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Management Summary  

Disease outbreaks have caused mass coral mortality on Florida’s Coral Reef (FCR) and continue 

to threaten the persistence of coral populations. Spatiotemporal variations in disease dynamics 

suggest environmental conditions influence disease susceptibility. Understanding these may allow 

us to identify the environmental factors which underpin coral health and predict future disease 

dynamics. We took an integrative approach, combining field observations and statistical modelling 

to identify the environmental drivers of disease susceptibility and severity on FCR, and performed 

lab experiments under these conditions to understand their effect on immunity in Montastraea 

cavernosa. Disease susceptibility was most strongly influenced by the interactions between 

maximum temperature and maximum chlorophyll-a concentration the month prior to the disease 

survey, and between maximum chlorophyll-a concentration and three month mean PAR. Disease 

probability was highest when chlorophyll-a concentration (nutrients proxy) exceeded ~6 mg m-3 

and maximum temperatures were low (<30 °C) or when PAR and chlorophyll-a concentrations 

were high. Disease severity had a significant negative relationship with maximum temperature, 

where a colony had a 50% chance of dying unless temperatures exceeded 31.08 °C. Lab 

experimentation was conducted under conditions experienced on FCR to investigate the influence 

of temperature and nutrients on immune response. After one month of environmental 

manipulation, coral fragments were immune challenged to assess immune response. Heat stress 

largely drove broad suppression of constitutive immunity (peroxidase, phenoloxidase, and 

antibacterial activity), but increased catalase activity, which suggests stress within the host. These 

results suggest further disease outbreaks are likely as ocean temperatures increase. Corals exposed 

to moderate levels of ammonia (0.01 mg/1) induced the strongest immune responses (catalase and 

phenoloxidase activity), but that ceased under high concentrations (0.05 mg/l). Experimental 

nutrient enrichment conditions are experienced on FCR, and results suggest reducing ammonia in 

these locations could improve coral immunity and reduce the likelihood of another disease 

outbreak.   
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Executive Summary  

Disease outbreaks have caused mass coral mortality on Florida’s Coral Reef (FCR) and 

continue to threaten the persistence of coral populations. Spatiotemporal variations in disease 

dynamics suggest environmental conditions influence susceptibility, the probability of contracting 

disease, and severity, the probability of dying from disease. Understanding these variations may 

allow us to identify the factors which underpin coral health and predict future disease dynamics. 

We combined field observations and statistical modelling to identify the environmental conditions 

that influenced disease dynamics during the SCTLD outbreak, and performed lab experiments 

under these conditions to understand their effect on immunity in Montastraea cavernosa.  

Disease susceptibility was quantified using data collected during the peak SCTLD 

outbreak. Disease severity was calculated as the change in M. cavernosa abundance at CREMP 

and SECREMP sites in the first two years following the outbreak. Environmental predictors were 

quantified using in situ and satellite data. Disease susceptibility and severity were modelled against 

these predictors in a two-step process using random forests and generalized linear mixed models. 

Disease susceptibility was most strongly influenced by the interactions between maximum 

temperature and maximum chlorophyll-a concentration (nutrient proxy) the month prior to the 

disease survey, and between maximum chlorophyll-a and three-month mean PAR prior to the 

disease survey. Disease probability was highest when chlorophyll-a concentration exceeded ~6 mg 

m-3 and maximum temperatures were below 30 °C or when mean PAR and chlorophyll-a 

concentrations were high. Disease severity had a negative relationship with maximum temperature, 

such that unless temperatures exceeded 31.08 °C there was an over 50% chance of a colony dying.  

Lab experimentation investigated the impact of temperature and nutrients, the interaction 

identified as most strongly influencing disease susceptibility, on coral immune response. A crossed 

design with six treatments reflective of conditions experienced on FCR was used: temperature 

(high or ambient) and nutrients (none, moderate or high). After one month of environmental 

manipulation, coral fragments were immune challenged by pathogenic stimuli or placebo to assess 

immune response. Multivariate analysis revealed strong impacts of temperature, nutrients 

(ammonia concentration), and the interaction of nutrients and immune challenge. Heat stress 

largely drove broad suppression of constitutive immunity (peroxidase, phenoloxidase, and 

antibacterial activity), but increased catalase activity. Corals exposed to moderate levels of 

ammonia (0.01 mg/1) induced the strongest immune responses (catalase and phenoloxidase 

activity), but this benefit was lost at high concentrations (0.05 mg/l).  

Our results suggest temperature played the primary role in SCTLD susceptibility and 

severity and that it strongly influences immune response. Temperatures which likely induced 

bleaching were related to reduced SCTLD severity, strengthening findings that suggest it initially 

affected Symbiodiniaceae before causing host tissue loss. However, lab experiments found 

multiple immune metrics were suppressed at elevated temperatures, while enhanced catalase 

activity suggests stress within the coral, suggesting further disease outbreaks are likely as ocean 

temperatures rise. Both methods suggest that under eutrophic conditions immune response is lower 

and disease susceptibility increases. The experimental eutrophic conditions are experienced on 

FCR, and our results suggest reducing ammonia in these locations could improve coral immunity 

and reduce the likelihood of another major disease outbreak. 
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1. Introduction 

Disease outbreaks, such as Stony Coral Tissue Loss Disease (SCTLD), have caused mass stony 

coral mortality on Florida’s Coral Reef (FCR) in recent decades and continue to threaten the 

persistence of coral populations. While the broadscale impacts of SCTLD have been severe, 

spatiotemporal differences in disease susceptibility and severity in FCR and the wider Caribbean 

(e.g., Alvarez-Filip et al. 2019; Rippe et al. 2019; Muller et al. 2020; Williams et al. 2021) suggest 

local environmental conditions exacerbated SCTLD susceptibility and enhanced coral mortality. 

To date, no clear environmental pattern has been identified to explain the spatiotemporal variations 

in SCTLD etiology or epidemiology. Initial outbreak reports suggested an environmental trigger, 

primarily prolonged heat stress (Precht et al. 2016; Jones et al. 2021), and while there are 

suggestions that the subsequent spread and peaks in SCTLD elsewhere in Florida were not 

associated with heating (Muller et al. 2020; Williams et al. 2021), elsewhere in the Caribbean poor 

water quality has been implicated as exacerbating coral mortality (Alvarez-Filip et al. 2019; 

Alvarez-Filip et al. 2022). Regardless of the exact trigger, it remains plausible that environmental 

conditions predisposed coral communities in Florida to disease, as has been found in other diseases 

and in other locations (Voss & Richardson 2006; Lesser et al. 2007; Muller & van Woesik 2009; 

Ban et al. 2014; van Woesik & Randall 2017; Muller et al. 2018; Lapointe et al. 2019; Donovan 

et al. 2021) and that they will continue to increase disease susceptibility and reduce coral recovery 

potential (Jones & Gilliam 2024).  

Spatiotemporal differences in multi-species disease outbreaks can be compounded by variability 

in community composition and interspecific variation in susceptibility. This makes it difficult to 

disentangle the environmental drivers of disease from spatial variations in diversity. Hence, 

studying disease dynamics in a single, widely distributed species increases confidence that 

spatiotemporal patterns are related to environmental conditions, and not stony coral community 

composition (i.e., the proportion of highly susceptible species). Montastraea cavernosa is a 

moderately SCTLD susceptible, massive species which is found widely across FCR. Previous 

studies assessing the effect of SCTLD on M. cavernosa found temporal (Shilling et al. 2021) and 

spatial (Aeby et al. 2019) variability in lesion development and lesion progression rates, both of 

which raise the potential of environmental influence on both disease susceptibility (i.e., the 

probability of a colony becoming diseased) and disease severity (i.e., the probability of colony 

mortality once infected).  

Identifying the specific environmental conditions which influenced disease susceptibility and 

severity during the SCTLD outbreak may also allow us to identify the environmental factors which 

underpin coral health and predict future disease dynamics. A number of environmental conditions, 

including thermal stress (e.g., Bruno et al. 2007; Miller et al. 2009), nutrient enrichment (e.g., Vega 

Thurber et al 2014) and suspended sediments/turbidity (e.g., Pollock et al. 2014) have been 

associated with inducing and exacerbating disease outbreaks. These relationships have generally 

been identified through field data, which identify correlations, but not causation, or laboratory 

experiments, which may not be ecologically relevant. By integrating both approaches, it may be 

possible to identify ecologically meaningful environmental variables and experimentally validate 

that they influence disease. Furthermore, by taking a laboratory approach grounded in 
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understanding the effects of identified environmental covariates on coral immunity and pathogen 

susceptibility generally (as opposed to purely a specific disease such as SCTLD), the results 

provide generalizable insight regarding the impacts of environmental conditions on general coral 

disease susceptibility. The results of the combined approach can be used to create predictive 

models which have the ability to identify locations more susceptible to future disease outbreaks 

and to inform management actions. 

In this study, we used the SCTLD outbreak as a case study and took an integrative approach 

to identify environmental conditions that influence disease susceptibility and severity in M. 

cavernosa. We combined field observations, statistical modelling and lab experimentation to 

answer three research questions: 1) Did environmental conditions exacerbate SCTLD 

susceptibility and severity in M. cavernosa? 2) If so, do these environmental variables actually 

influence M. cavernosa immunity and general pathogen susceptibility? Then, using the identified 

environmental conditions which influenced disease susceptibility, 3) Where are locations 

predicted to be more or less susceptible to future disease outbreaks?  

   

2. Goal 1: Identify environmental drivers of disease 

2.1. Methods 

2.1.1. Coral disease data 

Disease susceptibility was quantified as disease prevalence (i.e., the proportion of M. cavernosa 

colonies with SCTLD) at individual sites surveyed as part of the Coral Reef Evaluation and 

Monitoring Project (CREMP), Southeast Florida Coral Reef Evaluation and Monitoring Project 

(SECREMP) and the Florida Reef Resilience Program’s (FRRP) Disturbance Response 

Monitoring (DRM). If sites had multiple transects, M. cavernosa abundance and disease 

prevalence were summed to the site level. As the spread of SCTLD varied spatiotemporally across 

FCR, disease prevalence data was filtered to capture the peak disease outbreak period in each FCR 

subregion using previously documented timelines (e.g., Walton et al. 2018; Muller et al. 2020; 

Williams et al. 2021; Hayes et al. 2022) and by visually assessing spatiotemporal variation in 

disease prevalence. The peak disease outbreak period was considered to be from 2014-2016 

throughout the Kristin Jacobs Coral Aquatic Preserve (Coral AP): Martin, Palm Beach, Deerfield, 

Broward, Miami and Biscayne; from 2016 to 2018 in the Upper and Middle Keys, from 2018 to 

2019 in the Lower Keys and Marquesas; from 2019 to 2022 in the Marquesas-Tortugas transition 

zone and from 2020 to 2022 in the Dry Tortugas.  

Disease severity was quantified as the mortality rate (i.e., the relative change in M. cavernosa 

abundance) during the initial two years of the SCTLD outbreak at CREMP and SECREMP sites. 

Abundance at CREMP sites was counted on four, 10 m x 1 m transects, and at SECREMP sites on 

four, 22 m x 1 m transects. At each site, abundance was summed per site per year. The mortality 

rate was calculated as the change in abundance from year 0 to year 2, divided by the initial 

abundance (i.e., relative change (% yr-1)). Only colonies ≥ 4 cm maximum diameter were counted 

to avoid capturing colonies that recruited during the disease outbreak. Two years was considered 
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sufficient time for colonies which became diseased during the peak outbreak period to have died 

and to avoid capturing recruits that grew into the adult dataset by the second year (e.g., Jones & 

Gilliam 2024). To capture the peak in mortality rate at each site, mortality rates were calculated 

for multiple two-year periods and the period chosen, that during which the largest relative change 

in M. cavernosa abundance occurred at each site. The period generally stayed consistent within a 

subregion such that the chosen period was 2014 to 2016 in Broward, Miami and Biscayne, 2015 

to 2017 in Martin, Palm Beach and Deerfield, 2016 to 2018 in the Upper and Middle Keys, 2017 

to 2019 in the Lower Keys and 2020 to 2022 in the Dry Tortugas. 

2.1.2. Environmental predictors 

Environmental data prior to the peak disease outbreak and during the outbreak period were 

compiled from in situ and satellite data, and specific environmental predictors calculated for their 

relevance to stress responses in stony corals at each benthic sampling site. Data from NASA’s 

Moderate Resolution Imaging Spectroradiometer satellite (MODIS Aqua) was used to measure 

solar irradiance, diffuse attenuation coefficient (turbidity proxy) and chlorophyll-a concentration 

(nutrients proxy). Irradiance was obtained as the surface downwelling photosynthetic flux in air 

(Photosynthetically Available Radiation (PAR) einstein m-2 s-1) and diffuse attenuation coefficient 

as kD490 (m-1). Data were extracted from NASA’s Ocean color database 

(https://oceancolor.gsfc.nasa.gov/l3/) as the monthly mean for each metric at 1/25th resolution 

throughout Florida. Data was visually assessed and any obvious outliers removed. Temperature 

data was obtained from satellite and in situ sampling. Degree heating week data was obtained from 

NOAA’s Coral Reef Watch (NOAA CRW 2018). Daily in situ temperature data was collected by 

HOBO v2 temperature loggers at CREMP and SECREMP sites throughout FCR.  

The environmental regime at each benthic sampling site was calculated using a spatial join with 

the in situ and satellite data. Each benthic site was joined with the three closest satellite sites and 

the monthly mean of each variable calculated per benthic site. To calculate the temperature regime 

at DRM sites which were used in the disease susceptibility analysis, a spatial join was made to the 

nearest CREMP/SECREMP site. If the closest CREMP/SECREMP site had missing data then a 

spatial join was made to the closest two sites. After the database with the environmental regime at 

each benthic site was created, multiple environmental predictors were created to represent 

conditions either leading up to the disease susceptibility surveys or in the time between disease 

severity surveys.  

For the disease susceptibility analysis, each environmental variable: chlorophyll-a concentration, 

PAR, kD490 and temperature, the maximum and mean values were quantified within the month 

prior, within the prior three months and within the prior year to the benthic survey. To further 

capture the temperature regime at a site, the minimum temperature one month, three months and 

one year prior to the benthic survey and specific thermal stress predictors were calculated. Thermal 

thresholds were calculated independently for each subregion using modelled SST data from the 

Hybrid Coordinate Ocean Model (HYCOM) from 2014 to 2022, as 1 °C above the maximum of 

the mean summertime (July-September) SST, or 1 °C below the minimum of the mean wintertime 

(January-March) SST as per Jones et al. (2020). The heat stress or cold stress durations were 

calculated for each site as the number of days in situ water temperature exceeded thermal 

https://oceancolor.gsfc.nasa.gov/l3/
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thresholds in the month, three months and year before a benthic survey. This gave 31 

environmental predictors, which were tested for collinearity by calculating the Spearman’s rank 

correlation coefficient, which is well suited to assess non-linear relationships and data which are 

non-normal. Correlations were considered significant at a threshold of 0.8 and one of the collinear 

predictors removed prior to statistical analysis. An attempt was made to keep at least one predictor 

of a variable at each time point. All chlorophyll-a and kD490 predictors were highly collinear and 

all removed except maximum chlorophyll-a the month prior to the survey as this was hypothesized 

to have the greatest effect on disease susceptibility. The removal of other collinear predictors left 

15 environmental predictors which were used in statistical analysis (Table 1). 

Table 1. Environmental summary of predictors used in disease susceptibility full random forest 

model. Variable = type of environmental variable, predictor = metric of that variable, time period 

= temporal duration predictor calculated over. e.g., chlorophyll-a maximum, is the maximum 

chlorophyll-a concentration within one month prior to the disease survey.  

Variable Predictor Time period Mean SD 

Chlorophyll-a (mg m-3) Maximum One month 3.82 5.12 

PAR (Einstein m-2 day-1) Maximum One month 48.16 6.11 

PAR (Einstein m-2 day-1) Maximum Three months 56.68 2.50 

PAR (Einstein m-2 day-1) Maximum One year 58.23 1.93 

PAR (Einstein m-2 day-1) Mean Three months 51.74 3.16 

PAR (Einstein m-2 day-1) Mean One year 43.42 1.52 

Temperature (°C) Maximum One month 30.75 1.01 

Temperature (°C) Maximum One year 31.36 0.61 

Temperature (°C) Mean Three months 29.44 1.30 

Temperature (°C) Mean One year 27.13 0.61 

Temperature (°C) Minimum One year 21.51 1.70 

Thermal stress Heat stress One month 0.93 2.77 

Thermal stress Heat stress Three months 2.44 5.89 

Thermal stress Cold stress One year 1.99 5.43 

Thermal stress DHW At survey 1.34 1.81 

 

For the disease severity analysis, the same environmental variables were used, but environmental 

predictors (e.g., maximum or mean temperature) were calculated over the year leading up to the 

initial benthic survey and in the two years between survey events. This gave 23 environmental 

predictors, which were tested for collinearity and removed in the same way as described above. 

The removal of collinear predictors gave 14 environmental predictors which were used in 

statistical analysis (Table 2). 
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Table 2. Environmental summary of predictors used in disease severity full random forest model. 

Variable = type of environmental variable, predictor = metric of that variable, time period = 

temporal duration predictor calculated over. e.g., Chlorophyll-a maximum year prior, is the 

maximum Chlorophyll-a concentration within the year prior to the initial benthic survey used to 

count Montastraea cavernosa abundance. PAR maximum during, is the maximum PAR 

measurement in the two years between monitoring surveys. 

Variable Predictor Time period Mean SD 

Chlorophyll-a (mg m-3) Maximum Year prior 8.88 10.95 

PAR (Einstein m-2 day-1) Maximum During 59.09 1.32 

PAR (Einstein m-2 day-1) Mean During 43.52 1.55 

Temperature (°C) Maximum Year prior 31.07 0.9 

Temperature (°C) Maximum During 31.37 0.71 

Temperature (°C) Mean Year prior 26.97 0.94 

Temperature (°C) Mean During 27.07 0.35 

Temperature (°C) Minimum Year prior 21.89 1.93 

Temperature (°C) Minimum During 21.24 1.3 

Thermal stress Heat stress Year prior 4.03 7.41 

Thermal stress Heat stress During 6.68 11.89 

Thermal stress Cold stress Year prior 2.21 6.15 

Thermal stress Cold stress During 4.39 10.36 

Thermal stress Maximum DHW During 1.73 2.15 

 

2.1.3. Statistical analysis 

To assess the relationship between disease susceptibility and disease severity with environmental 

predictors, univariate modelling was conducted in a two-step process in R (R Core Team, 2024). 

First, for each response metric, a random forest regression model was used to identify the most 

important predictors in variation in each response variable. The predictors which accounted for 

75% of the variation in the full random forest model were retained and a backwards stepwise 

regression performed to identify the most important environmental predictors for stage two using 

the R2. Partial regression plots were inspected for any evidence of quadratic relationships. The 

selected predictors were then modelled as either a binomial Generalized Linear Model (GLM), or 

binomial Generalized Linear Mixed Model (GLMM), which incorporated any potentially 

meaningful interactions between predictors.  

Disease susceptibility (n = 939) was modelled as disease prevalence (i.e., the proportion of 

diseased M. cavernosa colonies at the time of sampling) in both the random forest and GLMM. In 

the GLMM, the abundance of M. cavernosa at a site was fitted as weights. Sub-region nested 

within year was fitted as a random effect to account for spatiotemporal variation in disease spread, 

as sites close together were predicted to be more likely to encounter SCTLD at the same time.  

Disease severity (n = 62) was modelled as mortality rate (i.e., the proportion of M. cavernosa 

colonies which died over the two-year peak outbreak period). In the random forest regression 
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model, the response variable was fitted as the relative change in abundance (% yr-1). In the GLM, 

the response variable was fitted as the proportion that died (i.e., change /initial abundance), with 

the weights as the initial M. cavernosa abundance at the site. Model selection was conducted using 

a backwards stepwise approach from the full model, containing all predictors and meaningful 

interactions, by inspecting model summaries and comparing the Akaike Information Criteria 

(AIC).  

Random forest model reliability and goodness of fit were visually assessed by plotting the cross-

validation error rate against the number of trees, the root mean squared error (calculated using the 

out of bag samples) against fitted predictions and fitted model predictions against the observed 

data. The minimum adequate GLM was validated by plotting deviance residuals against fitted 

values, and deviance residuals against each significant variable in the fitted model. The fitted 

GLMM was validated using the package DHARMa with residual diagnostics, including 

overdispersion and heterogeneity, conducted on the fitted model (Hartig 2017). Overdispersion 

was detected in the disease severity GLM, the model refit with a quasibinomial distribution and 

model selection repeated as above. Two outliers were detected and removed. Model validation 

indicated no further problems. The variance inflation factor (VIF) was used to check fitted models 

for multicollinearity. 

 

2.2. Results 

2.2.1. Disease susceptibility 

Disease prevalence was most strongly influenced by the interactions between maximum 

temperature and maximum chlorophyll-a concentration the month prior to the disease survey, and 

between maximum chlorophyll-a concentration and three-month mean PAR prior to the disease 

survey. Disease probability increased with maximum temperature until maximum chlorophyll 

concentration exceeded ~2 mg m-3, with colonies 50-60% more likely to be diseased with each 

unit increase in temperature (Figure 1a). Around the mean regional maximum chlorophyll-a 

concentration (3.8 mg m-3), there was a slight negative relationship between maximum temperature 

and disease prevalence, but this was not significantly different to zero until chlorophyll-a 

concentration exceeded ~6 mg m-3. Then the probability of a colony being diseased declined 

substantially with maximum temperature. Disease probability declined with maximum 

chlorophyll-a concentration when the three-month mean PAR was below or equal to the FCR mean 

(52 einsteins m-2 s-1), but increased with chlorophyll-a concentration if three-month mean PAR 

was greater than the FCR mean (Figure 1b). 
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Figure 1. The greatest amount of variation in disease susceptibility was explained by the interaction 

between a) maximum temperature and maximum chlorophyll-a concentration, then b) maximum 

chlorophyll-a concentration and three-month mean PAR. When the maximum chlorophyll-a 

concentration one month before the survey was below the regional mean, colonies were 50-60% 

more likely to be diseased with each unit increase in maximum temperature. Colonies were ~two 

times less likely to be diseased with each unit increase in maximum temperature when the 

maximum chlorophyll-a concentration was 6 mg m-3. When mean PAR was below or equal to the 

regional mean, colonies were ~two times less likely to be diseased with each unit increase in 

chlorophyll-a, but ~50% more likely to be diseased with each unit increase in chlorophyll-a when 

mean PAR was above the regional mean.  

The probability of a colony being diseased also significantly increased with maximum PAR and 

declined with the mean temperature three months before surveying (GLMM; conditional R2 = 0.7, 

Marginal R2 = 0.1; Table 3). Colonies were 50% more likely to be diseased with every unit increase 

in maximum PAR and two times less likely to be diseased with every unit increase in three-month 

mean temperature. As indicated by the high conditional R2, survey location/time had a very large 

effect on disease prevalence. 

 

Table 3. Significant predictors of disease prevalence (Note: maximum chlorophyll-a concentration 

retained due to presence in interactions) from GLMM. Estimate gives effect size on the logit scale. 

Negative estimate indicates a negative relationship between predictor and disease prevalence. 

Environmental predictor  Estimate  Std. Error  z value  p value 

(Intercept)  -0.57   4.13   -0.14  0.9     

Max temperature             0.44    0.18    2.40   0.02   

Max PAR              0.05    0.02    2.64  0.008  

3-month mean temperature        -0.29    0.14   -2.03  0.04   
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Max Chl-a              0.49    0.54    0.91  0.4     

3-month mean PAR          -0.22    0.05   -4.48  0.000007 

Max temp x Max Chl-a    -0.09    0.02   -3.95  0.00008 

Max Chl-a x 3 month mean PAR          0.04    0.01    4.58  0.000005 

 

2.2.2. Disease severity 

The probability of a colony dying significantly declined with maximum temperature during the 

disease outbreak (GLM; R2 = 0.56), such that for every unit increase in maximum temperature, 

which averaged 31.4 °C (± 0.7 SD), colony mortality was three times less likely (Figure 2). Below 

31.08 °C the fitted GLM predicted there was a greater than 50% chance that an M. cavernosa 

colony would die. No other environmental predictor significantly affected mortality probability 

(Table 4). 

 

Figure 2. Modelled relationship between mortality probability (i.e., disease severity) and the 

maximum temperature in the two years between surveys. R2 = 0.56. Blue line = mean mortality 

probability; grey points = model estimates for individual survey sites. 
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Table 4. GLM summary of relationship between disease severity (modelled as mortality 

probability) and the most important environmental predictors. Only the maximum temperature 

between survey periods significantly influenced mortality probability. 

Environmental 

predictor 

Estimate  Std. Error  t value  p value 

(Intercept)  25.40 3.15 8.08 5.1 e-11 

Max temperature             -0.82 0.10 -8.15 3.9 e-11 
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3. Goal 2: Experimentally validate effect of environmental conditions on disease 

3.1. Methods 

3.1.1. Coral Collection and Husbandry 

Fragments of nine unique genets of Montastraea cavernosa were collected from the NSU Coral 

Reef Restoration, Assessment and Monitoring labs offshore coral nursery and shipped to Texas 

State University in early February 2025. Due to shipping delays, corals arrived in various health 

states and were immediately screened upon arrival for abrasions, lesions, necrosis, and mortality. 

Fragments with mortality greater than 90% were removed from experimental groups. The 

remaining fragments were then tagged based on genotype and placed in recirculating tanks for 

long term husbandry and experimentation. The Fuess Lab aquaria system consists of connected 

(but able to be isolated) ten-gallon tanks which have recirculating artificial sea water (ASW), 

automated lighting, heating, and buffer solution dosing. The system includes multiple biological 

and mechanical filtration steps and UV sterilization for circulating water. Prior to experimentation, 

corals were maintained in this system at conditions recommended by coral aquarists at Nova 

Southeastern University which were based on local reef conditions: 35 ppt salinity, 24°C, 7.2 dKH, 

400 ppm Ca, 1400 ppm Mg, and 0 ppm NH4, NO3, and NO2. Light levels were kept at 

approximately 50 μM/m2s for 11.5 hours daily with a 30-minute ramp up/down period each 

morning and evening to mimic the current sunrise and sunset in Fort Lauderdale, FL. 

Corals were maintained at stable conditions for an acclimatization period of two and a half weeks, 

with additional steps to facilitate recovery from shipping stress. Specifically, for the first week of 

this period, corals were dosed with RESTOR and tanks underwent 50-75% water changes daily. 

This treatment was necessary while corals were recovering from shipping stress. Once corals had 

stabilized (after one week at TXST), corals transitioned to standard care consisting of twice weekly 

feeding with hatched Artemia shrimp followed by 20% water changes. This feeding and water 

change schedule was maintained through the duration of the experiment. Two weeks after arrival, 

corals were slowly acclimatized to average summer temperatures on FCR. This involved a gradual 

temperature increase from temperature at collection, ~24 °C, to a final temperature of 28°C. 

Temperatures were raised 1 degree every two days to achieve this acclimatization. A control 

temperature of 28°C was chosen based on modeling results (Figure 1). A clear shift in the 

relationship between chlorophyll concentration (proxy for nutrient enrichment) and disease 

susceptibility was observed at 30°C. Therefore, we chose control (28°C) and heat stress (32°C) 

temperatures equidistant from that shift point for our experiment so as to capture this shifting 

relationship. 

Two and a half weeks after arrival, corals were fragged using a Gryphon Diamond Band Saw. All 

received frags were cut up into approximately 3 x 3 cm smaller frags and tagged. Enough coral 

frags survived and were able to be split into enough replicates to use seven genotypes for the 

experiment. These frags were then allowed to recover from fragging for another two weeks before 

starting the experiment. A full schedule of major coral husbandry events from colony arrival to the 

end of the experiment is shown in Table 5. 
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Table 5. Full schedule of coral husbandry events from arrival through the curation of the 

experiment. 

Date Event 

Feb 7th  Corals arrived 

Feb 7th RESTOR dosing began 

Feb 8th 50% - 75% water changes began 

Feb 14th 50% - 75% water changes end 

Feb 14th  RESTOR dosing end 

Feb 21st  Temperature ramping to 28 ºC began 

Feb 25th Corals fragged 

Feb 26th  Corals fragged 

Mar 7th  Temperature ramping to 28 ºC end 

March 14th  Experiment start 

March 14th  Heat tank temperature ramping to 32 ºC 

began 

March 17th Heat tank temperature ramping to 32 ºC 

end 

April 15th  Corals injected 

April 16th  Experiment end 

 

3.1.2. Experimental Approach- Environmental Manipulations 

After a total acclimatization period of roughly one-month, experimentation was conducted to 

investigate the impact of temperature and nutrients, the interaction identified as most strongly 

influencing disease susceptibility and the single factor, temperature, which influenced disease 

severity during modelling, on coral immune response. Coral pieces were randomly assigned to one 

of six treatments representing a full factorial combination of the two factors: temperature (ambient 

or heat) and nutrient enrichment (none, mid, high; Table 6). Pieces were then split across six tanks 

representing each of the six treatments; pieces of genets were divided so that two pieces per genet 

were present in each treatment group. Tanks were isolated from the recirculating system for the 

duration of the experiment to prevent cross-contamination of temperature or ammonia treatment. 

Individual heaters were used to raise temperatures in the three heat stress tanks; temperature was 

ramped from 28 °C to 32 °C at a rate of 1 °C per day. Temperature in all tanks was monitored 

throughout the duration of the experiment via HOBO Onset Data Loggers. Figure 3 displays the 

experimental setup. 
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Figure 3. Experiment tank set up showing environmental manipulations. (A) heat only, (B) heat 

and mid nutrients (0.01 mg/L NH4), (C) heat and high nutrients (0.05 mg/L NH4), (D) full control, 

(E) ambient and mid nutrients (0.01 mg/L NH4), (F) ambient and high nutrients (0.05 mg/L NH4). 

(G) Example of tank showing the fourteen frags in each tank, 2 frags from each of the seven 

genotypes. 

Nutrient enrichment was conducted via the addition of ammonia with concentrations selected to 

reflect environmental conditions on FCR (Jones and Gilliam 2024). Ammonia was chosen to 

represent chlorophyll-a as it is the preferred nutrient source for zooxanthellae (Morris et al. 2019), 

the density of which we predicted influenced SCTLD susceptibility. At the start of the experiment, 

nutrient amended tanks were dosed with ammonium chloride (NH4Cl, CAS # 12125-02-9) to reach 

their respective dosage. After initial dosing, levels were measured twice a week in all six tanks 

using a modification of the phenate method (Solorzano 1969). The modification involved using 

sodium citrate (Na3C6H5O7, CAS # 6132-04-3), as a complexing agent to eliminate interference of 

calcium and magnesium (APHA 2023). After testing ammonia concentrations, tanks were dosed 

as needed to maintain the desired concentration. Additionally, when 30% water changes were 

conducted on feeding days, the ASW used to replace the water removed was dosed with NH4Cl to 

match the target concentration for the respective tank (i.e. the mid-nutrient tank was given ASW 

at a concentration of 0.01 mg/L of NH4). Temperature and nutrient enrichment treatments were 

maintained for one month before immune challenge experiments to mimic disease susceptibility 

modelling results (the interaction between maximum temperature and maximum chlorophyll 

concentration in the month before survey). 
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Table 6. List of environmental treatment types including final temperature and ammonia values. 

Each treatment type corresponds to a single experimental tank. Treatments listed were crossed 

with immune challenge treatment (placebo or immune challenge) in a full factorial manner for a 

final total of 12 treatment groups. 

Treatment Temperature  Ammonia 

Ambient, 

None 

28 °C 0 

Ambient, Mid             28 °C 0.01 mg/L 

Ambient, High 28 °C 0.05 mg/L 

Heat, None 32 °C 0 

Heat, Mid 32 °C 0.01 mg/L 

Heat, None 32 °C 0.05 mg/L 

 

3.1.3. Experimental Approach- Immune Challenges 

Following one month of environmental manipulation, we conducted an experimental immune 

challenge to assess the impact of varied environmental conditions on response to pathogenic 

stimuli. Fragments within each treatment tank were randomly assigned to one of two treatments: 

placebo or immune stimuli. Assignments were made to ensure a full factorial combination of 

treatments (temperature x nutrient x immune challenge), with one fragment per genet in each of 

the 12 treatment groups. Each fragment was placed into an aerated, individual 500 mL, autoclaved 

plastic beaker with ~400 mL of 0.2 μm filtered ASW at 35 ppt. For ease of experimentation, 

ammonia treatment was not continued through the immune challenge portion of the experiment. 

Individual beakers were randomly placed into larger aquaria, which served as water baths 

maintaining a temperature of 28 °C or 32 °C (respective of their original treatment) within the 

beakers. Coral fragments were allowed to acclimate in the beakers for two hours and were then 

injected with 500 uL of one of two treatments: heat-killed bacteria, Vibrio coralliilyticus at 1 x 

108 CFU/mL in sterile ASW, or sterile ASW (vehicle control). Injections were split across 5 

locations in the fragment with ~100 uL injected in each location, for a total injection volume of 

500 uL. Corals were then incubated for 12 hours before sampling for immune assays (i.e. flash 

freezing).  

3.1.4. Sample Processing 

To prepare fragments for immune assays, tissue was removed from frozen coral fragments using 

a Paasche airbrush and 100 mM Tris + 0.05mM DTT (pH 7.8) buffer. This tissue slurry was 

homogenized for 1 minute and placed on ice for 7 – 10 minutes. A 1 mL aliquot of tissue slurry 

was taken for melanin analysis, placed into a pre-weighed 1.5 mL tube and flash frozen, then stored 

at -20° C until analysis. The remaining tissue slurry was centrifuged at 3500 rpm for 5 min, after 

which two aliquots of the supernatant (aka protein extract) were transferred into 2 mL tubes and 

flash frozen, then stored at -80 °C until being used in all other protein analyses. 
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Immune assays were conducted in triplicate, including negative controls using the Tris+DTT 

buffer used to homogenize, and were measured on the BioTek Cytation 1 imaging reader, unless 

specified otherwise. Protein concentration was measured for each sample before conducting any 

assays using a Red660 assay. Protein extract (10 uL) was combined with 150 uL of G-Biosciences 

Red660. Sample absorbance was read at 660 nm and compared to a bovine serum albumin (BSA) 

standard curve to determine sample protein concentration. Measurements from subsequent assays 

were all standardized by protein concentrations unless otherwise indicated. 

Antioxidant activity was measured using catalase and peroxidase activity assays following 

established methods (Changsut et al., 2022; Fuess et al., 2016). To measure catalase activity, 5 uL 

of protein extract is combined with 45 uL of 50 mM phosphate-buffered saline pH 7.0 (PBS) and 

75 uL of 25 mM H2O2. Negative controls of Tris+DTT and a set of serial dilution wells using the 

PBS and H2O2 are included as well. Changes in absorbance (catalase activity) are then measured 

every 45 seconds for 15 minutes at the 240 nm wavelength. Catalase activity is then calculated 

using the most linear part of the curve in the first 1-5 minutes of the reaction and standardized 

using the serial dilution curve. To measure peroxidase activity, 10 uL of protein extract is 

combined with 20 uL of 10 mM phosphate-buffered saline pH 6.0 (PBS), 25 uL of 5 mM of 

guaiacol, and 20 uL of 20 mM H2O2. Negative controls of Tris+DTT. Changes in absorbance 

(catalase activity) are then measured every 45 seconds for 15 minutes at the 470 nm wavelength. 

Peroxidase activity is then calculated using the entire curve. 

Total Phenoloxidase Activity (TPO) was measured  following existing protocols (Mydlarz & 

Palmer, 2011) by combining 20 uL of protein extract, 20 uL of 50 mM PBS pH 7.0, 25 uL of 0.1 

mg/mL trypsin, and allowing this mixture to incubate at room temperature for 30 minutes. Then 

30 uL of 10 mM dopamine was added, and changes in absorbance were immediately measured 

every 45 seconds for 15 min. at 490 nm. TPO activity was then calculated using the most linear 

part of the curve in the first 1-5 minutes of the reaction. 

Antibacterial activity (AB) was quantified by measuring bacterial growth doubling time of V. 

coralliilyticus in the presence of host protein extracts (Changsut et al., 2022). Cultures of V. 

coralliilyticus were incubated with host protein extracts diluted to a standard protein concentration. 

Specifically, 60 μL of sample (or buffer control) was added to 140 μL of V. coralliilyticus diluted 

to an OD representative of the start of its bacterial growth curve (approximately 0.2). Absorbance 

at 600 nm was then read every 10 minutes for six hours to create a bacterial growth curve. Bacterial 

growth doubling time was calculated from the logarithmic growth phase. 

 

3.1.5. Statistical Analysis 

Generated immune metric data was analyzed to specifically assess the impacts of temperature and 

nutrient treatment (and the interaction thereof) on baseline immunity and immune response to 

stimuli. Prior to all analyses we used the R package mice to impute one missing catalase value 

using the pmm method with 5 imputed datasets and a maximum of 50 iterations. We began with 

multivariate analyses of the impacts of these three factors (temperature, nutrients, immune 

challenge) on all immunological data combined. Data was normalized and a PERMANOVA 
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analysis was run using the R package vegan with the adonis2 function using the model: immune 

metrics ~ Temperature * Nutrients * Immune Challenge (Martinez Arbizu, 2020; Oksanen et al., 

2025). The random effect of genet was accounted for using the strata parameter, and we specified 

a Euclidean distance approach. Post-hoc pairwise comparisons were conducted for significant 

terms using a custom function with the same parameters as the main model and corrected with a 

Bonferroni correction. To visualize significant effects, we then ran a principal component analysis 

of the data using the base R function prcomp and visualized the results using the R package 

factorextra with the fviz_pca_biplot function (Kassambara & Mundt, 2020). Principal component 

scores for the first and second components were then extracted and statistically analyzed for: 1) 

correlation with immunological metrics (pearson correlation) and 2) association with factors of 

interest from the PERMANOVA (3-way repeated measures ANOVA; rstatix; (Kassambara, 2023). 

Representative scatter and box plots were constructed using ggplot2 (Wickham, 2016). 

Following multivariate analyses, we examined each immune metric independently with univariate 

approaches, specifically a 3-way repeated measures ANOVA in the rstatix package. We 

incorporated fixed factors of interest: temperature, nutrients, immune challenge, and accounted for 

repeated sampling at the level of host genotype. Data was checked against appropriate statistical 

assumptions (normality, no outliers, etc.) prior to analyses and transformed when necessary. Post-

hoc analyses were conducted using pairwise T-tests with Bonferroni corrections. Representative 

box plots were constructed using ggplot2 (Wickham, 2016). 

3.2.Results 

3.2.1. Multivariate Analyses 

PERMANOVA analysis revealed strong impacts of temperature, nutrients, and their interaction 

on combined immune metric data, but no impact of immune challenge (Table 7). Only 33% of the 

variance was explained by a factor or interaction of interest (residual R2 = 0.77). Temperature 

accounted for nearly 10% of the variance in immune metrics (R2 = 0.0957, p = 0.001), whereas 

nutrients accounted for only about 5% of the variance (R2 = 0.0473, p = 0.009). Finally, the 

combined impact of nutrients and temperature accounted for an additional 3.6% of the variance 

(R2 = 0. 0.0365, p = 0.036). Pairwise analyses indicated significant differences between the high 

and mid nutrient groups only (padj = 0.021). Additionally, the Ambient+Mid treatment group was 

significantly different from all Heat treatment groups regardless of nutrient treatment (Table 8). 

Furthermore, Heat+Mid was significantly different from Ambient+None, and Heat+High (Table 

8). 

Table 7. PERMANOVA results for combined immunological metrics. Df= degrees of freedom. 

R2 value gives an estimate of the amount of variance explained by a given factor. Bold font 

indicates significant p values (i.e. Pr(>F)). 

Factor Df   Sum of 

Squares 

R2 F Pr(>F) 

Temperature  1   31.8 0.0957 8.94 0.001*** 

Nutrients             2    15.7 0.0473 2.17 0.010** 
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Infection 1 3.10 0.00943 0.873 0.377 

Temp*Nutrients 2 12.11 0.0365 1.70 0.045* 

Temp*Infection 1 1.71 0.00515 0.482 0.653 

Nutrients*Immune Challenge 2 10.56 0.0315 1.47 0.090 

Temp*Nutrients*Immune 

Challenge 

2 1.41 0.00424 0.198 0.979 

Residual 72 256 0.770   

Total 83 332 1.00   

 

Principal component analyses demonstrated clear clustering as a result of temperature and 

nutrients, and some differentiation as a result of their combination (Figure 4). Principal 

components 1 and 2 explained a combined 65.4% of the variance in the data, 39.3% and 26.2% 

respectively. PC1 explained significant variance as a result of temperature treatment (Table 9; 

Figure 5a), while PC2 explained significant variance as a result of nutrient treatment and the 

interaction of nutrient treatments and immune challenge (Table 10, Figure 5b). Post-hoc analysis 

revealed that PC2 significantly reduced in response to immune challenge only in the absence of 

nutrient enrichment (padj=0.009).  PC1 was significantly associated with all four immune metrics: 

negatively with catalase and positively with peroxidase, total phenoloxidase, and antibacterial 

activity (Figure 6). PC2 was significantly positively associated with catalase and total 

phenoloxidase only (Figure 7).
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Figure 4. Biplot representation of PCA analysis of combined immune metric data. Plots are split based on groupings as follows: a) 

temperature treatment, b) nutrient treatment, c) temperature and nutrient combined grouping. In each case points represent individual 

sample points and are colored according to treatment group. Arrows eigenvector loadings of individual immune metrics, indicating 

direction in PC space and magnitude (i.e. length of line). Ellipses are drawn based on treatment groupings with 95% confidence 

intervals. PCA was visualized using the R package factoextra with the fviz_pca_biplot function. 
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Table 8. Pairwise PERMANOVA results for comparison of combined temperature and nutrient 

treatment groups. Reported are Bonferroni adjusted p values. 

 Ambient, 

None   

Ambient, 

Mid 

Ambient, 

High 

Heat, 

None 

Heat, Mid 

Ambient, Mid 1.0     

Ambient, 

High 

1.0 1.0    

Heat, None 0.333 0.045* 0.36   

Heat, Mid 0.030* 0.030* 0.06 1.0  

Heat, High 1.0 0.045* 0.90 1.0 0.015* 

 

Table 9. 3-way repeated measures ANOVA results investigating variance in PC1 as a result of 

temperature, nutrients, immune challenge and their interactions. Df= degrees of freedom. The 

ges value represents effect size of the factor of interest. Bold font indicates significant p values. 

Effect DFn  DFd F p ges 

Temperature  1   6 20.2 0.004*

* 

0.232 

Nutrients             2    12 0.825 0.462 0.019 

Infection 1 6 0.161 0.702 0.001 

Temp*Nutrients 2 12 2.96 0.090 0.043 

Temp*Infection 1 6 0.170 0.694 0.0008 

Nutrients*Immune Challenge 2 12 0.883 0.439 0.013 

Temp*Nutrients*Immune 

Challenge 

2 12 0.357 0.707 0.005 

 

Table 10. 3-way repeated measures ANOVA results investigating variance in PC2 as a result of 

temperature, nutrients, immune challenge and their interactions. Df= degrees of freedom. The 

ges value represents effect size of the factor of interest. Bold font indicates significant p values. 

Effect DFn  DFd F p ges 

Temperature  1   6 1.07 0.341 0.017 

Nutrients             2    12 6.29 0.014* 0.163 

Infection 1 6 0.668 0.445 0.009 

Temp*Nutrients 2 12 1.60 0.243 0.073 

Temp*Infection 1 6 0.263 0.626 0.002 

Nutrients*Immune Challenge 2 12 4.66 0.032*

* 

0.063 

Temp*Nutrients*Immune 

Challenge 

2 12 0.406 0.675 0.005 
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Figure 5. Box and whisker representing statistically significant variance of a) PC1 and b) PC2. 

Asterix indicates significantly different groups. Boxes are colored by treatment group 

(temperature or immune challenge). 
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Figure 6. Correlation plot of the association of immune metrics with PC1 values: a) catalase 

activity, b) peroxidase activity, c) total phenoloxidase activity, d) antibacterial activity. For all 

graphs the normalized values used for PERMANOVA and principal component analyses are 

plotted. Points represent individual datum colored by temperature treatment and shaped by 

nutrients. Linear regression and 95% confidence intervals are plotted for each. 
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Figure 7. Correlation plot of the association of immune metrics with PC1 values: a) catalase 

activity, b) peroxidase activity, c) total phenoloxidase activity, d) antibacterial activity. For all 

graphs the normalized values used for PERMANOVA and principal component analyses are 

plotted. Points represent individual datum colored by temperature treatment and shaped by 

nutrients. Linear regression and 95% confidence intervals are plotted for each. 

3.2.2. Univariate Analyses 

Univariate analysis of individual immune metrics again revealed strong effects of both temperature 

and nutrient treatment, and some response to immune challenge. All immune metrics except for 
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catalase were significantly suppressed as a result of temperature treatment (Table 11, Figure 8b-

d); catalase varied significantly as a result of nutrient treatment and the interaction of nutrients and 

immune challenge (Table 11, Figure 8a). Corals receiving mid nutrient treatments had significantly 

higher catalase activity after immune challenge than those high conditions regardless of immune 

challenge (Table 12, Figure 8a). 

Table 11. 3-way repeated measures ANOVA results investigating variance in each immune metric 

individually as a result of temperature, nutrients, immune challenge and their interactions. Df= 

degrees of freedom. The ges value represents effect size of the factor of interest. Bold font indicates 

significant p values. 

Catalase 

Effect DFn DFd F p value ges 

Temperature 1 6 0.780 0.411 0.010 

Nutrients 2 12 9.165 0.004** 0.109 

Infection 1 6 0.062 0.811 

0.0006

4 

Temperature:Nutrients 2 12 0.122 0.886 0.0030 

Temperature:Infection 1 6 1.559 0.258 0.016 

Nutrients:Infection 2 12 6.251 0.014* 0.113 

Temperature:Nutrients:Infecti

on 2 12 2.316 0.141 0.045 

Peroxidase 

Effect DFn DFd F p value ges 

Temperature 1 6 46.5 

p<0.001*

* 0.262 

Nutrients 2 12 0.524 0.605 0.011 

Infection 1 6 2.13 0.195 0.015 

Temperature:Nutrients 2 12 1.60 0.243 0.055 

Temperature:Infection 1 6 0.060 0.815 

0.0005

7 

Nutrients:Infection 2 12 01.09 0.368 0.013 

Temperature:Nutrients:Infecti

on 2 12 0.538 0.598 0.011 

Total Phenoloxidase 

Effect DFn DFd F p value ges 

Temperature 1 6 5.67 0.055 0.053 

Nutrients 2 12 2.20 0.154 0.044 

Infection 1 6 0.528 0.495 0.005 

Temperature:Nutrients 2 12 0.406 0.675 0.020 

Temperature:Infection 1 6 0.266 0.625 

0.0007

2 

Nutrients:Infection 2 12 2.21 0.152 0.021 
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Temperature:Nutrients:Infecti

on 2 12 0.187 0.717 0.003 

Antibacterial Activity 

Effect DFn DFd F p value ges 

Temperature 1 6 8.29 0.035 0.100 

Nutrients 2 12 0.648 0.544 0.017 

Infection 1 6 2.286 0.191 0.077 

Temperature:Nutrients 2 12 1.20 0.341 0.027 

Temperature:Infection 1 6 1.08 0.346 0.004 

Nutrients:Infection 2 12 0.186 0.833 0.003 

Temperature:Nutrients:Infecti

on 2 12 0.370 0.700 0.007 
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Figure 8. Box and whisker representing statistically significant variance in individual immune 

metrices a) catalase activity, b) peroxidase activity, c) total phenol oxidase activity, d) antibacterial 

activity. Letters indicate significant groups determined by post-hoc pairwise t-tests. Asterix 

indicates significantly different groups as indicated by the full 3-way repeated measures ANOVA 

model. Boxes are colored by treatment group (temperature or immune challenge). 
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Table 12. Results of post-hoc pairwise t-tests comparing groups of interactions between nutrient 

enrichment and immune challenge. Bold font indicates significant p values. 

Comparison stat  df p padj 

High-Bacteria vs. High Control -1.85 13 0.087 0.78 

High-Bacteria vs. Mid-Bacteria   -6.37 13 <0.001 <0.001*** 

High-Bacteria vs. Mid-Control -1.33 13 0.208 0.98 

High-Bacteria vs. None-Bacteria -1.60 13 0.135 0.861 

High-Bacteria vs. None-Control -3.32 13 0.006 0.073 

High-Control vs. Mid-Bacteria -4.15 13 0.001 0.016* 

High-Control vs. Mid-Control -0.412 13 0.687 1.0 

High-Control vs. None-Bacterial -0.119 13 0.907 1.0 

High-Control vs. None-Control -1.92 13 0.077 0.769 

Mid-Bacteria vs. Mid-Control 2.09 13 0.057 0.63 

Mid-Bacteria vs. None-Bacteria 3.01 13 0.01 0.12 

Mid-Bacteria vs. None-Control 1.65 13 0.123 0.861 

Mid-Control vs. None-Bacteria 0.269 13 0.792 1.0 

Mid-Control vs. None-Control -1.36 13 0.196 0.98 

None-Bacteria vs. Non-Control -1.81 13 0.093 0.78 
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4. Goal 3: Model disease probability and identify resistant locations 

4.1.Methods 

The environmental parameters identified as significantly affecting disease susceptibility in goal 1 

were recalculated with the most recent available environmental data to predict spatial variation in 

disease susceptibility across FCR. Monthly chlorophyll-a concentrations and PAR were extracted 

from NASA’s Modis aqua satellite from 2021 to 2024. The maximum chlorophyll-a concentration 

and maximum PAR were calculated as the mean of the maximum annual values at each satellite 

location. The three-month mean PAR was calculated as the mean annual PAR value at each 

satellite location. Maximum and three-month mean temperatures were calculated using in situ data 

from 2021 to 2022 at CREMP/SECREMP sites as in goal 1, as data was only available in the 

Florida Keys until mid-2023. The maximum temperature was calculated as the mean of the annual 

maximum at each site and the three-month mean as the mean temperature in the summer months 

(July, August and September). The environmental regime was then calculated at each DRM site 

surveyed throughout FCR in 2023 (n = 423) using a spatial join between the closest one to three 

satellite or CREMP/SECREMP sites, depending on distance between sites, as in goal 1. This 

current environmental regime was used in the fitted disease susceptibility GLMM, with M. 

cavernosa abundance at the DRM site used as the weights. No random effect structure was 

incorporated to give equal chance of disease prevalence across FCR. Inverse distance weighted 

interpolation was used to model disease probability across Florida in QGIS at 0.05° resolution with 

a distance coefficient, which controls the spatial rate of decay, of 10.  

The environmental variables used in goal 2, ammonia and temperature, were also mapped across 

FCR. Mean annual maximum ammonia concentration was calculated using data collected as part 

of the Southeast Florida Reef Tract Water Quality Assessment Project and in the Florida Keys by 

the Southeast Environmental Research Center, where measurements encompass NH3 and free 

NH4
+ ions. In the Coral AP, maximum ammonia concentration was calculated as the mean of the 

annual maximum from 2021 to 2024 from bottom samples collected at reef sites. In the Florida 

Keys, maximum ammonia was calculated as the mean of the annual maximum from 2021 to 2022. 

Maximum temperature was calculated as above at each CREMP/SECREMP site. Maximum 

ammonia concentrations and temperatures were interpolated across Florida with the same method 

as for disease probability.    

 

4.2. Results 

Predicted disease probability varied widely across FCR (Figure 8), but was generally higher in the 

Coral AP than the Florida Keys. The maximum disease probability was 0.31 offshore Port 

Everglades and was consistently above 0.1 (i.e., 10% of a disease outbreak) offshore northern Palm 

Beach and Martin counties. Disease probability was substantially lower (0.001) off the Broward-

Miami border. In the Florida Keys, areas with low disease probability (< 0.01) were identified on 

the southern half of Key Largo and Tavernier in the upper keys, between northern Marathon and 

Layton in the middle keys, and offshore Lower Sugarloaf and Boca Chica Keys in the lower leys. 
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Increased disease probability (> 0.1) was predicted off northern Key Largo, off Lower Matecumbe 

Key and Long Key on the upper/middle keys border and in the channel off 7-mile bridge. Disease 

probability was substantially higher in the southwest of the Dry Tortugas National Park than in the 

northeast, although it did not exceed 0.1.   

 

Figure 8. Predicted SCTLD probability calculated from refitted GLMM of disease susceptibility 

with current environmental regime at DRM sites and IDW interpolation across Florida at 0.05°. 

The darker the green, the greater the probability of disease, with a maximum disease probability 

of 0.31 offshore Port Everglades. Inset: Florida peninsula. 

The mean maximum annual ammonia concentration was 0.016 mg/l across FCR and ranged two 

orders of magnitude from 0.06 mg/l off Boynton Beach to 0.0006 mg/l off Turtle reef in the upper 

keys. Ammonia concentration was consistently higher in the Coral AP than in the Florida Keys 

(Figure 9). Ammonia concentrations found to suppress immune response (≥ 0.05 mg/l) were found 

at reef water quality monitoring sites near Jupiter, Boynton Beach and Boca inlets and near 

Government Cut.  
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Figure 9. Maximum annual ammonia concentration across the FCR. Concentrations were 

measured from bottom samples as part of the Southeast Florida Reef Tract Water Quality 

Assessment Project in the Coral AP and in the Florida Keys by the Southeast Environmental 

Research Center. Inverse distance weighted interpolation was conducted to map ammonia 

concentrations across Florida at 0.05°. Inset: Florida peninsula. Note, in situ water quality data not 

available for the Dry Tortugas. 

 

Mean annual ammonia concentrations across FCR were 0.006 mg/l and like maximum annual 

ammonia concentration, varied widely. Mean annual ammonia concentrations were nearly an order 

of magnitude higher in the Coral AP than in the Florida Keys, where they were below detectable 

limits in many locations. Conversely, at 40 of the 53 reef sites monitored within the Coral AP, 

mean ammonia concentrations were ≥ 0.01 mg/l in (Figure 10), the concentration found to elicit 

increased catalase activity when immune challenged.   
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Figure 10. Mean annual ammonia concentration across the FCR. Concentrations were measured 

from bottom samples as part of the Southeast Florida Reef Tract Water Quality Assessment Project 

in the Coral AP and in the Florida Keys by the Southeast Environmental Research Center. Inverse 

distance weighted interpolation was conducted to map ammonia concentrations across Florida at 

0.05°. Inset: Florida peninsula. Note, in situ water quality data not available for the Dry Tortugas. 

In contrast to ammonia concentration, maximum temperatures were, unsurprisingly, higher 

throughout the Florida Keys than in the Coral AP. They were also noticeably cooler in the Dry 

Tortugas (Figure 11). The mean maximum annual temperature was 33.1 °C off Dove Key, a 

shallow hardbottom area off Key Largo. Exceptionally warm maximum temperatures (above 32.5 

°C) were also measured at other shallow, inshore sites, El Radabob and Rattlesnake in the upper 

keys, Long Key and Moser Channel in the middle keys and Jaap Reef in the lower keys. Maximum 

temperatures at all sites exceeded 30.5 °C, the temperature frequently used as the coral bleaching 

threshold on FCR. Many SECREMP sites in the Coral AP and at Black Coral Rock, a deep 

pinnacle reef in the Dry Tortugas did not however, exceed 31 °C.   



 33 C40115

  June 2025 
 

 

Figure 11. Mean maximum annual temperature from 2021 to 2022 measured from in situ loggers 

at CREMP/SECREMP sites throughout FCR. Inverse distance weighted interpolation was 

conducted to map maximum temperature across Florida at 0.05°. Inset: Florida peninsula. 
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5. Discussion and management recommendations 

Statistical modelling found that environmental conditions significantly influenced Montastraea 

cavernosa’s susceptibility to stony coral tissue loss disease and the severity of disease. Disease 

susceptibility was significantly influenced by temperature, light and chlorophyll-a concentration 

(nutrient proxy). Disease probability increased with the maximum temperature pre-survey when 

chlorophyll-a concentration was low, but was highest when chlorophyll-a concentration was high 

and the maximum temperature was lower (particularly below 28 °C). Disease susceptibility also 

increased with chlorophyll-a concentration when PAR was high, or when both chlorophyll-a and 

PAR were low, suggesting that the combined effect of high nutrients and light, or low nutrients 

and light increased disease susceptibility. Disease severity was only affected by the maximum 

temperature between surveys, with less than 50% chance a colony would die when temperatures 

exceeded the bleaching threshold. These findings support previous findings that suggest SCTLD 

initially affects Symbiodiniaceae before causing tissue loss in the coral host (Landsberg et al. 

2020). While we used a proxy for nutrients (chlorophyll-a concentration), modelling results 

suggest disease susceptibility was highest under environmental conditions which would likely 

increase zooxanthellae production, i.e., high nutrients/chlorophyll-a and high light or high 

nutrients/chlorophyll-a and warm temperatures, but below the bleaching threshold. Further, that 

only maximum temperature affected disease severity suggests that once a colony becomes 

diseased, the probability of it surviving increased if temperatures exceeded the bleaching 

threshold. 

Laboratory experimentation revealed significant effects of both temperature and nutrient stress, 

though no strong interactions between the two. Generally speaking, ecologically relevant high 

temperatures (32 °C) induced constitutive suppression of three prominent immunological metrics: 

peroxidase, antibacterial activity, and total phenoloxidase production. Furthermore, moderate 

levels of nutrients (0.01 mg/l ammonia) fundamentally changed the response of corals to pathogen 

stimuli. Under intermediate levels of nutrient enrichment, corals induced higher catalase activity 

in response to pathogen stimuli, whereas without nutrient enrichment (and marginally at high 

nutrient levels) levels of catalase and total phenoloxidase production decreased following pathogen 

stimulation. These preliminary results suggest optimal immune responses at moderate nutrient 

levels. 

Our results suggest that temperature played the primary role in SCTLD susceptibility and severity 

and that it strongly influences immune response. Lab results found multiple immune metrics were 

suppressed at high temperatures, while enhanced catalase activity suggests stress within the coral 

host, suggesting further disease outbreaks are likely as ocean temperatures increase. While this 

appears to counter modelling results, it follows the same trend as the disease susceptibility model 

suggests under low nutrient/chlorophyll-a conditions. It is plausible that the difference is because 

SCTLD appears to affect the symbionts initially, but this is impossible to investigate without a 

known pathogen. Our results also suggest that generally under moderate ammonia concentration 

(0.01 mg/l) the coral host has enhanced immune response, until ammonia concentrations are very 

high (0.05 mg/l). Spatial analysis identified multiple locations that have enhanced and reduced 

disease susceptibility, which should be taken into account when choosing outplanting locations for 
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M. cavernosa. Spatial analysis also identified multiple locations, primarily near inlets in the Coral 

AP, where experimental nutrient enrichment conditions suggest immune response is suppressed. 

Reducing excess ammonia in these locations could therefore improve coral immunity and reduce 

the likelihood of another major disease outbreak. 
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