly different to zero until chlorophyll-a
concentration exceeded ~6 mg m. Then the probability of a colony being diseased declined
substantially with maximum temperature. Disease probability declined with maximum
chlorophyll-a concentration when the three-month mean PAR was below or equal to the FCR mean
(52 einsteins m™ s!), but increased with chlorophyll-a concentration if three-month mean PAR
was greater than the FCR mean (Figure 1b).
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Figure 1. The greatest amount of variation in disease susceptibility was explained by the interaction
between a) maximum temperature and maximum chlorophyll-a concentration, then b) maximum
chlorophyll-a concentration and three-month mean PAR. When the maximum chlorophyll-a
concentration one month before the survey was below the regional mean, colonies were 50-60%
more likely to be diseased with each unit increase in maximum temperature. Colonies were ~two
times less likely to be diseased with each unit increase in maximum temperature when the
maximum chlorophyll-a concentration was 6 mg m~. When mean PAR was below or equal to the
regional mean, colonies were ~two times less likely to be diseased with each unit increase in
chlorophyll-a, but ~50% more likely to be diseased with each unit increase in chlorophyll-a when
mean PAR was above the regional mean.

The probability of a colony being diseased also significantly increased with maximum PAR and
declined with the mean temperature three months before surveying (GLMM; conditional R?= 0.7,
Marginal R?=0.1; Table 3). Colonies were 50% more likely to be diseased with every unit increase
in maximum PAR and two times less likely to be diseased with every unit increase in three-month
mean temperature. As indicated by the high conditional R2, survey location/time had a very large
effect on disease prevalence.

Table 3. Significant predictors of disease prevalence (Note: maximum chlorophyll-a concentration
retained due to presence in interactions) from GLMM. Estimate gives effect size on the logit scale.
Negative estimate indicates a negative relationship between predictor and disease prevalence.

Environmental predictor Estimate | Std. Error | z value | p value
(Intercept) -0.57 4.13 -0.14 0.9
Max temperature 0.44 0.18 2.40 0.02
Max PAR 0.05 0.02 2.64 0.008
3-month mean temperature -0.29 0.14 -2.03 0.04
10 C40115
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Max Chl-a 0.49 0.54 0.91 0.4
3-month mean PAR -0.22 0.05 -4.48 0.000007
Max temp x Max Chl-a -0.09 0.02 -3.95 0.00008
Max Chl-a x 3 month mean PAR | 0.04 0.01 4.58 0.000005

2.2.2. Disease severity

The probability of a colony dying significantly declined with maximum temperature during the
disease outbreak (GLM; R? = 0.56), such that for every unit increase in maximum temperature,
which averaged 31.4 °C (x 0.7 SD), colony mortality was three times less likely (Figure 2). Below
31.08 °C the fitted GLM predicted there was a greater than 50% chance that an M. cavernosa
colony would die. No other environmental predictor significantly affected mortality probability

(Table 4).

1.00

0.751

Mortality Probability
B

0.251

0.001

30

31

32

Maximum Temperature °c
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34

Figure 2. Modelled relationship between mortality probability (i.e., disease severity) and the
maximum temperature in the two years between surveys. R? = 0.56. Blue line = mean mortality

probability; grey points = model estimates for individual survey sites.
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Table 4. GLM summary of relationship between disease severity (modelled as mortality
probability) and the most important environmental predictors. Only the maximum temperature
between survey periods significantly influenced mortality probability.

Environmental Estimate | Std. Error | t value | p value

predictor

(Intercept) 25.40 3.15 8.08 S5.1e-11

Max temperature -0.82 0.10 -8.15 39e-11
12

C40115
June 2025



3. Goal 2: Experimentally validate effect of environmental conditions on disease
3.1. Methods
3.1.1. Coral Collection and Husbandry

Fragments of nine unique genets of Montastraea cavernosa were collected from the NSU Coral
Reef Restoration, Assessment and Monitoring labs offshore coral nursery and shipped to Texas
State University in early February 2025. Due to shipping delays, corals arrived in various health
states and were immediately screened upon arrival for abrasions, lesions, necrosis, and mortality.
Fragments with mortality greater than 90% were removed from experimental groups. The
remaining fragments were then tagged based on genotype and placed in recirculating tanks for
long term husbandry and experimentation. The Fuess Lab aquaria system consists of connected
(but able to be isolated) ten-gallon tanks which have recirculating artificial sea water (ASW),
automated lighting, heating, and buffer solution dosing. The system includes multiple biological
and mechanical filtration steps and UV sterilization for circulating water. Prior to experimentation,
corals were maintained in this system at conditions recommended by coral aquarists at Nova
Southeastern University which were based on local reef conditions: 35 ppt salinity, 24°C, 7.2 dKH,
400 ppm Ca, 1400 ppm Mg, and 0 ppm NH4, NO3, and NO2. Light levels were kept at
approximately 50 uM/m2s for 11.5 hours daily with a 30-minute ramp up/down period each
morning and evening to mimic the current sunrise and sunset in Fort Lauderdale, FL.

Corals were maintained at stable conditions for an acclimatization period of two and a half weeks,
with additional steps to facilitate recovery from shipping stress. Specifically, for the first week of
this period, corals were dosed with RESTOR and tanks underwent 50-75% water changes daily.
This treatment was necessary while corals were recovering from shipping stress. Once corals had
stabilized (after one week at TXST), corals transitioned to standard care consisting of twice weekly
feeding with hatched Artemia shrimp followed by 20% water changes. This feeding and water
change schedule was maintained through the duration of the experiment. Two weeks after arrival,
corals were slowly acclimatized to average summer temperatures on FCR. This involved a gradual
temperature increase from temperature at collection, ~24 °C, to a final temperature of 28°C.
Temperatures were raised 1 degree every two days to achieve this acclimatization. A control
temperature of 28°C was chosen based on modeling results (Figure 1). A clear shift in the
relationship between chlorophyll concentration (proxy for nutrient enrichment) and disease
susceptibility was observed at 30°C. Therefore, we chose control (28°C) and heat stress (32°C)
temperatures equidistant from that shift point for our experiment so as to capture this shifting
relationship.

Two and a half weeks after arrival, corals were fragged using a Gryphon Diamond Band Saw. All
received frags were cut up into approximately 3 x 3 cm smaller frags and tagged. Enough coral
frags survived and were able to be split into enough replicates to use seven genotypes for the
experiment. These frags were then allowed to recover from fragging for another two weeks before
starting the experiment. A full schedule of major coral husbandry events from colony arrival to the
end of the experiment is shown in Table 5.
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Table 5. Full schedule of coral husbandry events from arrival through the curation of the

experiment.
Date Event
Feb 7th Corals arrived
Feb 7t RESTOR dosing began
Feb 8t 50% - 75% water changes began
Feb 14 50% - 75% water changes end
Feb 14 RESTOR dosing end
Feb 215 Temperature ramping to 28 °C began
Feb 25t Corals fragged
Feb 26" Corals fragged
Mar 7% Temperature ramping to 28 °C end

March 14" | Experiment start

March 14" | Heat tank temperature ramping to 32 °C
began

March 17" | Heat tank temperature ramping to 32 °C
end

April 151 Corals injected

April 16" Experiment end

3.1.2. Experimental Approach- Environmental Manipulations

After a total acclimatization period of roughly one-month, experimentation was conducted to
investigate the impact of temperature and nutrients, the interaction identified as most strongly
influencing disease susceptibility and the single factor, temperature, which influenced disease
severity during modelling, on coral immune response. Coral pieces were randomly assigned to one
of six treatments representing a full factorial combination of the two factors: temperature (ambient
or heat) and nutrient enrichment (none, mid, high; Table 6). Pieces were then split across six tanks
representing each of the six treatments; pieces of genets were divided so that two pieces per genet
were present in each treatment group. Tanks were isolated from the recirculating system for the
duration of the experiment to prevent cross-contamination of temperature or ammonia treatment.
Individual heaters were used to raise temperatures in the three heat stress tanks; temperature was
ramped from 28 °C to 32 °C at a rate of 1 °C per day. Temperature in all tanks was monitored
throughout the duration of the experiment via HOBO Onset Data Loggers. Figure 3 displays the
experimental setup.
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Figure 3. Experiment tank set up showing environmental manipulations. (A) heat only, (B) heat
and mid nutrients (0.01 mg/L NHa4), (C) heat and high nutrients (0.05 mg/L NHa4), (D) full control,
(E) ambient and mid nutrients (0.01 mg/L NHa), (F) ambient and high nutrients (0.05 mg/L NHa).
(G) Example of tank showing the fourteen frags in each tank, 2 frags from each of the seven
genotypes.

Nutrient enrichment was conducted via the addition of ammonia with concentrations selected to
reflect environmental conditions on FCR (Jones and Gilliam 2024). Ammonia was chosen to
represent chlorophyll-a as it is the preferred nutrient source for zooxanthellae (Morris et al. 2019),
the density of which we predicted influenced SCTLD susceptibility. At the start of the experiment,
nutrient amended tanks were dosed with ammonium chloride (NH4Cl, CAS # 12125-02-9) to reach
their respective dosage. After initial dosing, levels were measured twice a week in all six tanks
using a modification of the phenate method (Solorzano 1969). The modification involved using
sodium citrate (Na3CsHsO7, CAS # 6132-04-3), as a complexing agent to eliminate interference of
calcium and magnesium (APHA 2023). After testing ammonia concentrations, tanks were dosed
as needed to maintain the desired concentration. Additionally, when 30% water changes were
conducted on feeding days, the ASW used to replace the water removed was dosed with NH4Cl to
match the target concentration for the respective tank (i.e. the mid-nutrient tank was given ASW
at a concentration of 0.01 mg/L of NHa). Temperature and nutrient enrichment treatments were
maintained for one month before immune challenge experiments to mimic disease susceptibility
modelling results (the interaction between maximum temperature and maximum chlorophyll
concentration in the month before survey).
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Table 6. List of environmental treatment types including final temperature and ammonia values.
Each treatment type corresponds to a single experimental tank. Treatments listed were crossed
with immune challenge treatment (placebo or immune challenge) in a full factorial manner for a
final total of 12 treatment groups.

Treatment Temperature | Ammonia
Ambient, 28 °C 0

None

Ambient, Mid | 28 °C 0.01 mg/L
Ambient, High | 28 °C 0.05 mg/L
Heat, None 32°C 0

Heat, Mid 32°C 0.01 mg/L
Heat, None 32°C 0.05 mg/L

3.1.3. Experimental Approach- Immune Challenges

Following one month of environmental manipulation, we conducted an experimental immune
challenge to assess the impact of varied environmental conditions on response to pathogenic
stimuli. Fragments within each treatment tank were randomly assigned to one of two treatments:
placebo or immune stimuli. Assignments were made to ensure a full factorial combination of
treatments (temperature x nutrient x immune challenge), with one fragment per genet in each of
the 12 treatment groups. Each fragment was placed into an aerated, individual 500 mL, autoclaved
plastic beaker with ~400 mL of 0.2 pm filtered ASW at 35 ppt. For ease of experimentation,
ammonia treatment was not continued through the immune challenge portion of the experiment.
Individual beakers were randomly placed into larger aquaria, which served as water baths
maintaining a temperature of 28 °C or 32 °C (respective of their original treatment) within the
beakers. Coral fragments were allowed to acclimate in the beakers for two hours and were then
injected with 500 uL of one of two treatments: heat-killed bacteria, Vibrio coralliilyticus at 1 x
108 CFU/mL in sterile ASW, or sterile ASW (vehicle control). Injections were split across 5
locations in the fragment with ~100 uL injected in each location, for a total injection volume of
500 uL. Corals were then incubated for 12 hours before sampling for immune assays (i.e. flash
freezing).

3.1.4. Sample Processing

To prepare fragments for immune assays, tissue was removed from frozen coral fragments using
a Paasche airbrush and 100 mM Tris + 0.05mM DTT (pH 7.8) buffer. This tissue slurry was
homogenized for 1 minute and placed on ice for 7 — 10 minutes. A 1 mL aliquot of tissue slurry
was taken for melanin analysis, placed into a pre-weighed 1.5 mL tube and flash frozen, then stored
at -20° C until analysis. The remaining tissue slurry was centrifuged at 3500 rpm for 5 min, after
which two aliquots of the supernatant (aka protein extract) were transferred into 2 mL tubes and
flash frozen, then stored at -80 °C until being used in all other protein analyses.
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Immune assays were conducted in triplicate, including negative controls using the Tris+DTT
buffer used to homogenize, and were measured on the BioTek Cytation 1 imaging reader, unless
specified otherwise. Protein concentration was measured for each sample before conducting any
assays using a Red660 assay. Protein extract (10 uL) was combined with 150 uL of G-Biosciences
Red660. Sample absorbance was read at 660 nm and compared to a bovine serum albumin (BSA)
standard curve to determine sample protein concentration. Measurements from subsequent assays
were all standardized by protein concentrations unless otherwise indicated.

Antioxidant activity was measured using catalase and peroxidase activity assays following
established methods (Changsut et al., 2022; Fuess et al., 2016). To measure catalase activity, 5 uL
of protein extract is combined with 45 uL of 50 mM phosphate-buffered saline pH 7.0 (PBS) and
75 uL of 25 mM H20z. Negative controls of Tris+DTT and a set of serial dilution wells using the
PBS and H:0: are included as well. Changes in absorbance (catalase activity) are then measured
every 45 seconds for 15 minutes at the 240 nm wavelength. Catalase activity is then calculated
using the most linear part of the curve in the first 1-5 minutes of the reaction and standardized
using the serial dilution curve. To measure peroxidase activity, 10 uL of protein extract is
combined with 20 uL of 10 mM phosphate-buffered saline pH 6.0 (PBS), 25 uL of 5 mM of
guaiacol, and 20 uL of 20 mM H20:. Negative controls of Tris+tDTT. Changes in absorbance
(catalase activity) are then measured every 45 seconds for 15 minutes at the 470 nm wavelength.
Peroxidase activity is then calculated using the entire curve.

Total Phenoloxidase Activity (TPO) was measured following existing protocols (Mydlarz &
Palmer, 2011) by combining 20 uL of protein extract, 20 uL of 50 mM PBS pH 7.0, 25 uL of 0.1
mg/mL trypsin, and allowing this mixture to incubate at room temperature for 30 minutes. Then
30 uL of 10 mM dopamine was added, and changes in absorbance were immediately measured
every 45 seconds for 15 min. at 490 nm. TPO activity was then calculated using the most linear
part of the curve in the first 1-5 minutes of the reaction.

Antibacterial activity (AB) was quantified by measuring bacterial growth doubling time of V.
coralliilyticus in the presence of host protein extracts (Changsut et al., 2022). Cultures of V.
coralliilyticus were incubated with host protein extracts diluted to a standard protein concentration.
Specifically, 60 puL of sample (or buffer control) was added to 140 puL of V. coralliilyticus diluted
to an OD representative of the start of its bacterial growth curve (approximately 0.2). Absorbance
at 600 nm was then read every 10 minutes for six hours to create a bacterial growth curve. Bacterial
growth doubling time was calculated from the logarithmic growth phase.

3.1.5. Statistical Analysis

Generated immune metric data was analyzed to specifically assess the impacts of temperature and
nutrient treatment (and the interaction thereof) on baseline immunity and immune response to
stimuli. Prior to all analyses we used the R package mice to impute one missing catalase value
using the pmm method with 5 imputed datasets and a maximum of 50 iterations. We began with
multivariate analyses of the impacts of these three factors (temperature, nutrients, immune
challenge) on all immunological data combined. Data was normalized and a PERMANOVA
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analysis was run using the R package vegan with the adonis2 function using the model: immune
metrics ~ Temperature * Nutrients * Immune Challenge (Martinez Arbizu, 2020; Oksanen et al.,
2025). The random effect of genet was accounted for using the strata parameter, and we specified
a Euclidean distance approach. Post-hoc pairwise comparisons were conducted for significant
terms using a custom function with the same parameters as the main model and corrected with a
Bonferroni correction. To visualize significant effects, we then ran a principal component analysis
of the data using the base R function prcomp and visualized the results using the R package
factorextra with the fviz_pca_biplot function (Kassambara & Mundt, 2020). Principal component
scores for the first and second components were then extracted and statistically analyzed for: 1)
correlation with immunological metrics (pearson correlation) and 2) association with factors of
interest from the PERMANOV A (3-way repeated measures ANOVA; rstatix; (Kassambara, 2023).
Representative scatter and box plots were constructed using ggplot2 (Wickham, 2016).

Following multivariate analyses, we examined each immune metric independently with univariate
approaches, specifically a 3-way repeated measures ANOVA in the rstatix package. We
incorporated fixed factors of interest: temperature, nutrients, immune challenge, and accounted for
repeated sampling at the level of host genotype. Data was checked against appropriate statistical
assumptions (normality, no outliers, etc.) prior to analyses and transformed when necessary. Post-
hoc analyses were conducted using pairwise T-tests with Bonferroni corrections. Representative
box plots were constructed using ggplot2 (Wickham, 2016).

3.2.Results
3.2.1. Multivariate Analyses

PERMANOVA analysis revealed strong impacts of temperature, nutrients, and their interaction
on combined immune metric data, but no impact of immune challenge (Table 7). Only 33% of the
variance was explained by a factor or interaction of interest (residual R?> = 0.77). Temperature
accounted for nearly 10% of the variance in immune metrics (R? = 0.0957, p = 0.001), whereas
nutrients accounted for only about 5% of the variance (R?> = 0.0473, p = 0.009). Finally, the
combined impact of nutrients and temperature accounted for an additional 3.6% of the variance
(R?=0.0.0365, p = 0.036). Pairwise analyses indicated significant differences between the high
and mid nutrient groups only (padj = 0.021). Additionally, the Ambient+Mid treatment group was
significantly different from all Heat treatment groups regardless of nutrient treatment (Table 8).
Furthermore, Heat+Mid was significantly different from Ambient+None, and Heat+High (Table
8).

Table 7. PERMANOVA results for combined immunological metrics. Df= degrees of freedom.
R’ value gives an estimate of the amount of variance explained by a given factor. Bold font
indicates significant p values (i.e. Pr(>F)).

Factor Df | Sum of R? F Pr(>F)
Squares
Temperature 1 31.8 0.0957 8.94 0.001%**
Nutrients 2 15.7 0.0473 2.17 0.010%*
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Infection 1 3.10 0.00943 0.873 0.377
Temp*Nutrients 2 12.11 0.0365 1.70 0.045*
Temp*Infection 1 1.71 0.00515 0.482 0.653
Nutrients*Immune Challenge 2 10.56 0.0315 1.47 0.090
Temp*Nutrients*Immune 2 1.41 0.00424 0.198 0.979
Challenge

Residual 72 | 256 0.770

Total 83 |332 1.00

Principal component analyses demonstrated clear clustering as a result of temperature and
nutrients, and some differentiation as a result of their combination (Figure 4). Principal
components 1 and 2 explained a combined 65.4% of the variance in the data, 39.3% and 26.2%
respectively. PC1 explained significant variance as a result of temperature treatment (Table 9;
Figure 5a), while PC2 explained significant variance as a result of nutrient treatment and the
interaction of nutrient treatments and immune challenge (Table 10, Figure 5b). Post-hoc analysis
revealed that PC2 significantly reduced in response to immune challenge only in the absence of
nutrient enrichment (padj=0.009). PC1 was significantly associated with all four immune metrics:
negatively with catalase and positively with peroxidase, total phenoloxidase, and antibacterial
activity (Figure 6). PC2 was significantly positively associated with catalase and total

phenoloxidase only (Figure 7).
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Figure 4. Biplot representation of PCA analysis of combined immune metric data. Plots are split based on groupings as follows: a)
temperature treatment, b) nutrient treatment, ¢) temperature and nutrient combined grouping. In each case points represent individual
sample points and are colored according to treatment group. Arrows eigenvector loadings of individual immune metrics, indicating
direction in PC space and magnitude (i.e. length of line). Ellipses are drawn based on treatment groupings with 95% confidence
intervals. PCA was visualized using the R package factoextra with the fviz_pca_biplot function.
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Table 8. Pairwise PERMANOVA results for comparison of combined temperature and nutrient

treatment groups. Reported are Bonferroni adjusted p values.

Ambient, Ambient, Ambient, Heat, Heat, Mid
None Mid High None

Ambient, Mid | 1.0

Ambient, 1.0 1.0

High

Heat, None 0.333 0.045* 0.36

Heat, Mid 0.030% 0.030% 0.06 1.0

Heat, High 1.0 0.045% 0.90 1.0 0.015%

Table 9. 3-way repeated measures ANOVA results investigating variance in PC1 as a result of
temperature, nutrients, immune challenge and their interactions. Df= degrees of freedom. The
ges value represents effect size of the factor of interest. Bold font indicates significant p values.

Effect DFn |DFd |F Y2 ges
Temperature 1 6 20.2 | 0.004* | 0.232
*
Nutrients 2 12 0.825 | 0.462 0.019
Infection 1 6 0.161 | 0.702 0.001
Temp*Nutrients 2 12 2.96 |0.090 0.043
Temp*Infection 1 6 0.170 | 0.694 0.0008
Nutrients*Immune Challenge 2 12 0.883 | 0.439 0.013
Temp*Nutrients*Immune 2 12 0.357 | 0.707 0.005
Challenge

Table 10. 3-way repeated measures ANOVA results investigating variance in PC2 as a result of
temperature, nutrients, immune challenge and their interactions. Df= degrees of freedom. The
ges value represents effect size of the factor of interest. Bold font indicates significant p values.

Effect DFn |DFd |F D ges
Temperature 1 6 1.07 | 0.341 0.017
Nutrients 2 12 6.29 |0.014% | 0.163
Infection 1 6 0.668 | 0.445 0.009
Temp*Nutrients 2 12 1.60 | 0.243 0.073
Temp*Infection 1 6 0.263 | 0.626 0.002
Nutrients*Immune Challenge 2 12 4.66 |0.032* | 0.063
%
Temp*Nutrients*Immune 2 12 0.406 | 0.675 0.005
Challenge
21

C40115
June 2025




a)

-34

Ambient Heat
Temp

MpEArrlxen‘l'Haa‘t

b) .

-2

:

MNone

.

Nutrients

High

Immune ‘ Bacteria £ Contral

Figure 5. Box and whisker representing statistically significant variance of a) PC1 and b) PC2.
Asterix indicates significantly different groups. Boxes are colored by treatment group

(temperature or immune challenge).

22

C40115
June 2025



Mutrignts ® HNone @ Mid & High Temp Amblent ®  Heat

) | e ) o]
T 9 . =
z 3
-4 ¥ a 21
2 - -
1 IR A £ .
S5 2E . .
E - £ -
= 1 -..I". - ,mg . r
%35 e 4 'ﬁ: wlr’ =
= c Y = o &
220 5 ~ E‘% . # Ak A
§ oy ey ; Mo
0 ) i ~ A :___'._“‘ "
& A" t L . = -1 Y
E -1 1 F Y o - = [ ] - o Y
t"l- »
L < -
_-r
_8 -
3 2 - 0 1 2 3 5 -z -1 0 1 2 3
PC1 FC1
€) |psesnons d) |z A
|1I
£ 7 7
= L .
<3 « ° £s
58 . ;' A - .E':? 21
'§ g = =35 " -
—_ - o i
- o 59 A -
2E . = z-f o FE A _»
g" . ﬁ-— e
E;_- "o =2 ¢ f’ [
%ﬁ __'..-tf "a " Eé !.;#L‘
= - " A m W oy
- m, " oA - R e
b - i
. ® & iy "
-3 -2 - 0 1 2 3 -3 -2 -1 0 1 2 3
FC1 PC1

Figure 6. Correlation plot of the association of immune metrics with PC1 values: a) catalase
activity, b) peroxidase activity, ¢) total phenoloxidase activity, d) antibacterial activity. For all
graphs the normalized values used for PERMANOVA and principal component analyses are
plotted. Points represent individual datum colored by temperature treatment and shaped by
nutrients. Linear regression and 95% confidence intervals are plotted for each.
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Figure 7. Correlation plot of the association of immune metrics with PC1 values: a) catalase
activity, b) peroxidase activity, ¢) total phenoloxidase activity, d) antibacterial activity. For all
graphs the normalized values used for PERMANOVA and principal component analyses are
plotted. Points represent individual datum colored by temperature treatment and shaped by
nutrients. Linear regression and 95% confidence intervals are plotted for each.

3.2.2. Univariate Analyses

Univariate analysis of individual immune metrics again revealed strong effects of both temperature
and nutrient treatment, and some response to immune challenge. All immune metrics except for
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catalase were significantly suppressed as a result of temperature treatment (Table 11, Figure 8b-
d); catalase varied significantly as a result of nutrient treatment and the interaction of nutrients and
immune challenge (Table 11, Figure 8a). Corals receiving mid nutrient treatments had significantly
higher catalase activity after immune challenge than those high conditions regardless of immune
challenge (Table 12, Figure 8a).

Table 11. 3-way repeated measures ANOV A results investigating variance in each immune metric
individually as a result of temperature, nutrients, immune challenge and their interactions. Df=
degrees of freedom. The ges value represents effect size of the factor of interest. Bold font indicates
significant p values.

Catalase
Effect DFn DFd F p value ges
Temperature 1 6 0.780 0411 0.010
Nutrients 2 12 9.165 | 0.004%** 0.109
0.0006
Infection 1 6 0.062 |0.811 4
Temperature:Nutrients 2 12 0.122 | 0.886 0.0030
Temperature:Infection 1 6 1.559 | 0.258 0.016
Nutrients:Infection 2 12 6.251 | 0.014* 0.113
Temperature:Nutrients:Infecti
on 2 12 2.316 |0.141 0.045
Peroxidase
Effect DFn DFd F p value ges
p<0.001*
Temperature 1 6 46.5 * 0.262
Nutrients 2 12 0.524 1 0.605 0.011
Infection 1 6 2.13 0.195 0.015
Temperature:Nutrients 2 12 1.60 0.243 0.055
0.0005
Temperature:Infection 1 6 0.060 | 0.815 7
Nutrients:Infection 2 12 01.09 ]0.368 0.013
Temperature:Nutrients:Infecti
on 2 12 0.538 ]0.598 0.011
Total Phenoloxidase
Effect DFn DFd F p value ges
Temperature 1 6 5.67 0.055 0.053
Nutrients 2 12 2.20 0.154 0.044
Infection 1 6 0.528 |0.495 0.005
Temperature:Nutrients 2 12 0.406 | 0.675 0.020
0.0007
Temperature:Infection 1 6 0.266 | 0.625 2
Nutrients:Infection 2 12 2.21 0.152 0.021
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Temperature:Nutrients:Infecti

on 2 12 0.187 10.717 0.003

Antibacterial Activity

Effect DFn DFd F p value ges

Temperature 1 6 8.29 0.035 0.100

Nutrients 2 12 0.648 |0.544 0.017

Infection 1 6 2.286 | 0.191 0.077

Temperature:Nutrients 2 12 1.20 0.341 0.027

Temperature:Infection 1 6 1.08 0.346 0.004

Nutrients:Infection 2 12 0.186 | 0.833 0.003

Temperature:Nutrients:Infecti

on 2 12 0.370 ] 0.700 0.007
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Figure 8. Box and whisker representing statistically significant variance in individual immune
metrices a) catalase activity, b) peroxidase activity, ¢) total phenol oxidase activity, d) antibacterial
activity. Letters indicate significant groups determined by post-hoc pairwise t-tests. Asterix
indicates significantly different groups as indicated by the full 3-way repeated measures ANOVA
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Table 12. Results of post-hoc pairwise t-tests comparing groups of interactions between nutrient

enrichment and immune challenge. Bold font indicates significant p values.

Comparison stat df )2 padj
High-Bacteria vs. High Control -1.85 |13 0.087 |0.78
High-Bacteria vs. Mid-Bacteria | -6.37 | 13 <0.001 | <0.001***
High-Bacteria vs. Mid-Control -1.33 |13 0.208 | 0.98
High-Bacteria vs. None-Bacteria | -1.60 | 13 0.135 | 0.861
High-Bacteria vs. None-Control | -3.32 | 13 0.006 | 0.073
High-Control vs. Mid-Bacteria -4.15 |13 0.001 | 0.016%
High-Control vs. Mid-Control -0.412 | 13 0.687 | 1.0
High-Control vs. None-Bacterial | -0.119 | 13 0.907 | 1.0
High-Control vs. None-Control -1.92 |13 0.077 |0.769
Mid-Bacteria vs. Mid-Control 2.09 13 0.057 | 0.63
Mid-Bacteria vs. None-Bacteria | 3.01 13 0.01 0.12
Mid-Bacteria vs. None-Control 1.65 13 0.123 | 0.861
Mid-Control vs. None-Bacteria 0.269 |13 0.792 | 1.0
Mid-Control vs. None-Control -1.36 |13 0.196 | 0.98
None-Bacteria vs. Non-Control -1.81 |13 0.093 |0.78
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4. Goal 3: Model disease probability and identify resistant locations
4.1.Methods

The environmental parameters identified as significantly affecting disease susceptibility in goal 1
were recalculated with the most recent available environmental data to predict spatial variation in
disease susceptibility across FCR. Monthly chlorophyll-a concentrations and PAR were extracted
from NASA’s Modis aqua satellite from 2021 to 2024. The maximum chlorophyll-a concentration
and maximum PAR were calculated as the mean of the maximum annual values at each satellite
location. The three-month mean PAR was calculated as the mean annual PAR value at each
satellite location. Maximum and three-month mean temperatures were calculated using in situ data
from 2021 to 2022 at CREMP/SECREMP sites as in goal 1, as data was only available in the
Florida Keys until mid-2023. The maximum temperature was calculated as the mean of the annual
maximum at each site and the three-month mean as the mean temperature in the summer months
(July, August and September). The environmental regime was then calculated at each DRM site
surveyed throughout FCR in 2023 (n = 423) using a spatial join between the closest one to three
satellite or CREMP/SECREMP sites, depending on distance between sites, as in goal 1. This
current environmental regime was used in the fitted disease susceptibility GLMM, with M.
cavernosa abundance at the DRM site used as the weights. No random effect structure was
incorporated to give equal chance of disease prevalence across FCR. Inverse distance weighted
interpolation was used to model disease probability across Florida in QGIS at 0.05° resolution with
a distance coefficient, which controls the spatial rate of decay, of 10.

The environmental variables used in goal 2, ammonia and temperature, were also mapped across
FCR. Mean annual maximum ammonia concentration was calculated using data collected as part
of the Southeast Florida Reef Tract Water Quality Assessment Project and in the Florida Keys by
the Southeast Environmental Research Center, where measurements encompass NH3 and free
NHj4" ions. In the Coral AP, maximum ammonia concentration was calculated as the mean of the
annual maximum from 2021 to 2024 from bottom samples collected at reef sites. In the Florida
Keys, maximum ammonia was calculated as the mean of the annual maximum from 2021 to 2022.
Maximum temperature was calculated as above at each CREMP/SECREMP site. Maximum
ammonia concentrations and temperatures were interpolated across Florida with the same method
as for disease probability.

4.2. Results

Predicted disease probability varied widely across FCR (Figure 8), but was generally higher in the
Coral AP than the Florida Keys. The maximum disease probability was 0.31 offshore Port
Everglades and was consistently above 0.1 (i.e., 10% of a disease outbreak) offshore northern Palm
Beach and Martin counties. Disease probability was substantially lower (0.001) off the Broward-
Miami border. In the Florida Keys, areas with low disease probability (< 0.01) were identified on
the southern half of Key Largo and Tavernier in the upper keys, between northern Marathon and
Layton in the middle keys, and offshore Lower Sugarloaf and Boca Chica Keys in the lower leys.
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Increased disease probability (> 0.1) was predicted off northern Key Largo, off Lower Matecumbe
Key and Long Key on the upper/middle keys border and in the channel off 7-mile bridge. Disease
probability was substantially higher in the southwest of the Dry Tortugas National Park than in the
northeast, although it did not exceed 0.1.
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Figure 8. Predicted SCTLD probability calculated from refitted GLMM of disease susceptibility
with current environmental regime at DRM sites and IDW interpolation across Florida at 0.05°.
The darker the green, the greater the probability of disease, with a maximum disease probability
of 0.31 offshore Port Everglades. Inset: Florida peninsula.

The mean maximum annual ammonia concentration was 0.016 mg/l across FCR and ranged two
orders of magnitude from 0.06 mg/I off Boynton Beach to 0.0006 mg/1 off Turtle reef in the upper
keys. Ammonia concentration was consistently higher in the Coral AP than in the Florida Keys
(Figure 9). Ammonia concentrations found to suppress immune response (> 0.05 mg/l) were found
at reef water quality monitoring sites near Jupiter, Boynton Beach and Boca inlets and near
Government Cut.
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Figure 9. Maximum annual ammonia concentration across the FCR. Concentrations were
measured from bottom samples as part of the Southeast Florida Reef Tract Water Quality
Assessment Project in the Coral AP and in the Florida Keys by the Southeast Environmental
Research Center. Inverse distance weighted interpolation was conducted to map ammonia
concentrations across Florida at 0.05°. Inset: Florida peninsula. Note, in situ water quality data not
available for the Dry Tortugas.
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Mean annual ammonia concentrations across FCR were 0.006 mg/l and like maximum annual
ammonia concentration, varied widely. Mean annual ammonia concentrations were nearly an order
of magnitude higher in the Coral AP than in the Florida Keys, where they were below detectable
limits in many locations. Conversely, at 40 of the 53 reef sites monitored within the Coral AP,
mean ammonia concentrations were > 0.01 mg/l in (Figure 10), the concentration found to elicit
increased catalase activity when immune challenged.
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Figure 10. Mean annual ammonia concentration across the FCR. Concentrations were measured
from bottom samples as part of the Southeast Florida Reef Tract Water Quality Assessment Project
in the Coral AP and in the Florida Keys by the Southeast Environmental Research Center. Inverse
distance weighted interpolation was conducted to map ammonia concentrations across Florida at
0.05°. Inset: Florida peninsula. Note, in situ water quality data not available for the Dry Tortugas.

In contrast to ammonia concentration, maximum temperatures were, unsurprisingly, higher
throughout the Florida Keys than in the Coral AP. They were also noticeably cooler in the Dry
Tortugas (Figure 11). The mean maximum annual temperature was 33.1 °C off Dove Key, a
shallow hardbottom area off Key Largo. Exceptionally warm maximum temperatures (above 32.5
°C) were also measured at other shallow, inshore sites, El Radabob and Rattlesnake in the upper
keys, Long Key and Moser Channel in the middle keys and Jaap Reef in the lower keys. Maximum
temperatures at all sites exceeded 30.5 °C, the temperature frequently used as the coral bleaching
threshold on FCR. Many SECREMP sites in the Coral AP and at Black Coral Rock, a deep
pinnacle reef in the Dry Tortugas did not however, exceed 31 °C.
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Figure 11. Mean maximum annual temperature from 2021 to 2022 measured from in situ loggers
at CREMP/SECREMP sites throughout FCR. Inverse distance weighted interpolation was
conducted to map maximum temperature across Florida at 0.05°. Inset: Florida peninsula.
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5. Discussion and management recommendations

Statistical modelling found that environmental conditions significantly influenced Montastraea
cavernosa’s susceptibility to stony coral tissue loss disease and the severity of disease. Disease
susceptibility was significantly influenced by temperature, light and chlorophyll-a concentration
(nutrient proxy). Disease probability increased with the maximum temperature pre-survey when
chlorophyll-a concentration was low, but was highest when chlorophyll-a concentration was high
and the maximum temperature was lower (particularly below 28 °C). Disease susceptibility also
increased with chlorophyll-a concentration when PAR was high, or when both chlorophyll-a and
PAR were low, suggesting that the combined effect of high nutrients and light, or low nutrients
and light increased disease susceptibility. Disease severity was only affected by the maximum
temperature between surveys, with less than 50% chance a colony would die when temperatures
exceeded the bleaching threshold. These findings support previous findings that suggest SCTLD
initially affects Symbiodiniaceae before causing tissue loss in the coral host (Landsberg et al.
2020). While we used a proxy for nutrients (chlorophyll-a concentration), modelling results
suggest disease susceptibility was highest under environmental conditions which would likely
increase zooxanthellae production, i.e., high nutrients/chlorophyll-a and high light or high
nutrients/chlorophyll-a and warm temperatures, but below the bleaching threshold. Further, that
only maximum temperature affected disease severity suggests that once a colony becomes
diseased, the probability of it surviving increased if temperatures exceeded the bleaching
threshold.

Laboratory experimentation revealed significant effects of both temperature and nutrient stress,
though no strong interactions between the two. Generally speaking, ecologically relevant high
temperatures (32 °C) induced constitutive suppression of three prominent immunological metrics:
peroxidase, antibacterial activity, and total phenoloxidase production. Furthermore, moderate
levels of nutrients (0.01 mg/l ammonia) fundamentally changed the response of corals to pathogen
stimuli. Under intermediate levels of nutrient enrichment, corals induced higher catalase activity
in response to pathogen stimuli, whereas without nutrient enrichment (and marginally at high
nutrient levels) levels of catalase and total phenoloxidase production decreased following pathogen
stimulation. These preliminary results suggest optimal immune responses at moderate nutrient
levels.

Our results suggest that temperature played the primary role in SCTLD susceptibility and severity
and that it strongly influences immune response. Lab results found multiple immune metrics were
suppressed at high temperatures, while enhanced catalase activity suggests stress within the coral
host, suggesting further disease outbreaks are likely as ocean temperatures increase. While this
appears to counter modelling results, it follows the same trend as the disease susceptibility model
suggests under low nutrient/chlorophyll-a conditions. It is plausible that the difference is because
SCTLD appears to affect the symbionts initially, but this is impossible to investigate without a
known pathogen. Our results also suggest that generally under moderate ammonia concentration
(0.01 mg/1) the coral host has enhanced immune response, until ammonia concentrations are very
high (0.05 mg/l). Spatial analysis identified multiple locations that have enhanced and reduced
disease susceptibility, which should be taken into account when choosing outplanting locations for
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M. cavernosa. Spatial analysis also identified multiple locations, primarily near inlets in the Coral
AP, where experimental nutrient enrichment conditions suggest immune response is suppressed.
Reducing excess ammonia in these locations could therefore improve coral immunity and reduce
the likelihood of another major disease outbreak.
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