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Management Summary 

The rapid spread of SCTLD throughout Florida’s Coral Reef has hampered efforts to identify the 

causative pathogen, due in part to the difficulty of finding disease-susceptible corals with no prior disease 

exposure. This project leveraged integrative multi-omic and histological analyses to characterize SCTLD 

pathogenesis and coral immunity in four species of coral collected from Dry Tortugas National Park before 

and after the arrival of SCTLD. Analyses of bacterial communities uncovered taxa previously believed to 

be indicators of SCTLD in apparently healthy samples collected from nearby diseased colonies, suggesting 

that site-wide coral communities are likely impacted by disease presence and affirming our previous 

conclusion that many apparently healthy samples in existing datasets do not represent truly naive colonies. 

Our investigation of coral virome dynamics continues to support a community-wide contribution to SCTLD 

etiology, marked by increased activity of core viral groups (those consistently present in healthy corals) in 

diseased tissues. While sequencing approaches revealed these shifts, preliminary transmission electron 

microscopy analysis did not show consistent patterns in virus-like particle abundance that could support 

pathogen identification or SCTLD diagnosis. Continued research on coral viruses on Florida reefs is critical 

to establish baseline knowledge, improve diagnostic power, and strengthen response efforts for SCTLD and 

future coral disease outbreaks. Our histological data integration is an important first step towards improved 

methods for coral diagnostics and disease identification. When considering transcriptomic data, our 

inability to identify species independent markers of disease resistance highlights the need for improved 

genomic resources for species of interest. Still, we demonstrate that early response to SCTLD is highly 

consistent across species and involves several arms of immunity, suggesting that the lack of ability to 

sustain this response may be a more direct cause of mortality. Intervention to prolong coral immune 

responses may benefit reefs. 
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Executive Summary 

The rapid spread of SCTLD throughout Florida’s Coral Reef has had devastating impacts on these 

essential coastal ecosystems. This rapid spread has hampered efforts to study many aspects of disease 

biology, including investigation of causative agents and factors which contribute to hos 

t resilience. Characterization of these traits is essential to creation of improve management 

strategies for Florida’s Coral Reefs, but depends on availability of samples from disease-susceptible corals 

with no prior disease exposure. This project leveraged unique samples from Dry Tortugas National Park 

(DRTO) samples before and during SCTLD arrival to investigate numerous aspects of SCTLD biology. By 

combining integrative ‘omic and histological analyses of corals sampled through time we provide novel 

insight regarding the patterns underlying SCTLD outbreaks across multiple species of corals.  

Assessment of bacterial community function has revealed clear patterns of host and microbial 

responses associated with transitions from a healthy to diseased state. Key bacterial taxa associated with 

SCTLD, such as Halarcobacter and Desulfocella, were predictive of disease state and led to observed 

enrichment in genes associated with anaerobic and sulfur-related metabolism. Analyses of raw 

metagenomic reads, more so than complete genome assembly, have allowed for more complete functional 

profiling of the bacterial community while expanding our analyses past dominant microbial members. 

Bacterial functional groups were correlated with conserved host genes, which identified highly connected 

modules, particularly linking host genes for DNA repair and apoptosis with microbial anaerobic respiration 

and toxic metabolite production. These findings support a model in which disease progression is driven by 

a host-microbe feedback loop that impairs healing and accelerates tissue degradation. 

Virus community analyses provided further evidence of increased activity among diverse core viral 

lineages (those consistently present in healthy corals) within diseased tissues, suggesting a cumulative viral 

contribution to SCTLD etiology rather than the involvement of a single novel viral pathogen. These patterns 

are consistent with upregulated antiviral responses observed in host gene expression data. However, no 

consistent patterns in virus-like particle abundance were observed in transmission electron microscopy 

(TEM) images from either in situ (this project) or ex situ (C21169; PI Ushijima) diseased tissue samples. 

Establishing core virome members for coral species inhabiting Florida’s reefs, as done here, improves our 

ability to identify potential pathogens by helping distinguish novel invaders from active members of the 

resident viral community. Despite this progress, our ability to investigate coral virus communities remains 

limited by the lack of baseline data from non-diseased conditions.  

Histological data generated herein has been combined with a larger set of disease histology in an 

important first step towards generation of improved methods for coral diagnostics from histological 

samples. This integration will allow for improved methods for diagnosing coral diseases and assessing 

health via histology in a variety of settings, including nurseries and protected areas. 

Analysis of transcriptomic data failed to identify species-independent markers of disease resistance, 

but did find several species-independent markers of response, particularly at early stage of disease. These 

included orthologs related to immune recognition, reactive oxygen processing, inflammation, and antiviral 

processes. Additionally, integration of ortholog data with microbial and viral community data demonstrated 

strong impacts of proposed host and Symbiodinanceae symbiotic microbes on host gene expression and 

immunity, regardless of host species. 

This project also included tasks associated with other FDEP projects, including a related laboratory 

disease challenge experiment with a time series aspect (C21169; PI- Ushijima). Immunological analysis of 

samples collected from that project did not find any differences in immune response between control and 

exposed colonies of Montastraea cavernosa. Immune activity did significantly change over time, likely as 

a result of experimental stress (lack of feeding, water changes, etc.), which may have dampened our ability 

to detect experimental effects. 
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1. BACKGROUND 

1.1.  Introduction 

Florida’s Coral Reef is currently experiencing a multi-year disease-related mortality event that has 

resulted in massive die-offs in multiple coral species. This die-off event has been attributed to the spread 

of a novel coral disease, stony coral tissue loss disease (SCTLD). Approximately 21 species of coral, 

including both Endangered Species Act-listed and primary reef-building species, have displayed tissue 

loss lesions which often result in whole colony mortality. First observed near Virginia Key in late 2014, 

the disease has since spread to the northernmost extent of Florida’s Coral Reef, and southwest past the 

Marquesas in the Lower Florida Keys. The best available information indicates that the disease 

outbreak is continuing to spread west and throughout the Caribbean. 

The rapid spread of SCTLD throughout Florida’s Coral Reef has hampered efforts to identify the 

causative pathogen, due in part to the difficulty of finding disease-susceptible corals with no prior 

disease exposure. Comparative assessments of pathogen abundances in “healthy” vs diseased corals 

may be confounded by the presence of latent, asymptomatic infection in healthy controls. Many 

bacterial taxa found in diseased corals (incl. Rhizobiales and Rhodobacterales) have also been identified 

in considerable abundance in apparently healthy conspecifics. Temporal analyses of colonies from pre-

exposure to necrosis may help reduce background variation of coral-associated bacterial and viral 

communities and in coral immune function. Repeated sampling of colonies previously naïve to SCTLD 

not only provides a better baseline to assess microbiome composition of healthy corals, but also 

eliminates the potential for inter-colony variation in microbial composition that may have inhibited 

prior discovery of the causative agent. Furthermore, temporal approaches allow for improved 

investigation of mechanisms of coral response to SCTLD, including those which may confer disease 

resistance. 

 

1.2.  Project Goals and Tasks 

This project leveraged integrative multi-omic and histological analyses to characterize samples of 

four species of coral collected from Dry Tortugas National Park before and after the arrival of SCTLD. 

This included samples of SCTLD-naïve, SCTLD-exposed but apparently healthy, and diseased coral 

health states. This integrative approach will provide insight regarding the etiological agent of SCTLD, 

and help identify important mechanisms of coral response and resilience to SCTLD. The outcomes of 

this project will be incorporated into an on-going coral disease response effort for Florida’s Coral Reef. 

 

2. METHODS 

2.1.  Metagenomic Analyses 

2.1.1. Taxonomic identification and diversity measures of additional bacterial and archaeal taxa  

Analyses in this funding year focused on the characterization of additional micro-eukaryotes and 

bacteria from previously sequenced samples and synergistic analyses between metagenomic and 

metatranscriptomic data. PhyloFlash 3.4 (Gruber-Vodicka et al., 2020) was used to map SSU rRNA 

sequences from metagenomic data against the SILVA SSU database. Alpha and beta diversity analyses 

were performed on count tables and taxa assignments generated by phyloFlash. Data were aggregated 

to the lowest possible taxonomic assignments and were normalized by read count across samples 

(rarefied). Differences observed in Shannon–Wiener diversity index between disease classes and 

species were tested with the Kruskall-Wallis rank sum test and the Pairwise Wilcoxon Rank Sum Test 

with FDR multiple test correction was used for pairwise analyses. Due to the presence of numerous 

high diversity samples, centered log-ratio (CLR) transformation performed to capture ratio 

relationships between taxa using the tool clr from the microbiome package. Beta diversity analyses 

were performed on the unrarefied raw counts table produced by phyloFlash. Principal components 

analysis (PCA) was performed using Euclidean distances calculated from the CLR-transformed dataset 

(producing Aitchison distance) with the phyloseq command ordinate (as RDA without constraints). 

Permutational Multivariate Analysis of Variance (PERMANOVA) was performed on Euclidean 
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distances to test for differences in beta diversity of bacterial community compositions among groups. 

PERMANOVA was performed using the function adonis from the package vegan (v2.5.579; Oksanen 

et al., 2025) and was followed by pairwise analysis of variance with pairwiseAdonis (v0.0180; Martinez 

Arbizu, 2020) using Euclidean distance and 999 permutations.  

To identify microbial taxa predictive of coral disease states, we conducted a Random Forest 

classification analysis using taxonomic and abundance output from phyloFlash. Data were aggregated 

to the genus level unless taxonomic annotation was not available, in which case a higher taxonomic 

level was used. Samples were grouped into four disease classes: Disease Lesion, Diseased Unaffected 

(healthy tissue from diseased colonies, Apparently Healthy, and Naive. The Random Forest model was 

trained to classify samples into these categories based on microbial community composition. We used 

the randomForest package in R, setting the number of trees (ntree) to 1000 and allowing the model to 

determine the optimal number of variables tried at each split (mtry). Out-of-bag (OOB) error rates were 

calculated to estimate model accuracy, both overall and class-specific. Feature importance was assessed 

using two metrics: Mean Decrease in Accuracy (MDA), which reflects the loss in classification 

accuracy when a feature is removed, and Mean Decrease in Gini (MDG), which measures how much a 

feature contributes to reducing impurity at decision nodes. To visualize important predictors, we plotted 

taxa with the highest MDA and MDG values, both across all disease classes and within individual class 

comparisons. Model reproducibility was monitored by examining variability in results across multiple 

model runs. All data preprocessing and visualization were performed in R using ggplot2 and related 

tidyverse packages. 

 

2.1.2. Assessment of microbial functional activity 

        Characterization of microbial functional activity was performed using HUMAnN3 (v3.8; Beghini 

et al., 2021) to profile genes, pathways, and modules from initial assemblies. Reads were annotated via 

MetaPhlAn4 (v 4.1.1; Blanco-Miguez et al., 2023) by aligning to both the ChocoPhlAn DNA database 

and the UniRef50 protein database. Outputs of this analysis included gene family abundance files (the 

presence of groups of evolutionarily-related protein coding sequences) and pathway abundance files (a 

measure of pathway completion of a function of abundance of the pathway’s component reactions). 

Pathway abundance tables were then joined into a single file using humann_join_tables and 

renormalized to copies per million (CPM) using humann_renorm_table. Pathways from HUMAnN3, 

counts, and sample metadata were normalized as relative abundance, imported into RStudio 

(v.2022.12.0+353) with R (v.4.2.2), and plotted using ggplot2.  

 

2.1.3. Integrative analyses of metagenomic data with transcriptomic data 

        To explore relationships between host functional activity and microbial metabolic potential, we 

began with normalized read counts of Single Copy Orthologs (SCOs, as identified by OrthoFinder, see 

methods in section 2.4 below) per sample and relative abundances of microbial metabolic pathways (as 

identified by HUMAnN3) per sample. 7,462 SCOs and 468 microbial pathways conserved across all 

species and sample types were identified. To investigate the functional relationships between host 

Single Copy Orthologs (SCOs) and microbial metabolic pathways, correlation analysis and network 

analysis were performed separately on each disease class. Apparently Healthy and Diseased Unaffected 

samples were grouped together based on their similarity in other analyses. Before splitting data by class, 

SCOs that tended to occur together (r > 0.9) and pathways that occurred together (r > 0.9) were clustered 

to reduce dimensionality using a Spearman correlation analysis on normalized SCO counts and relative 

abundances of microbial pathways. Hierarchical clustering (average linkage) was then applied to the 

absolute correlation distance matrix (1 – r) to group highly positively co-occurring terms into clusters, 

using a fixed height threshold (h = 0.1, corresponding to r > 0.9) to define clusters. A second Spearman 

correlation analysis was then performed on the clusters of SCOs/pathways on data divided by disease 

class, including correlations between pathways and SCOs that were both positive (when abundance of 

X pathway increased, abundance of Y SCO increased) and negative (when abundance of X pathway 
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increased, abundance of Y SCO decreased, or vice versa). Resulting p-values were adjusted for multiple 

testing using the False Discovery Rate (FDR) method to control for type I error due to the large number 

of comparisons. Correlations exceeding the threshold |r| > 0.9) were visualized as a bipartite network 

using the igraph and ggraph packages in R. The network layout was generated using the Fruchterman-

Reingold ("fr") force-directed algorithm, which simulates attractive forces between connected nodes 

and repulsive forces between all nodes to produce an interpretable spatial arrangement. This 

visualization approach emphasizes network topology, highlighting hubs (nodes with high degree) and 

bottlenecks (nodes with high betweenness centrality) that may play key roles in mediating functional 

interactions within the disease-associated microbiome. 

 

2.2.  Viral Community Analyses 

       Virus community analyses were performed on previously quality-controlled DNA and RNA 

sequencing reads (see Sections 2.1 and 2.3). To reduce the computational burden of downstream 

analyses, all cleaned libraries were normalized prior to full pipeline processing using the program 

bbnorm.sh from the BBMap toolkit (Bushnell). The assembly, detection, and taxonomic classification 

of viral sequences are inherently challenging, particularly in non-model systems such as coral reefs and 

coral tissues, where the diversity of viruses across most coral species and regions remains largely 

unknown. In phase II, we built on phase I efforts to address these challenges by leveraging multiple 

programs at each pipeline stage (i.e., assembly, detection, classification) and by developing new 

bioinformatic tools to support future coral reef virus studies in Florida and beyond. 

 

2.2.1. Processing of sequencing data for virus sequence detection 

Accurate and meaningful results that allow us to understand the roles of viruses in SCTLD rely on 

high-quality sequence assembly. Starting with RNA sequencing data, the objective was to generate 

high-quality RNA/DNA viral transcript sequences and RNA virus genomes. To achieve this, we applied 

several sequence assembly algorithms, leveraging their respective strengths to produce multiple 

assemblies per library, thereby increasing the likelihood and quality of virus sequence assembly and 

subsequent recovery and classification. All normalized individual sequencing libraries were first 

assembled with three different SPAdes (v3.15.5; Nurk et al., 2017) algorithms which included 

metaSPAdes (--meta), rnaSPAdes (--rna), and rnaviralSPAdes (--rnaviral). An additional assembly 

using Trinity (v2.15.2; Grabherr et al., 2011) was generated for each species by assembling pooled read 

libraries per species. Each assembly produced was then screened for virus-like sequences using the 

program deep6 (Finke et al., 2023). All virus-like sequences identified by deep6 were then pooled into 

a single fasta file. From the file containing all deep6 predicted virus sequences, a non-redundant, error-

free first pass reference set of putative virus sequences was generated using the program 

EvidentialGenes (sourceforge.net/projects/evidentialgene/). 

Virus sequences can be difficult to assemble due to their high variability and repetitive regions. To 

address this, we performed an additional “mega-assembly” by assembling all virus-like reads together, 

as this has been shown to improve sequence contiguity (Hofmeyr et al., 2020; Vosloo et al., 2021). 

Cleaned reads were mapped to the initial reference set of virus-like sequences using Bowtie2 (v2.5.4; 

Langmead & Salzberg, 2012) . All reads that aligned to the reference sequences were then extracted 

from their source libraries and pooled into a single set of forward and reverse reads. The pooled reads 

were then re-assembled with SPAdes using the metaviralSPAdes, rnaSPAdes, and rnaviralSPAdes 

algorithms, as well as with Trinity. This new assembly was again screened for virus-like sequences 

using the program deep6. All deep6 predicted virus sequences were then pooled with the first pass 

reference set of sequences. Finally, EvidentialGenes was then used to produce a non-redundant, error-

free final reference set of putative virus sequences recovered from all the RNA sequencing data 

produced. 

For recovery of virus sequences from metagenomic data, first all normalized metagenomic libraries 

(n = 133) were assembled using SPAdes (v3.15.5; Nurk et al., 2017) with the “--meta” option. In 
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addition, reads not assigned to a sample during demultiplexing (~100–120 Gbp of non-normalized data) 

were also normalized and then assembled using MEGAHIT (v1.2.9 due to the higher computational 

requirements of SPAdes. All assembled contigs/scaffolds across all libraries were then combined into 

a single fasta file and deduplicated using Seqkit (v2.10.0; rmup -s; Shen et al., 2024) to remove exact 

sequence redundancies. To remove cellular sequences from the non-redundant sequence set, sequences 

were aligned using minimap2 (v2.29; -x asm5; Li, 2021) to a custom database containing all publicly 

available coral (n = 142) and dinoflagellate (n = 32) genomes from NCBI’s GenBank, downloaded 

using the command-line tool ncbi-genome-download (v0.3.3; https://github.com/kblin/ncbi-genome-

download). All sequences that did not align to coral or dinoflagellate sequences were then extracted 

and an additional round of cellular sequence screening (this time focused on prokaryotic and other 

micro-eukaryotic groups) was performed with the program CAT (v6.0.1; Hauptfeld et al., 2024) using 

NCBI NR database. All sequences not classified as cellular were extracted and collapsed by 100% 

nucleotide identity using CD-HIT-EST v4.8.1 (Fu et al., 2012) with the parameters -c 1.0 and -aS 1.0, 

thereby removing exact duplicates regardless of length. The deduplicated putative virus-like sequences 

from the metagenome assemblies were then used as input for binning with vRhyme (v1.1.0; Kieft et 

al., 2022) to construct virus metagenome-assembled genomes (vMAGs). Sequences not included in 

bins were extracted from the vRhyme input FASTA file and combined with the final vMAGs, 

producing a final FASTA file containing all likely viral sequences from DNA sequencing libraries, 

which was then processed through the classification pipeline. 

 

2.2.2. Virus sequence classification 

Given the unexplored nature of virus diversity associated with coral reefs, a multi-tool analysis was 

conducted to classify putative virus sequences. Putative virus sequences from both the metagenome 

and metatranscriptomes processing were analyzed using the following programs: i. geNomad (v1.11.0; 

Camargo et al., 2024), ii. Cenote-Taker 3 (v3.4.0; https://github.com/mtisza1/Cenote-Taker3); iii. CAT 

(v6.0.1; Hauptfeld et al., 2024); iv. VirSorter2 (v2.2.4; Guo et al., 2021); v., CheckV (v1.0.1; Nayfach 

et al., 2021); vi. VITAP (v1.7.1; Zheng et al., 2025); and viCAT (unpublished; developed by Alex 

Veglia, 2025, currently in preparation for release). Results from each of the seven programs were then 

compared and combined using the program viSUM (unpublished; developed by Alex Veglia, 2025, 

currently in preparation for release). The program viSUM aggregates the outputs of multiple viral 

classification tools, compares their assignments, and generates a unified consensus for each sequence 

with associated support scores. All downstream analyses were performed on sequences that viSUM 

identified as having evidence of being viral based on one or more of the classification/detection 

programs used. 

 

2.2.3. Virus sequence quantification and functional annotation 

Read count matrices were generated for DNA (metagenome) and RNA (metatranscriptomes) virus 

sequence sets by aligning cleaned, normalized RNA sequencing reads using the program kallisto 

(v0.50.1; Bray et al., 2016). Read count matrices were then processed with RSEM (v1.3.3; Li & Dewey, 

2011) to produce trimmed mean of M-values (TMM) normalized counts table to allow for cross sample 

comparisons. Functional annotation of virus genes was done using the program MetaCerberus (v1.4.0; 

Figueroa III et al., 2024) with the following databases: VOG (https://vogdb.org/; Oct 2024), pVOG 

(2016; Grazziotin et al., 2017), PHROG (Jun 2022; Terzian et al., 2021), AMRFinder-fams (Feb 2024; 

Feldgarden et al., 2021), NFixDB (Jan 2024; Bellanger et al., 2024), and GVDB (2021; Aylward et al., 

2021) 

 

2.2.4. Virus community & gene landscape analyses 

The sequence classification results, expression counts, and sample metadata were imported into 

RStudio (v.2022.12.0+353) with R (v.4.2.2) and combined into a single phyloseq object (analyses 

described are focused on RNA sequencing results files) using the phyloseq R package (McMurdie & 

https://github.com/kblin/ncbi-genome-download
https://github.com/kblin/ncbi-genome-download
https://github.com/kblin/ncbi-genome-download
https://github.com/mtisza1/Cenote-Taker3
https://github.com/mtisza1/Cenote-Taker3
https://vogdb.org/
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Holmes, 2013). To identify core viromes (at the class tank level) for each coral species, we first subset 

the TMM-normalized phyloseq object by host species. For each subset, counts for virus transcripts with 

confidence scores above 0.28 (indicating minimum three programs identified the sequence as viral) 

were aggregated at the viral class level using the rowsum() function. We then calculated the prevalence 

of each class as the proportion of samples in which it was present. Core classes were defined as those 

detected in ≥95% of samples for a given species. The union of all species-specific core classes was 

used to identify corresponding viral transcripts across the full dataset. These transcripts and their counts 

data were extracted to generate a new phyloseq object representing the combined core virome. Bray–

Curtis dissimilarity was calculated using the new phyloseq object with core virome transcripts with the 

vegdist() function from the vegan package. Species were hierarchically clustered based on this distance 

matrix using average linkage (UPGMA), and the resulting dendrogram was visualized to assess inter-

species similarity in core viral transcript profiles. 

Virus community alpha diversity was calculated per sample with the raw counts data using the 

Shannon index (H') as implemented in phyloseq (i.e. via estimate_richness(phyobj, 

measures="Shannon"), which calls vegan::diversity with index="shannon"). We then tested for overall 

differences in Shannon diversity across the three sampling time points (T0, T1, T2) using a Kruskal–

Wallis rank‐sum test (kruskal.test() in R’s stats package), because residuals from a linear model of 

Shannon failed normality (Shapiro–Wilk via shapiro.test(), also in stats). For any significant Kruskal–

Wallis result, we performed pairwise Wilcoxon rank‐sum tests (wilcox.test() in stats) with Benjamini–

Hochberg adjustment (p.adjust(method="BH") to identify which time‐point pairs differed. The same 

procedure (Kruskal–Wallis followed by pairwise Wilcoxon) was applied separately within each coral 

species to assess time‐point effects on α‐diversity. Finally, to evaluate whether health status (healthy 

vs diseased vs quiesced) influenced Shannon diversity, we ran a Kruskal–Wallis test on Shannon by 

health category (again with Wilcoxon post hoc as above) across all species. 

Beta diversity was calculated on TMM-normalized counts by first transforming each library to 

relative transcript abundances. Bray–Curtis dissimilarities were then computed using the distance() 

function in phyloseq with method = "bray". We confirmed that multivariate dispersion did not differ by 

time point, sample site, or health status (all betadisper() + permutest() p ≫ 0.05), indicating no 

significant heterogeneity of spread. We then ran a PERMANOVA using adonis2(bc_dist ~ host_species 

+ time_point + health_status, data = meta_df, permutations = 999, by = "margin"). In this model, 

“host_species” captures differences among coral species, “time_point” tests for changes across the 

outbreak timeline, and “health_status” compares healthy versus diseased/quiesced samples. To 

examine within-species effects, we subset the data by coral species and reran adonis2(bc_sub ~ 

time_point + health_status, data = meta_sub, permutations = 999, by = "margin") on the corresponding 

Bray–Curtis distance matrix. This two-factor, within-species PERMANOVA evaluated whether viral 

β-diversity differed by time point or health status within each coral species independently. 

Differential abundance of viral transcripts was assessed with DESeq2 (Love et al., 2014) using a 

negative‐binomial GLM with the formula ~ host_species + tissue_type, where host_species (cavernosa, 

faveolata, franksi, natans) was included as a covariate to account for baseline differences in each coral’s 

virome, and tissue_type (healthy as the reference) was used to estimate the log₂‐fold‐change in 

disease_margin versus healthy samples across all species. Similar to core virome analyses, only virus 

sequences with confidence scores above 0.28 (indicating minimum three programs identified the 

sequence as viral) were used for differential expression analyses. Differential abundance of these 

upregulated virus taxa in the RNA sequencing data was visualized in a heatmap using the 

abundance_heatmap() function from the phylosmith R package and the trimmed mean of M-values 

(TMM) normalized counts table. Gene information for differentially expressed (upregulated) 

transcripts were then extracted from functional annotation results and grouped by potential function. 

 

2.3.  Histological Analyses 

      Samples were fixed in zinc-buffered formalin (Z-fix, Anatech), then seawater for 24 hours, then 



 

               AgreementNumber C3D3C6 

June 2025 

 

12 

stored in 70% ethanol and shipped to Louisiana State University. Corals were decalcified with a 1% 

HCl EDTA solution and stored in 70% ethanol until processed. Corals were processed using a Leica 

ASP6025, embedded in paraffin wax blocks on a Leica EG1150H embedding machine, and sectioned 

at five mm thickness on a Leica RM2125RTS microtome. All samples were sectioned in both cross 

and longitudinal orientation with three to five polyps in each orientation. Seven sections were made 

500 µm apart. Histological slides were stained with hematoxylin and eosin stain on a Leica ST5020, 

viewed on an Olympus BX41 microscope with an Olympus SC180 camera attachment, and analyzed 

using ImageJ software. 

     Slides were analyzed across two methodologies, tissue quantification and measurements following 

Rossin et al. (in review). Tissue quantification was split between consistency and intensity of disease 

signs ranked as absent, low, medium, and high. The disease signs noted were necrosis, vacuolization, 

exocytosis, gastrodermal separation, and degraded symbionts. Consistency referred to the signs 

occurring over the five slides analyzed – regardless of intensity of sign. Intensity referred to the degree 

of the disease sign when it was seen. Additionally, certain tissue parameters were noted for 

presence/absence: eroded gastrodermis, amoebocytes, loss of eosin from the mesoglea, loss of 

structural integrity, and fungus or sponge. This quantification was then compared between species and 

time points. 

     Disease measurements were performed using five 60,000 mm2 images per tissue sample. Each 

micrograph was split into twelve 5000 mm2 grid-cells. A random number generator determined which 

section the cells were measured within. The areas of 15 symbionts within their vacuoles were measured 

per sample. Additionally, presence of gastrodermal separation and degraded symbionts was noted, as 

well as the proportion of symbionts undergoing exocytosis within the grid-cell of interest. 

     A Bayesian hierarchical linear model was used to detect differences between apparently healthy 

and diseased samples according to four histological measurements: vacuolization, symbiont size, 

degraded symbiont presence, proportion exocytosis, and gastrodermal separation. This model used 

non-informative priors. A second Bayesian hierarchical model was employed in which the first level 

of the model was a binomial generalized linear model with an intercept and five predictors, which 

were each modeled as random effects with j = 6 levels for species. Where yi is the binomially-

distributed response variable of disease state (0 = putatively healthy and 1 = diseased), a is the 

intercept, b1–4 are the slopes, and x1–5 are the predictor values, exocytosis, gastrodermal separation, 

symbiont size, degraded symbiont presence, and vacuolization. The subscript j indexes the random 

effect of species (j = 6) and the subscript i indexes the observed data (i = n). The second level of the 

model was unconditional; i.e., no model was applied to the random effect estimates and only grand 

mean estimates of the five level one parameters were estimated. Model variance-covariance was 

estimated using a scaled-inverse Wishart distribution. The model was run in JAGS (version 1.5.2) 

using the package JAGSUI (Su & Yajima, 2015) in R. All parameters were given diffuse normal priors. 

Models were initialized with a randomly selected value for all five parameters from a normal 

distribution with a mean of zero and standard deviation of one. We ran three Markov chain Monte 

Carlo (MCMC) chains each for 40,000 iterations but removed 5,000 for burn in and thinned by two, 

for a total of 105,000 iterations used for posterior analysis. 

Model convergence was evaluated from the values, where < 1.1 indicated convergence. 

Additionally, we plotted all posteriors and visually confirmed convergence. We interpreted predictor 

effects based on where 0 was in relation to their posterior distributions.  We did not take full advantage 

of the Bayesian hierarchical model potential as we did not have informed priors or utilize a second 

level model in this study. All Bayesian hierarchical models converged below 1.1 and were accepted. 

 

2.4.  Transcriptomic Analyses 

The analyses conducted in phase II are directly complementary to data produced during phase I of 

this project. Herein we performed the following tasks: 1) refined de novo transcriptomes for each of 

our sampled species and generated improve read count matrices, 2) identified single copy orthologs 
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consistent across all species for identification of species-independent markers of resistance, 3) 

conducted differential expression modeling to identify species-independent markers of resistance, and 

4) conducted integrative, correlative analyses to identify species-independent associations between 

ortholog expression and microbiota, viral community members, and histological traits of interest. Full 

details on sammple collection and intitial processing can be found in the report for year 1 (Klinges et 

al., 2024). 

  

2.4.1. De novo transcriptome refinement 

De novo transcriptomes were generated from five random samples for each coral species using a 

modification of previously established protocols (Beavers et al., 2023). Before assembly, two pre-

filtering steps were implemented to remove as many non-coral reads as possible. First, any reads 

aligning to potential eukaryotic contamination were filtered out from the available viral, human, fungi, 

and protozoa genomic databases from kraken2 (Wood et al., 2019). Next the reads were filtered using 

BBSplit (Bushnell) against all publicly available Symbiodiniaceae transcriptomes that could be located 

(n = 9, Table 1). 

  

Table 1. List of transcriptomes used for BBSplit pre-filtering step in transcriptome assembly and read 

filtering. Asterisks denote those which were also used for BBSplit filtering/host and symbiont 

separation of reads. 

Species Associated Publication Download Link 

Symbiodinium 

microadriaticum* (Aranda et al., 2016) 

http://smic.reefgenomics.org/download/

Smic.transcriptomeRef.cov5.fa.gz 

Symbiodiniumspp., 

"Y106" (Shoguchi et al., 2018) 

https://marinegenomics.oist.jp/symb/do

wnload/syma_transcriptome_37.fasta.gz 

Breviolum 

aenigmaticum (Parkinson et al., 2016) 

http://zoox.reefgenomics.org/download/

Symbiodinium_aenigmaticum.tar.gz 

Breviolum 

minutum* (Parkinson et al., 2016) 

http://zoox.reefgenomics.org/download/

Symbiodinium_minutum.tar.gz 

Breviolum 

pseudominutum (Parkinson et al., 2016) 

http://zoox.reefgenomics.org/download/

Symbiodinium_pseudominutum.tar.gz 

Breviolum 

psygmophilum (Parkinson et al., 2016) 

http://zoox.reefgenomics.org/download/

Symbiodinium_psygmophilum.tar.gz 

Cladocopium 

proliferum 

(formerly thought 

to be C. goreaui) (Davies et al., 2016) http://ssid.reefgenomics.org/ 

Cladocopiumspp., 

"Y103"* (Shoguchi et al., 2018) 

https://marinegenomics.oist.jp/symb/do

wnload/symC_transcriptome_40.fasta.gz 

Durusdinium 

trenchii* (Bellantuono et al., 2019) 

https://datadryad.org/stash/downloads/fil

e_stream/258199 

“Raw” transcriptome assemblies were then generated using these filtered reads with Trinity v2.9.1 

(Grabherr et al., 2011). The resulting transcriptome was then filtered to retain only the longest isoform 

per gene. Next, the program TransDecoder was be used to identify transcripts with open reading frames 

and transcripts without an identified coding region were be removed (Haas). The program CD-HIT was 

used to remove redundant transcripts (Fu et al., 2012). As a final filtration step to ensure as much 

symbiont contamination as possible was removed, the resultant transcriptome was blasted against a 

custom database assembled from all publicly available Symbiodiniaceae proteomes (n = 17, Table 2) 
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following established protocols (Stankiewicz et al., 2025). Resultant transcriptome completeness was 

assessed using BUSCO (Manni et al., 2021). Finally, the transcriptome was annotated via comparison 

to the UniProt database using blast v2.15.0 (Camacho et al., 2009). 

  

Table 2. List of proteomes used for blast filtering step in transcriptome assembly. 

Species Associated Publication Download Link 

Symbiodinium fitti (Reich et al., 2021) 

https://datadryad.org/stash/dataset/doi:10

.5061/dryad.xgxd254g8 

Symbiodinium linucheae (Gonzalez-Pech et al., 2021) 

https://espace.library.uq.edu.au/view/UQ

:f1b3a11 

Symbiodinium 

microadriaticum (Gonzalez-Pech et al., 2021) 

https://espace.library.uq.edu.au/view/UQ

:f1b3a11 

Symbiodinium natans (Gonzalez-Pech et al., 2021) 

https://espace.library.uq.edu.au/view/UQ

:f1b3a11 

Symbiodinium 

necroappatans (Gonzalez-Pech et al., 2021) 

https://espace.library.uq.edu.au/view/UQ

:f1b3a11 

Symbiodinium 

tridacnidorum (Gonzalez-Pech et al., 2021) 

https://espace.library.uq.edu.au/view/UQ

:f1b3a11 

Symbiodiniumspp. 

"Y106" (Shoguchi et al., 2018) 

http://sampgr.org.cn/downloads/syma_au

g_37.aa.longest.fa.tar.gz 

Breviolum minutum (Shoguchi et al., 2013) 

https://marinegenomics.oist.jp/symb/dow

nload/symbB.v1.2.augustus.prot.fa.gz 

Cladocopium goreaui (Chen et al., 2020) 

https://espace.library.uq.edu.au/view/UQ

:8279c9a 

Cladocopium goreaui (Chen et al., 2022) 

https://espace.library.uq.edu.au/view/UQ

:fba3259 

Cladocopiumspp., "C92" (Chen et al., 2020) 

https://espace.library.uq.edu.au/view/UQ

:8279c9a 

Cladocopiumspp., "C15" (Messer et al., 2024) 

http://plut.reefgenomics.org/cladocopium

_download/ 

Cladocopiumspp., 

"Y103" (Shoguchi et al., 2018) 

http://sampgr.org.cn/downloads/symC_a

ug_40.aa.longest.fa.tar.gz 

Durusdinium trenchii (Shoguchi et al., 2021) 

https://marinegenomics.oist.jp/symbd/vie

wer/download?project_id=102 

Durusdinium 

trenchii"CCMP2556" (Dougan et al., 2024) 

https://espace.library.uq.edu.au/view/UQ

:27da3e7/Dtrenchii_CCMP2556_PROT_

fasta.gz?dsi_version=be68147c743657b4

e92ef4d7eb8012ce 

Durusdinium 

trenchii"SCF082" (Dougan et al., 2024) 

https://espace.library.uq.edu.au/view/UQ

:27da3e7/Dtrenchii_SCF082_PROT_fast

a.gz?dsi_version=6d08446e7b3c2b35dd

b5a3edce528200 

  

Prior to alignment, raw read files were first processed using the program fastp to remove adapters 

and filter out poor-quality reads (Chen, 2023; Chen et al., 2018). The following parameters were used 

for fastp: minimum quality score of 25, minimum phred quality score of 20, minimum read length of 

50 bp, minimum complexity threshold of 30%, removal of any polyG or polyX tails, n base limit of 2, 

and base correction enabled in overlap regions. Next, these quality-filtered reads were run through 

BBsplit (Bushnell) to separate host and Symbiodiniaceae reads. Specifically, reads were filtered against 

https://espace.library.uq.edu.au/view/UQ:27da3e7/Dtrenchii_CCMP2556_PROT_fasta.gz?dsi_version=be68147c743657b4e92ef4d7eb8012ce
https://espace.library.uq.edu.au/view/UQ:27da3e7/Dtrenchii_CCMP2556_PROT_fasta.gz?dsi_version=be68147c743657b4e92ef4d7eb8012ce
https://espace.library.uq.edu.au/view/UQ:27da3e7/Dtrenchii_CCMP2556_PROT_fasta.gz?dsi_version=be68147c743657b4e92ef4d7eb8012ce
https://espace.library.uq.edu.au/view/UQ:27da3e7/Dtrenchii_CCMP2556_PROT_fasta.gz?dsi_version=be68147c743657b4e92ef4d7eb8012ce


 

               AgreementNumber C3D3C6 

June 2025 

 

22 

a single transcriptome for each of the four dominant genera of Symbiodiniaceae known to commonly 

associate with Caribbean stony corals (Table 1, denoted by asterisk), and their respective generated do 

novo coral host transcriptome that had previously been assembled. The resulting reads which matched 

to the host transcriptome were then fully aligned to that same de novo transcriptome using Salmon 

(Patro et al., 2017). 

 

2.4.2. Ortholog Analyses- Identification of species specific markers of SCTLD resistance 

Leveraging our polished and high quality de novo transcriptomes, we then sought to identify single 

copy orthologs for downstream multi-species analyses. Single copy orthologs (SCOs) refer to single 

copy transcripts which are conserved across a group of species, identified based on transcript similarity. 

The combined sequence similarity and lack of copy number variation across species makes SCOs an 

ideal subset for comparing gene expression datasets across species. We identified single copy orthologs 

following well established pipelines. Specifically we first generated predicted proteomes for each 

transcriptome using Transdecoder (Haas) and collapsed similar sequences with CD-HIT (Fu et al., 

2012). We then analyzed the resultant proteomes with Orthofinder (v. 2.5.2; Emms & Kelly, 2019) 

using default parameters. The resultant data was used to create a transcript to gene file for importing 

reads corresponding only to SCOs into R for downstream analysis. 

To identify species-independent markers of SCTLD resistance we combined our set of identified 

single copy orthologs (SCO; present in all species) with previously generated read count matrices, 

isolating expression of SCOs only. We then focused on two main types of markers: 1) SCOs whose 

expression prior to disease onset predicted eventual disease susceptibility (predictive models) and 2) 

SCOs which were differentially expressed between healthy tissue from resistant colonies and 

apparently healthy tissue from susceptible colonies at either disease onset timepoint (June or August; 

epidemic models). We also identified those genes which were significantly differentially expressed 

between apparently healthy and diseased tissue within susceptible colonies to gain insight regarding 

the mechanisms of response to SCTLD (response models). In each case we used the R package dream 

(within the variancePartition package) to fit linear mixed models to our data, allowing for the addition 

of random effects of colony ID and site where needed. Dream is built upon existing R packages limma 

and voom, but adds necessary steps to fit random effects (Hoffman & Roussos, 2021). In each grouping 

of models we ran two sets of models, one which incorporated and interaction with species to identify 

species-specific responses, and a second model without the species interaction term to identify species 

independent responses (main effects cannot be interpreted when included in an interaction term, 

necessitating this approach). Table 3 details models used. Additionally, we used the makeContrasts() 

function for hypothesis testing contrasts of interest. To facilitate hypothesis testing and contrast 

specification, we set the intercept to 0 in all models and, where necessary, collapsed factors into one 

term. For example, in the epidemic & response models, sampling time, tissue type, and species were 

collapsed into one group and contrasts specified to identify SCOs with species specific differences 

between tissues of interest within a given month (“interaction” model). The main effect model for this 

category used a combination of timepoint and tissue type to investigate species independent differences 

between tissue types of interests within a given month. Contrasts run are listed in Table 4. 
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Table 3: Summary of Model Groups and models used to identify species independent markers of 

resistance. In each case models with interaction terms were followed up with main effect models to 

confidently identify species independent markers. category=disease susceptible of resistant; 

timepoint_tis_spec = combination of timepoint collected, tissue type, and species; timepoint_tis_spec 

= combination of timepoint collected and tissue type 

 

Model Group Type Model Factors of 

Interest 

Predictive 

Models 

Interaction ~0+category*species+(1|site) category*species 

Main Effect ~0+category+species+(1|site) category 

Epidemic  & 

Response 

Models 

Interaction ~0+timepoint_tis_spec 

+(1|site)+(1|ID) 

month_tis_spec 

Main Effect ~0+timepoint_tis +species 

+(1|site)+(1|ID) 

month_tis_type 

  

Once our models were run, we then compared results of the interaction and main effect models 

within a group to identify candidate SCOs marking resistance. Specifically, an SCO was classified as 

a species independent marker if it was significant for the main effect factor of interest (category or 

month-tissue type comparison) and not significant for any factor of interest in our interaction model. 

SCOs which were significant for contrasts in our interaction models were deemed species dependent 

markers and flagged for later analysis. In the case of Epidemic and Response Models, an additional 

filtering step was used; our list of best marker SCOs only included those SCOs which were identified 

as species independent markers in either June and August (i.e. consistently differentially expressed 

between healthy and apparently healthy or apparently healthy and disease margin tissues) with 

congruent log-fold changes in both months. Candidate markers with immune functions were identified 

by search associated annotations, specifically assigned gene ontology terms, for a breadth of immune 

keywords. Representative graphs were constructed in R using ggplot to demonstrae patterns of interest. 

  

Table 4: Summary of contrasts specified within each model group/type and the hypotheses tested. 

category=disease susceptible of resistant; timepoint_tis_spec = combination of timepoint collected, 

tissue type, and species; timepoint_tis_spec = combination of timepoint collected and tissue type. 

 

Model 

Group 

Type Contrast Hypothesis 

Tested 

Predictive 

Models 

Interaction RES-SUS X MCAV-CNAT 

RES-SUS X MCAV-OFAV 

RES-SUS X MCAV-OFRA 

RES-SUS X OFAV-CNAT 

RES-SUS X OFAV-OFRA 

RES-SUS X OFRA-CNAT 

species specific 

differences 

between resistant 

and susceptible 

colonies prior to 

disease arrival 

Main 

Effect 

RES-SUS species 

independent 

differences 

between resistant 

and susceptible 

colonies prior to 
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disease arrival 

Epidemic  

Model 

Interaction June_AH_MCAV-June_H_MCAV vs.  

June_AH_CNAT-June_H_CNAT 

June_AH_MCAV-June_H_MCAV vs.  

June_AH_OFAV-June_H_OFAV 

June_AH_MCAV-June_H_MCAV vs.  

June_AH_OFRA-June_H_OFRA 

June_AH_OFAV-June_H_OFAV vs.  

June_AH_CNAT-June_H_CNAT 

June_AH_OFAV-June_H_OFAV vs.  

June_AH_OFRA-June_H_OFRA 

June_AH_OFRA-June_H_OFRA vs.  

June_AH_CNAT-June_H_CNAT 

Aug_AH_MCAV-Aug_H_MCAV vs.  

Aug_AH_CNAT-Aug_H_CNAT 

Aug_AH_MCAV-Aug_H_MCAV vs.  

Aug_AH_OFAV-Aug_H_OFAV 

Aug_AH_MCAV-Aug_H_MCAV vs.  

Aug_AH_OFRA-Aug_H_OFRA 

Aug_AH_OFAV-Aug_H_OFAV vs.  

Aug_AH_CNAT-Aug_H_CNAT 

Aug_AH_OFAV-Aug_H_OFAV vs.  

Aug_AH_OFRA-Aug_H_OFRA 

Aug_AH_OFRA-Aug_H_OFRA vs.  

Aug_AH_CNAT-Aug_H_CNAT 

species specific 

differences 

between healthy 

tissue on resistant 

and susceptible 

colonies during 

disease outbreak 

in each time point 

(June or August) 

Main 

Effect 

June_AH-June_H 

Aug_AH-Aug_H 

species 

independent 

differences 

between healthy 

tissue on resistant 

and susceptible 

colonies during 

disease outbreak 

in each time point 

(June or August) 
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Response 

Models 

Interaction June_AH_MCAV-June_DM_MCAV 

vs.  June_AH_CNAT-June_DM_CNAT 

June_AH_MCAV-June_DM_MCAV 

vs.  June_AH_OFAV-June_DM_OFAV 

June_AH_MCAV-June_DM_MCAV 

vs.  June_AH_OFRA-June_DM_OFRA 

June_AH_OFAV-June_DM_OFAV vs.  

June_AH_CNAT-June_DM_CNAT 

June_AH_OFAV-June_DM_OFAV vs.  

June_AH_OFRA-June_DM_OFRA 

June_AH_OFRA-June_DM_OFRA vs.  

June_AH_CNAT-June_DM_CNAT 

Aug_AH_MCAV-Aug_DM_MCAV vs.  

Aug_AH_CNAT-Aug_DM_CNAT 

Aug_AH_MCAV-Aug_DM_MCAV vs.  

Aug_AH_OFAV-Aug_DM_OFAV 

Aug_AH_MCAV-Aug_DM_MCAV vs.  

Aug_AH_OFRA-Aug_DM_OFRA 

Aug_AH_OFAV-Aug_DM_OFAV vs.  

Aug_AH_CNAT-Aug_DM_CNAT 

Aug_AH_OFAV-Aug_DM_OFAV vs.  

Aug_AH_OFRA-Aug_DM_OFRA 

Aug_AH_OFRA-Aug_DM_OFRA vs.  

Aug_AH_CNAT-Aug_DM_CNAT 

species specific 

differences 

between 

apparently 

healthy and 

diseased tissue on 

susceptible 

colonies in each 

time point (June 

or August) 

Main 

Effect 

June_AH-June_DM 

Aug_AH-Aug_DM 

species dependent 

differences 

between 

apparently 

healthy and 

diseased tissue on 

susceptible 

colonies in each 

time point (June 

or August) 

  

2.4.3. Integrative Analyses: Linking Transcriptomic, Microbial, Viral, and Histological Data 

Next, we shifted to focus on identification of SCOs which were highly correlated to microbial/viral 

community composition or histological traits of interest. This was conducted via integrative correlative 

analyses following established pipelines adapted from other systems (Fuess et al., 2021). To identify 

microbial taxa associated with SCOs, we first filtered generated 16S data to retain only those ASVs 



 

               AgreementNumber C3D3C6 

June 2025 

 

26 

which accounted for a minimum average of .1% abundance across samples, yielding 120 ASVs. 

Generated proportions of each of these taxa were then correlated to normalized read counts for our 

7,462 SCOs using a pairwise kendall correlation. The top 5% of associations based on p-value were 

retained for downstream analyses, specifically gene ontology enrichment analysis with GOMWU 

(Wright et al., 2017). 

A similar approach was used for viral community analyses. First, we filtered generated sequences 

to retain only those with the maximum rank support score at the domain level to ensure retained 

sequences corresponded to putative viruses. A total of 145,783 out of a starting 621,896 sequences fit 

this filtering qualification. We then collapsed sequences to the Order level, or highest level of taxonomy 

if not assigned to an order, by combining TPM normalized read counts for all IDs within the same 

Taxonomic group. Any sequences which were unclassified at the order level were removed at this step 

(106,939 out of 146,783 sequences retained). It was necessary to collapse reads to the Order level as 

all sequences passing confidence filters were unclassified at the Family, Genus, and Species levels. In 

the end, we generated TPM normalized read counts for a total of 235 viral groups. This data was then 

correlated to normalized read counts for our 7,462 SCOs using a pairwise kendall correlation. The top 

5% of associations based on p-value were retained for downstream analyses, specifically gene ontology 

enrichment analysis with GOMWU (Wright et al., 2017). 

Finally, to correlate histological features of interest with transcriptomic data, we used a Network-

based approach. A single co-expression network was generated from our normalized ortholog data 

using Weighted Gene Correlation Network Analysis (Langfelder & Horvath, 2008). We then correlated 

expression of resultant groups of orthologs to our top microbial families and mean histological traits of 

interest (vacuolization, max vacuole size, and exocytosis). Modules of interest were further analyzed 

using gene ontology enrichment analysis with GOMWU (Wright et al., 2017). 

  

2.5.  Immunological Analysis of samples from project C21169  

Fragments of corals used in experiments described in FDEP project C21169 (Lead PI Ushijima) were 

received by the team at Texas State University (PI Fuess) for processing and analysis for immunological 

activity. Full details of experimental methods can be found in the relevant project reports for C21169. 

Herein we describe processing and analysis of these samples for immunological activity only. Assays are 

modified versions of those established for tropical corals (Changsut et al., 2022; Fuess et al., 2016; 

Mydlarz & Palmer, 2011). 

Tissue was removed from frozen coral fragments using a Paasche airbrush and 100 mM Tris + 0.05mM 

DTT (pH 7.8) buffer. This tissue slurry was then be homogenized for 1 min. and placed on ice for 7 – 10 

min. For melanin analyses, a 1 mL aliquot of tissue slurry was taken at this step and placed into a pre-

weighed 1.5 mL tube and flash frozen, then stored at -20° C until analysis. For all other protein analyses, 

remaining tissue slurry was centrifuged at 3500 rpm for 5 min. and two aliquots of the supernatant (aka 

protein extract) will be transferred into 2 mL tubes and flash frozen, then stored at -80 °C until analysis. 

All of the following assays were conducted in triplicate, including negative controls using the 

Tris+DTT buffer used to homogenize, and were measured on the BioTek Cytation 1 imaging reader, unless 

specified otherwise. Protein concentration was measured for each sample before conducting any assays 

using a Red660 assay. Protein extract (10 uL) was combined with 150 uL of G-Biosciences Red660. 

Sample absorbance was read at 660 nm and compared to a bovine serum albumin (BSA) standard curve 

to determine sample protein concentration. Measurements from subsequent assays were all standardized 

by protein concentrations unless mentioned otherwise. 

To measure phenoloxidase (PO) activity, 20 uL of protein extract, 45 uL of 50 mM PBS pH 7.0, and 

30 uL of 10 mM dopamine were combined and the changes in absorbance measured every 45 seconds for 

15 min. at 490 nm. PO activity was then calculated using the most linear part of the curve in the first 1-5 

minutes of the reaction. To measure total phenoloxidase activity, total phenoloxidase (TPO) activity was 

measured. TPO was measured by combining 20 uL of protein extract, 20 uL of 50 mM PBS pH 7.0, 25 uL 

of 0.1 mg/mL trypsin, and allowing this mixture to incubate at room temperature for 30 minutes. Then 30 
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uL of 10 mM dopamine was added, and changes in absorbance were immediately measured every 45 

seconds for 15 min. at 490 nm. TPO activity was then calculated using the most linear part of the curve in 

the first 1-5 minutes of the reaction (Mydlarz & Palmer, 2011). 

Melanin concentrations were measured using the 1.0 mL of protein slurry aliquoted during airbrushing 

into a pre-weighed tube. These samples were first dried in a vacufuge for 12+ hours until completely 

dehydrated. The tubes containing the dried samples were then weighed, and 250 uL of 1 mm glass beads 

and 400 uL of 10M sodium hydroxide were added. A 2 mg/mL melanin standard stock was made using 

melanin and 10M sodium hydroxide. This standard and the prepared samples were then incubated for 48 

hours in the dark for digestion of tissues. Finally, absorbance at 410 nm of a serial dilution using the 

melanin standard and 40 uL of each sample was measured. The measurements of each sample were 

standardized using the curve generated from the serial dilution. Melanin is reported standardized by sample 

dry tissue weight (Mydlarz & Palmer, 2011). 

To measure catalase activity, 2.5 uL of protein extract was combined with 47.5 uL of 50 mM 

phosphate-buffered saline pH 7.0 (PBS) and 75 uL of 25 mM H2O2. Negative controls of Tris+DTT and a 

set of serial dilution wells using the PBS and H2O2 were included as well. Changes in absorbance (catalase 

activity) were then measured every 45 seconds for 15 minutes at the 240 nm wavelength. Catalase activity 

was then calculated using the most linear part of the curve in the first 1-5 minutes of the reaction and 

standardized using the serial dilution curve (Mydlarz & Palmer, 2011). 

To measure peroxidase activity, 10 uL of protein extract was combined with 20 uL of 10 mM 

phosphate-buffered saline pH 6.0 (PBS), 25 uL of 5 mM of guaiacol, and 20 uL of 20 mM H2O2. Negative 

controls of Tris+DTT. Changes in absorbance (catalase activity) were then measured every 45 seconds for 

15 minutes at the 470 nm wavelength. Peroxidase activity was then calculated using the entire curve 

(Mydlarz & Harvell, 2007) 

To measure bacterial killing ability, bacteria doubling time/hour using a Vibrio coralliilyticus strain 

isolated from an O. faveolata colony in Florida will be used, as this species has been identified in relation 

to several stony coral diseases and will therefore serve as a good estimate of antibiotic activity (Ushijima 

et al., 2020). Specifically, we are using a plasmid-transformed strain, Oft6-21 pBU164, which expresses a 

yellow-fluorescent protein (YFP). This bacteria strain was cultured in sterile glycerol artificial seawater 

(GASW) broth media at 27° C until it reached an RFU (relative fluorescence units) of approximately 750. 

Then, 60 uL of protein extract (diluted to a standard protein concentration) and 140 uL of the diluted 

bacterial stock will be combined, incubated at 27° C for 12 hours, measuring YFP fluorescence every ten 

minutes. Bacterial doubling time was then calculated for each sample from the logarithmic growth phase. 

To identify signatures of changes in immunological activity we conducted a two-way repeated 

measures ANOVA on each immunological assay independently. We incorporated fixed factors of interest: 

time point and treatment, and accounted for repeated sampling at the level of host genotype. Data was 

checked against appropriate statistical assumptions (normality, no outliers, etc) prior to analyses and 

transformed when necessary. When factors of interest were identified as significant we conducted post 

hoc tests in the form of paired t-tests to determine significance of groups. All statistical analyses and 

graphing were conducted in R. 

 

2.6.  Analysis of TEM images from coral sampled under projects C1E0A5 and C21169  

Transmission electron microscopy (TEM) image datasets from projects C1E0A5 and C21169 were 

processed using the same approaches. To minimize observer bias and assess the reproducibility of 

observations, multiple individuals independently analyzed the same images. Three independent pairs were 

established to review and analyze TEM images of coral tissue samples acquired at magnifications of 

10,000× and 50,000×, saved as uncompressed TIFF files. Each pair was assigned different subsets of TEM 

image folders, allowing for a systematic pairing of analyses. However, to further prevent systematic bias, 

individuals working on the same day did not cross-check the same images. Instead, each analyst used an 

overlapping set of images distributed on different days, which helped to strengthen the reliability of the 

analyses. All images were processed using ImageJ version 1.53c. Analysis began at lower magnifications 
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(ranging from 45.9% to 150%). Analysts uniformly adjusted brightness and contrast settings and applied 

an unsharp mask with a radius of 2 pixels for edge enhancement. Subsequently, each analyst manually 

reviewed the images to annotate icosahedral virus-like particles (diameters of 20–200 nm with smooth 

perimeters) and filamentous virus-like particles (thread-like structures up to several µm in length), using 

the Region of Interest Manager for accuracy (Work et al., 2021). 

From these standardized annotations, we derived four complementary summary tables. First, a 

distribution-by-morphotype table aggregated the total number of images, mean particle count per image, 

standard deviation, morphotype richness, and dominant morphotypes for each time point: pre-outbreak, 

during outbreak, and post-outbreak. Second, a site-specific occurrence table cross-tabulated morphotype 

combinations against baseline and outbreak reefs, reporting both the number of images in which each 

combination appeared and the corresponding cluster counts. Third, a morphology-by-health-status table 

compared each morphotype in terms of total cluster events, number of images surveyed, and mean particle 

abundance across diseased, apparently healthy, and baseline samples. Finally, a health-by-site table tallied 

total virus-like particle (VLP) counts by health status at each reef. When replication was sufficient for 

statistical analysis, we looked to test for influence of health on virus-like particle rate of detection (i.e., 

percentage of photos with VLPs detected). To do this, VLP presence proportions were arcsine-square-root 

transformed to control for variances. We then used a linear mixed-effects model in R (packages: lme4 and 

lmerTest) where Health was the main effect tested, and Colony (nested within Species) was included as a 

random effect to account for repeated measurements within the same groups. Next, a type III ANOVA 

(Satterthwaite’s method) was used to get p-values for the Health effect. If significant, pairwise 

comparisons between health states were done with Tukey adjustment using the emmeans package. All 

tests used a significance level of α = 0.05. 

 

3. RESULTS 

3.1.  Metagenomic Analyses 

3.1.1. Analyses identifying bacteria and microeukaryotes from metagenomic data 

Additional bacterial, archaeal, and microeukaryotic taxa were classified from metagenomic data 

using the program PhyloFlash. This tool produced html files summarizing taxonomic composition of 

identified SSU rRNA sequences as well as alignments of read data to reference databases and 

assemblies of full-length 16S and 18S rRNA sequences from metagenomic data. Text summaries of 

top taxa (Bacteria, Archaea, Eukaryota) found in each sample group per species were produced from 

taxon read count data. These taxa assignments were used for downstream analysis. Bacterial taxonomy 

was used for alpha and beta analyses below. Annotation of Eukaryota was very poor; >80% of 

eukaryotic reads were only annotated to Opisthokonta. Dominant archaea in samples included 

Woesearchaeales and Nitrosopumilales, and no clear patterns emerged in archaeal abundance based on 

coral species or health state. 

 

3.1.2. Assessments of alpha and beta diversity from metagenomic data 

Alpha diversity analyses were performed on count tables and taxa assignments generated by 

phyloFlash. Health status (disease state) had a significant impact on microbial diversity as quantified 

by Shannon diversity (omnibus test p = 1.623e-06, χ2 = 29.665) and numbers of observed bacterial 

taxa from shotgun DNA sequencing data (p = 5.67e-11, χ2 = 50.699). Corals that were naive to disease 

(i.e., sampled before disease arrived to the region) and samples taken from active disease lesions had 

the highest microbial diversity. Although bacterial richness was significantly higher (at p < 0.05) in 

both naive and lesion samples from Colpophyllia natans and Orbicella faveolata than in apparently 

healthy sample types (samples taken from unaffected sections of diseased corals and healthy corals 

sampled from sites with disease), bacterial richness trended highest in naive samples (Figure 1A). No 

significant differences in microbial diversity were observed in Montastraea cavernosa and Orbicella 

franksi samples by health status, though in both species within-sample diversity in naive samples 

appeared to be higher, though highly variable between samples (Figure 1A and B). Across all 
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diversity metrics, diversity was equally high in naive samples as in disease lesion samples, and other 

sample types generally had lower bacterial diversity. There were no significant differences found in 

Shannon diversity or species richness by coral species (p = 0.3574, χ2 = 3.23)  or by site (p = 0.4735, 

χ2 = 1.50).  

Bacterial community composition as assessed from metagenomic data was significantly influenced 

by health status (Disease Lesion, Diseased – Unaffected, Apparently Healthy, Naïve) (R2 = 0.079, F 

= 3.668, p = 0.001). All health status categories were significantly different from one another (p < 

0.01) except for diseased unaffected and apparently healthy (R2 = 0.017, F = 1.092,  p = 0.1990) 

(Figure 2A). Additionally, community composition significantly differed by sampling month (R2 = 

0.055, F = 2.510, p = 0.001) and species (R2 = 0.055, F = 2.495, p = 0.001, Figure 2B), but F values 

were small for these variables, indicating that variability between and within groups was similar. Site 

was not found to be a significant driver of community composition (R2 = 0.018, F = 1.104,  p = 0.14). 

  

Figure 1: Differences in taxon richness (A) and Shannon-Wiener diversity (B) by health status 

(Naive, Apparently Healthy, Diseased – Unaffected, and Disease Lesion). Boxes sharing a letter are 

not significantly different from each other using an FDR corrected significance level of p < 0.05. 

Pairwise comparisons were only performed within each coral species. 
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3.1.3. Species-independent markers of disease status 

Random forest classification was used to identify microbial taxa that best discriminate among coral 

disease classes (Disease Lesion, Diseased – Unaffected, Apparently Healthy, Naïve) based on taxon 

abundance profiles from phyloFlash aggregated to the genus level. The random forest model, trained 

on data produced by phyloFlash, achieved an overall out-of-bag (OOB) error rate of 36.09%, indicating 

moderate classification accuracy across all disease classes. For each class in the dataset, a binary 

classifier was trained to distinguish that class from all others (one-vs-all approach). Error rates varied 

by class, with the lowest error observed in Disease Lesion samples (13.33%) and the highest in Disease 

– Unaffected samples (85.71%). This was likely due to similarities in bacterial community composition 

Figure 2: NMDS ordinations of bacterial taxa as identified by phyloFlash in samples using Bray–Curtis 

distance. A) ellipses plotted by health status, B) ellipses plotted by coral species. 

 

Figure 3: Out-of-bag (OOB) error rates for the Random Forest classification model predicting disease 

classes. The plot shows the overall OOB error rate (black line) as well as the class-specific OOB error 

rates for each disease class, represented by colored lines. These error rates indicate the proportion of 

samples misclassified during model training, providing an internal estimate of model accuracy without 

the need for a separate test set. 
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observed in Disease Unaffected and Apparently Healthy samples (see alpha and beta diversity 

analyses).  

Variable importance was assessed using both Mean Decrease in Accuracy (MDA) and Mean 

Decrease in Gini (MDG). The taxa with the highest MDA across all health categories were 

Pseudomonas (MDA = 4.851367), Aestuariibacter (MDA = 3.827359), Fusibacter (MDA = 3.658612), 

and an unclassified genus in the family Cyclobacteriaceae (MDA = 3.535318).  Similarly, the taxa with 

the highest MDG across all health categories were Pseudomonas (MDG = 0.9959390), 

Alkalispirochaeta (MDG = 0.7627235), Endozoicomonas (MDG = 0.9200709), and Desulfatitalea 

(MDG = 0.7503214). These taxa are important across all classes with Pseudomonas consistently ranked 

highly across both importance metrics. The importance of these taxa indicates that these taxa respond 

strongly to disease exposure and progression. 

In contrast, taxa that were associated strongly with a single disease condition may be better 

predictors of health status. For example, unclassified taxa within the family Caulobacteraceae were 

found to have high MDA and MDG within Naïve coral samples across all species. This indicates that 

this taxon may be a member of the naïve coral microbiome that was lost upon sitewide exposure to 

disease (all disease classes after SCTLD arrived to the region). Mean Decrease in Accuracy (MDA) is 

the best metric to identify potential predictors of a class, as this metric measures how much the model’s 

overall accuracy decreases when a specific feature (e.g., a taxon) is randomly permuted. Taxa that were 

predictors of the Disease Lesion health status based on MDA included Halarcobacter, Fusibacter, 

Amphritea, and Desulfocella (Figure 4). These taxa may play a potential role in lesion formation or 

persistence. Ferrimonas was most predictive of Diseased Unaffected samples, possibly indicating 

microbiome adaptations that help maintain tissue integrity despite adjacent lesions. Notably, 

Fusibacter, Ferrimonas, and the unclassified taxon from Family Caulobacteraceae were associated 

with Apparently Healthy samples, suggesting that these samples represent a transitional stage between 

Naive and Diseased Unaffected. 

Figure 4: Top microbial taxa predictive of each disease class based on Mean Decrease in Accuracy 

(MDA) from Random Forest classification. Each bar represents the MDA value of a taxon, indicating 

its importance in predicting the corresponding disease class. Higher MDA values suggest greater 

contribution to model accuracy when predicting that class. Taxa were ordered by importance within 

each facet. Only the top 10 predictors per class are shown. Disease classes include Diseased Lesion, 

Diseased Unaffected, Apparently Healthy (exposed), and Naive (unexposed) samples. 
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3.1.4. Integrative analyses of metagenomic data with transcriptomic data 

To investigate the functional relationships between host Single Copy Orthologs (SCOs) and 

microbial metabolic pathways, correlation analysis and network analysis were performed separately on 

each disease class. Host genes and bacterial metabolic pathways were first clustered across all samples 

to identify co-occurring genes/pathways that would influence network modularity. Spearman 

correlation with hierarchical clustering was used to find biologically relevant modules of co-occurring 

genes and pathways (i.e., host gene to host gene correlations greater than 0.9) that were persistent across 

disease states. This assumes that biological functions within the host and the bacterial community are 

not completely restructured by disease development. Then, abundance of pathways within each module 

was averaged (as read count data were already normalized) to produce a summary metric (mean 

abundance) for each module. Samples were then split by disease class (e.g., Diseased Lesion, Naïve) 

and Spearman correlations (positive and negative) were identified between host genes and bacterial 

pathways within disease classes. 

A total of 188 clusters of bacterial pathways and 24 clusters of SCOs were produced from 

hierarchical clustering. Data were then examined by disease class to identify how interactions between 

host gene groups and bacterial metabolic pathways were influenced by disease development. For 

disease lesion samples, correlation analysis between pathways and SCOs found a total of 229 

significant correlations (|r| ≥ 0.8) FDR-corrected p < 0.05), involving 24 unique SCOs and 87 unique 

bacterial pathways. The resulting bipartite network consisted of 107 nodes (24 SCO nodes and 83 

Pathway nodes) and 106 edges after the removal of 2 dyads (nodes only connected to one another). 

The average degree for the disease network was 1.981308, meaning that each node was connected 

on average to ~2 other nodes. Density of the network was low at 0.01869159, where a density of 1 

means that every node is connected to every other node. Modularity for the network was 0.7992376 

(scale of 0 to 1) suggesting that there were groups of genes/pathways that were highly connected and 

that there was a higher degree of internal connectivity within these groups than between them.  

 Cluster 5, identified through network analysis, exhibited the highest connectivity among all 

modules, with a degree of 23, indicating it was the most functionally integrated cluster in the host-

microbe network. This was a complex module of SCOs associated with DNA integration, repair, 

recombination, and synthesis (indicative of tissue damage and attempted regeneration) clustered with 

other SCOs associated with immune and inflammatory response, regulation of apoptosis and 

mitochondrial ADP transmembrane transport. Interestingly, host cluster 5 also contained genes 

involved in ossification and osteoblast-related genes, which although derived from vertebrate 

annotations, may represent analogs of extracellular matrix production, calcification, or structural 

remodeling in coral tissue. Lastly, this cluster contained genes involved in Wnt signaling (including 

canonical and planar cell polarity pathways), which governs cell fate, polarity, and tissue organization, 

likely reflects a breakdown and attempted re-patterning of host tissue architecture under stress. Cluster 

5 was strongly associated with bacterial pathways involved in core aerobic energy metabolist (bacterial 

TCA cycle, ubiquinol biosynthesis) but also stress-associated fermentative and anaerobic pathways 

(ethanol degradation, nitrate reduction, proline-to-cytochrome electron transfer), potentially indicative 

of hypoxic microenvironments. Also linked to cluster 5 were genes involved in the degradation of 

amino acids; fatty acids; and sugars, consistent with nutrient scavenging from host tissue or decaying 

organic matter. 
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Table 5: Average degree, density, and network modularity for each of the three networks created 

correlating Single Copy Orthologs (SCOs) and bacterial functional pathways. Average degree is 

calculated as the average number of connections (edges) each node has in the network. Density is 

calculated as the proportion of all possible edges in the network that are actually present. Modularity is 

a measure of how well the network can be divided into distinct modules or communities. 

 

  Avg_Degree Density Modularity 

Apparently Healthy 6.191335740 0.0111959 0.53721668 

Naïve  4 0.17391304  0.48460614 

Disease Lesion  1.981308 0.01869159  0.7992376 

 

3.2.  Viral Community Analyses 

3.2.1. Virus sequence detection and classification success 

Figure 5: Network visualization of statistically significant correlations between Single Copy 

Orthologs (SCOs) (orange nodes) and bacterial functional pathways (green nodes). Edges represent 

Spearman correlations between nodes, with edge color and transparency indicating the strength and 

direction of the correlation (blue = strong negative, red = strong positive, white = neutral). Node 

placement is determined by the Fruchterman-Reingold layout algorithm, which positions strongly 

connected nodes closer together to emphasize modular structure. Only correlations above |r| ≥ 0.8 

are shown. Node labels indicate GO terms or pathway names; edge transparency reflects correlation 

magnitude. 
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Viral sequences were identified independently from RNA and DNA sequencing libraries to 

generate a final non-redundant set of putative viral contigs. Evidence of viral origin for each sequence 

was supported by one or more detection or classification tools. In the metatranscriptomic (RNA 

sequencing) dataset, the program deep6 predicted 3,058,884 sequences as potentially viral. Of these 

~3 million putative virus sequences, 621,896 sequences were determined to be likely viral representing 

whole or partial RNA virus genomes or DNA/RNA virus transcripts (herein referred to as metatV 

sequence set) that were the focus of downstream analyses. From the metagenomic data, there was a 

starting total of 22,881,581 non-redundant contigs sourced from all sample libraries. Of these, 

17,747,362 were determined to be of cellular origin either via alignment to known coral/dinoflagellate 

genome sequences or by the program CAT. From the remainder of the sequences, post length filtering 

(<1000 bp was removed), there were 1,311,959 putative non-cellular sequences, of which 10,774 had 

substantial evidence indicating viral origin (herein referred to as metagV sequence set). These 10,774 

putative virus sequences represent whole or partial DNA virus genomic sequences. 

Classifying viral sequences from non‐model systems like coral reefs with sparse reference 

databases makes confident assignments at lower ranks (Order–Species) challenging.  For that reason, 

we only report taxonomic results at ranks where classification confidence is highest (e.g., Realm–

Class). Putative viral sequences from both metatranscriptome and metagenome sequence sets (metatV 

and metagV, respectively) spanned all known viral realms. However, only the metatV set contained 

sequences belonging to the viral Realm Adnaviria, which is a double-stranded DNA virus realm that 

includes filamentous archaea-infected viruses. In both sequence sets, the top three most abundance 

classes were Caudoviricetes (tailed, prokaryotic dsDNA viruses), Retraviricetes (eukaryote-infecting 

retroviruses), and Megaviricetes (eukaryote-infecting giant dsDNA viruses). Of the 535,006 metatV 

transcripts classified at the class rank, 338,084 (64.4%) fell into six classes - five of which are 

eukaryotic virus classes: Megaviricetes (n = 216,121), Revtraviricetes (n = 45,421), Pokkesviricetes 

(n = 33,754), Naldaviricetes (n = 26,625), and Herviviricetes (n = 16,163).   

 

3.2.2. Core virome characterization and evidence for phylosymbiosis 

Core virome analysis revealed 32 different viral sequence taxa (i.e., sequences grouped into a 

recognized virus class or sequences with a provided classification but lacking a class designation) that 

were present in at least 95% of samples within a species. Of these 32 groups, 17 corresponded to 

recognized viral classes spanning diverse DNA and RNA virus taxa (Table 6). These included 10 

DNA virus classes, some of which had the highest number of recovered transcripts, such as 

Megaviricetes (giant viruses), Caudoviricetes (tailed bacteriophages), Herviviricetes (herpesviruses), 

Naldaviricetes, and Pokkesviricetes (poxviruses) (Table 6A). The remaining seven classes represented 

RNA virus taxa, including Duplopiviricetes, Pisoniviricetes, Revtraviricetes, and most notably 

Stelpaviricetes, which includes +ssRNA filamentous viruses (Table 6B). Hierarchical clustering based 

on Bray–Curtis distances of core virome taxa revealed evidence of phylosymbiosis (the tendency of 

closely related species to share similar viral communities), with O. faveolata and O. franksi forming 

a distinct cluster, while M. cavernosa and C. natans were more dissimilar (Figure 6). 

 

Table 6 (next pages). Summary of viral classes identified across all coral species assessed. (A) DNA 

virus classes and (B) RNA virus classes detected in coral viromes. For each class, the genome type is 

provided based on information within the International Committee on Taxonomy of Viruses (ICTV) 

taxonomy database (2024 release; Walker et al., 2022). Genome type includes double-stranded (ds) or 

single-stranded(ss) DNA/RNA, as well as reverse-transcribing genomes. *Indicates viral class present 

in all core viromes except C. natans. **Indicates viral class present in all core viromes except M. 

cavernosa. 
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A) DNA Virus 

class 

Genome type 

Maveriviricetes dsDNA genomes (~17–30 

kb, circular or linear) 

Megaviricetes dsDNA genomes (often 

>100 kb) 

Naldaviricetes Large circular dsDNA 

genomes  

Pokkesviricetes Linear dsDNA genomes  

Polintoviricetes dsDNA genomes  

Quintoviricetes* Single-stranded DNA 

(ssDNA) genomes 

Tectiliviricetes Linear dsDNA genomes 

(non-enveloped icosahedral 

virions) 

Caudoviricetes dsDNA genomes 

Faserviricetes Circular ssDNA genomes 

(positive-sense) 

Herviviricetes dsDNA genomes 

 

 

 

 

B) RNA Virus class Genome type 

Alsuviricetes Positive-sense 

ssRNA genomes 

Duplopiviricetes** Double-stranded 

RNA (dsRNA) 

genomes 

Ellioviricetes Negative-sense 

ssRNA genomes 

(segmented) 

Leviviricetes Positive-sense 

ssRNA genomes 

Pisoniviricetes Positive-sense 

ssRNA genomes 

Revtraviricetes Reverse-transcribing 

viral genomes (RNA 

or DNA) 

Stelpaviricetes Positive-sense 

ssRNA genomes 
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3.2.3 Virus community dynamics across time and health state 

One major objective for Phase II of this project was to assess virus community variability over 

time, before and during the SCTLD outbreak at Dry Tortugas National Park. As a first step, we 

assessed alpha diversity (Shannon’s H' index) across sampling time points (T0: Pre-outbreak, T1: 

Early outbreak, T2: Late outbreak). When considering all species, we observed a statistically 

significant difference in alpha diversity between time points (Kruskal-Wallis chi-squared = 20.604, df 

= 2, p = <0.01). Pairwise comparisons between time points revealed that virus alpha diversity at T0 

(pre-outbreak) was significantly different from both the early outbreak (T1; Wilcoxon rank-sum exact 

test, p = 0.03) and late outbreak (T2; Wilcoxon rank-sum exact test, p = 0.01). Additionally, T1 

community alpha diversity also differed significantly from T2 (Wilcoxon rank-sum exact test, p = 

0.01). When assessing whether this pattern was also observed within species, only M. cavernosa 

(Wilcoxon rank-sum exact test: T0 vs. T1, p < 0.01; T0 vs. T2, p < 0.01) and O. faveolata (Wilcoxon 

rank-sum exact test: T0 vs. T2, p < 0.01) virus communities showed significant differences across 

time points (Figure 7). 

 

 

Figure 6. Hierarchical clustering of coral species based on core viral class transcript 

presence/abundance using Bray-Curtis dissimilarities. The dendrogram illustrates differences in core 

virome composition and expression profiles across species, with O. faveolata and O. franksi forming 

a distinct cluster, while M. cavernosa and C. natans are more dissimilar. Distances on the y-axis 

represent pairwise Bray-Curtis dissimilarity values, indicating relative divergence in viral community 

structure among host species. 
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Next, we assessed virus community beta diversity across coral species, health status, and timepoint. 

We used PERMANOVA (adonis2, Bray-Curtis distance, 999 permutations) to assess the contribution 

of host species, time point, and health status to virus community composition. All three factors had 

statistically significant effects: host species explained the largest proportion of variance (R² = 0.480, 

F = 41.69, p = 0.001), followed by time point (R² = 0.016, F = 2.02, p = 0.021) and health status (R² 

= 0.013, F = 1.65, p = 0.047). Within‐species PERMANOVAs revealed that only O. faveolata showed 

a clear health effect: dispersions were homogeneous (p > 0.05), and β‐diversity differed significantly 

between healthy and diseased (R² ≈ 0.112, p = 0.001). In M. cavernosa, although PERMANOVA 

flagged a strong time‐point effect (R² ≈ 0.118, p = 0.003), dispersion among T0/T1/T2 was unequal 

(p = 0.003), so that result is likely driven by spread rather than a true centroid shift; its health effect 

was marginal (p = 0.06). For O. franksi and C. natans, health status groups had significantly different 

dispersions (p = 0.001), making their borderline PERMANOVA health p‐values (p ≈ 0.05–0.08) 

uninterpretable. Neither species showed a reliable time‐point effect (all p > 0.3). Thus, only O. 

faveolata exhibits a β‐diversity shift by health status. Visualization of sample clustering based on 

Figure 7. Viral alpha diversity (Shannon H’ Index) across time points, coral species, and sites. 

Boxplots show the Shannon diversity index of viral communities associated with four coral species 

(Montastraea cavernosa, Orbicella faveolata, Orbicella franksi, and Colpophyllia natans) sampled 

at three time points relative to a stony coral tissue loss disease (SCTLD) outbreak: pre-outbreak 

(T0), early outbreak (T1), and late outbreak (T2). Colors represent samples from three reef sites 

(SCTLD25: red, SCTLD26: green, SCTLD28: blue). Asterisks indicate statistically significant 

pairwise comparisons between time points (Wilcoxon rank-sum exact test: p < 0.05, p < 0.01). 

Differences in alpha diversity patterns were observed across species and time points, with some 

species showing significant shifts in viral diversity during early and/or late outbreak 
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computed Bray-Curtis distances with a Principal Coordinates Analysis (PCoA) did not reveal any 

obvious clustering by health status or time point across species (Figure 8). 

 

 

 

3.2.3 Upregulated virus groups and genes within disease margin tissues 

Differential abundance analysis revealed 6,588 sequences that were upregulated in diseased margin 

tissue samples across species. The six most upregulated taxa correspond to viral classes identified as 

part of the core virome: Megaviricetes, Caudoviricetes, Naldaviricetes, Pokkesviricetes, 

Retraviricetes, and Herviviricetes (Figure 9). CheckV results indicate that 6,535 of the upregulated 

sequences are likely transcripts or genome fragments. The remaining upregulated sequences were 

classified as high-quality (n = 52, showing >90% genome completeness) or complete (n = 2, with 

evidence of being complete genomes). These complete and near-complete genomes were 

representative of members within the orders Ortervirales (n = 46; retroviruses) and Picornavirales (n 

= 2), while two transcripts remained unclassified. From the 6,588 sequences, functional annotations 

were found for just 930 open-reading frames (ORFs) by the program MetaCerberus. A large proportion 

of these ORFs were annotated as polyproteins or accessory factors (n=464) and hypothetical/unknown 

proteins (n=142). The remaining ORFs were annotated as proteins involved in reverse transcription 

(n=107), metabolic processes (n=84), virus replication/transcription (n=84), and viral structural 

proteins (n=61). 

 

Figure 8. Principal Coordinates Analysis (PCoA) of viral community composition within each 

coral species, based on Bray-Curtis dissimilarities. Each panel represents one species (M. 

cavernosa, O. faveolata, O. franksi, C. natans). Points are colored by time point (T0 = pre-

outbreak, T1 = early outbreak, T2 = late outbreak) and shaped by health status (diseased, healthy, 

quiesced). The percentage of variation explained by each axis is indicated in brackets.  
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Table 7. Virus‐derived proteins predicted from differentially abundant transcripts in diseased coral 

tissues, grouped by functional category based on annotations from virus focused databases PVOG, 

VOG, PHROG, and GVDB, as well as potential auxiliary metabolic genes identified by NFixDB and 

AMRFinder. 

 

Category Count Insight 

  

Other 

464 Diverse polyproteins and accessory factors, such as RNA 

replication polyproteins, enzymatic polyproteins, and 

unclassified enzymatic domains that may bundle multiple 

functions in a single ORF. 

Hypothetical/Unknown 142 Uncharacterized proteins may represent novel viral functions 

or unannotated domains. 

Reverse transcription 107 Reverse transcriptase proteins suggest retrotransposition or 

genome integration events by retroviruses. 

Metabolic (AMG-like) 84 Auxiliary metabolic genes manipulate host metabolic 

pathways to support viral replication influencing host 

interactions within tissues. 

Replication/Transcription 72 These enzymes drive viral genome replication and 

transcription, fueling viral proliferation. 

Structural 61 Structural proteins form the virus capsid or mediate host 

attachment, essential for infectivity. Indicative of later 

infection stage (virus particle production). 

Figure 9. Heatmap of top 20 viral groups within significantly increased transcript abundance in 

diseased margin coral tissue samples (Wald test, DESeq2, adjusted p < 0.1). Abundances are based 

on TMM-normalized counts and log10-transformed for visualization. Each column represents a 

diseased sample, grouped by coral species (M. cavernosa, O. faveolata, O. franksi, C. natans), and 

each row corresponds to a viral class. Color intensity reflects transcript abundance, with gray 

indicating absence. Taxa labels containing “_U” indicate that that group of sequences were 

classified as a virus that has yet to be assigned to a recognized class. 
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3.3.  Histological Analyses 

Histopathology analysis of the diseased and healthy corals from the Dry Tortugas National Park 

revealed a similar pattern for diseased M. cavernosa and O. faveolata corals as previous studies 

(Beavers et al., 2023) Rossin et al in review) from St. Thomas, USVI and Florida. For the Dry Tortugas 

samples, an interesting discrepancy from previous studies was in exocytosis, where healthy colonies 

had high exocytosis. This is unusual compared to other studies but could be connected to a higher 

turnover of symbionts in this region. Methodology and results are included in a public Github repository 

(https://github.com/ashleyrossin/dry_tortugas). The goal of this repository is to provide a public 

reference for how to collect quantitative histological data and how it can effectively be used in disease 

identification. 

 

3.4.  Transcriptomic & Associated Integrative Analyses 

3.4.1. Species independent markers of disease resistance 

Ortholog analyses comparing refined transcriptomes for the four species identified a set of 7,462 

conserved single copy orthologs. Analysis of this set of orthologs did not identify any species 

independent resistance markers; no orthologs were consistently significantly differentially expressed 

between resistant and susceptible colonies across all species either before or during the disease 

outbreak. We did however identify 533 transcripts which were consistently responsive to SCLTD 

(differentially expressed between apparently healthy and disease margin tissue) across all species. Of 

these only 4 were significant in both June and August, 491 were differentially expressed in June only, 

and 38 in August only. A total of 61 of these orthologs (~12%) were identified as putatively associated 

with immunity, all but 4 of which were significantly differentially expressed in June only. Immune 

orthologs were roughly evenly divided between up and down regulation in response to disease (29 up, 

32 down).  

Notable trends of differential expression include strong upregulation of orthologs associated with 

oxidative stress and immune receptors in June only (Figure 10). Furthermore, orthologs associated 

with inflammation and antiviral response were frequently downregulated in response to disease 

(Figure 11) 

 

https://github.com/ashleyrossin/dry_tortugas
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Figure 10: Box plots of expression of immune related orthologs involved in immune recognition (top 

row) and oxidative stress (bottom three rows), the majority of which were significantly upregulated in 

disease margin tissue compared to apparently healthy portions of colonies. Stars indicate significant 

differences between tissues. AH- apparently healthy, DM- disease margin 
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Figure 11: Box plots of expression of immune related orthologs involved in inflammation (top two rows) 

and viral response (bottom two rows), most of which were significantly downregulated in disease margin 

tissue compared to apparently healthy tissue. Stars indicate significant differences between tissues. AH- 

apparently healthy, DM- disease margin 
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3.4.2. Species independent correlations between microbiome/viral community composition and 

histological markers and host gene expression 

Investigation of associations between normalized ortholog expression and 16S microbial data 

revealed strong correlations between microbial abundance and host gene expression. A total of 356 out 

of 390 identified bacterial families were correlated to at least one ortholog; every ortholog was 

correlated to at least one bacterial family. Herein we focus on the top 5% most correlated bacterial 

families (~20; Table 8) and their associations with the top 5% most correlated orthologs (~376), 

following established methods from other systems. The top 20 most correlated bacterial families 

included common coral-associated microbes including Endozoicomonadaceae. 

 

Table 8: Summary of microbial families associated with the highest number of orthologs. Listed are 

number of associations with the top 5% most correlated orthologs, and number of enriched biological 

process GO terms. 

 

Microbial Family Associated Orthos (top 5%) Associated GO Terms 

Blastocatellaceae 259 20 

Caminicellaceae 260 22 

Chloroflexaceae 225 32 

Christensenellaceae 293 25 

Chromatiaceae 138 5 

Desulfobacteraceae 179 26 

Desulfotomaculales Incertae Sedis 280 16 

Dethiobacteraceae 306 35 

Endozoicomonadaceae 228 15 

Halobacteroidaceae 139 15 

Inquilinaceae 161 16 

Kiloniellaceae 201 20 

Lentimicrobiaceae 157 4 

Lentisphaeraceae 240 30 

Nisaeaceae 257 20 

Oligoflexaceae 276 27 

Prolixibacteraceae 229 9 

Rhodocyclaceae 68 264 
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Spirochaetaceae 230 34 

Terasakiellaceae 238 27 

 

We then considered gene ontology enrichment of the associations between top families and top 

genes at the level of family. Fifteen microbial families had associations with top genes which were 

enriched for processes associated with immunity, seven of which were associated with two or more 

terms (Figure 12). Of these, four families were positively associated with immunity, two were 

neutrally, and one was negatively associated. Of all families, Rhodocyclcaceae was associated with 

the most immune terms, though no clear trend of positive or negative association with immunity could 

be ascertained. 

Next, we considered associations between normalized viral sequence abundance (aggregated at the 

level of viral Order or similar taxonomic groups) and normalized ortholog abundance. In general viral 

sequence abundance was highly correlated with normalized ortholog abundance (Table 9). Every viral 

group was significantly associated with at least one ortholog and vice versa. Furthermore, of the top 

22 orders, 12 (over half) were correlated to the full set of top genes. Viral groups were consistently 

associated with a core set of biological process GO terms, including a set of six immune-related terms 

mostly related to antigen presentation. Nearly every group was positively associated with these terms, 

and negatively associated with melanin biosynthesis (Figure 13). 

 

 

Figure 12: Significance and enrichment of biological process go terms of interest associated with 

7of the microbial families of interest. Only those families which were associated with at least two 

terms of interest are shown. Families are ordered based on associations: the top row includes 

families with positive associations and the bottom row is split between those with neutral and 

negative associations. Each bar indicates a significantly enriched biological GO term; color 

indicates the association of the term with immunity; the direction of bar indicates positive or 

negative enrichment; the magnitude of bars indicates the negative log of the adjusted p value. 
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Table 9: Summary of viral group associated with the highest number of orthologs. Listed are number 

of associations with the top 5% most correlated orthologs, and number of enriched biological process 

GO terms. 

Viral Group Associated Orthos  

(top 5%) 

Associated GO Terms 

Bingvirus 383 24 

Brochothrix phage BL3 383 25 

Burrovirus 336 28 

Carmenvirus 383 24 

Clostridium phage phiCT19406C 383 24 

Decurrovirus 383 25 

Godonkavirus 328 23 

Halcyonevirus 383 24 

Klebsiella phage phiKO2 240 11 

Lacusarxvirus 184 17 

Lightbulbvirus 355 25 

Nonagvirus 344 25 

Pseudoalteromonas phage H103 383 25 

Pseudomonas phage JBD44 379 24 

Schitoviridae 295 32 

Spizizenvirus 383 24 

Streptococcus phage phiARI0746 383 24 

Streptococcus phage phiNJ2 383 25 

Uetakevirus 318 22 

Vertoviridae 317 18 

Vividuovirus 383 25 
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Finally, to further consider associations between host gene expression and histological markers of 

interest as well as our identified microbial families of interest (Table 8) we constructed a gene 

coexpression network with our normalized ortholog read count matrix, and the correlated average 

expression of resultant modules (groups of orthologs) to histological traits of interest and relative 

abundance of microbial families of interest. Our coexpression network consisted of 15 modules 

ranging in size from 33 to 1,727 transcripts. Overall, module expression was highly correlated to traits 

of interest (Figure 14). We saw strong patterns of association between most microbial families of 

interest and module gene expression, with the exception of Halobacteroidaceae, which was not 

correlated to any modules, and Lentimicrobiaceae, which was only correlated to two modules. 

Histological traits vacuolization (mean_symb_vac) and max vacuole size (mean_max_vac) were 

highly correlated to gene expression, but exocytosis (mean_prop_exo) was only correlated to one 

module of interest. Likewise, the red and brown modules were most correlated to bacterial families 

and histological traits of interest, though neither had clear roles in immune function. The brown 

module was enriched for orthologs related to sensory and nervous processes, and the red module 

showed no significant biological process enrichment, though it did contain several hub (highly 

connected) orthologs related to apoptosis. Gene ontology enrichment analysis revealed one clear 

immune module, dark green, which was enriched for over twenty biological process GO terms related 

to immunity, and several more related to response to biotic stimuli/stress. This module was positively 

associated with Lentisphaeraceae, Nisaeaceae, and Oligoflexaceae abundance, but negatively 

associated with Endozoicomonadaceae abundance. 

 

  

Zobellviridae 383 24 

Figure 13: Heatmap displaying enrichment of significantly enriched immune-related GO terms 

associated with each viral order of interest. Colors are representative of delta rank (metric of positive or 

negative enrichment); blank/white cells indicate nonsignificant enrichment. Viral orders (columns) and 

GO terms (rows) are hierarchically clustered based on patterns of enrichment. 
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3.5.  Immunological Analysis of samples from project C21169 

Differences in immunological activity were largely driven by time, regardless of SCTLD exposure 

or immune pathway in question (Table 9). Specifically, peroxidase, melanin abundance, and 

antibacterial activity all significantly changed over the course of the experiment regardless of 

treatment. Catalase and total phenoloxidase were not significantly different as a result of any measured 

factor. 

 

  

Figure 14: Heatmap displaying associations between average expression of each coexpression network 

module (rows) and traits of interest: microbial family abundance and histological traits (columns). Only 

significant correlations (p<0.05) are displayed. Correlation value (R2) and p value are shown for each 

association. Boxes are colored based on correlation value in accordance with displayed scale (pink for 

positive associations, blue for negative associations). 
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Table 9. Results of two-way repeated measures ANOVA testing the effects of treatment, timepoint, 

and their interaction on each of the measured immune activity assays independently. Bold font indicates 

significant p value. 

 

For the three immunological metrics which did change over time, the effect of time seemed to be 

driven by shifts midway through exposure, around timepoint 4 (Figure 15, Table 10). For example, 

peroxidase spiked at timepoint 4, when lesions were first appearing on exposed colonies. Similarly, 

antibacterial activity was significantly lower at timepoints 4 & 5, when lesions were apparent, 

compared to early exposure. Melanin showed similar patterns though no posthoc comparisons were 

significantly different.  

  

Catalase 

Effect DFn DFd F p value ges 

Treatment 1 2 8.483 0.100 0.406 

Time Point 3 6 3.305 0.099 0.315 

Treatment:TimePoint 3 6 1.511 0.305 0.127 

Peroxidase 

Effect DFn DFd F p value ges 

Treatment 1 3 7.493 0.071 0.078 

Time Point 3 9 4.170 0.042* 0.444 

Treatment:TimePoint 1 3.58 0.665 0.493 0.064 

Total Phenoloxidase 

Effect DFn DFd F p value ges 

Treatment 1 3 1.457 0.314 0.041 

Time Point 3 9 0.606 0.628 0.046 

Treatment:TimePoint 3 9 0.649 0.603 0.077 

Melanin 

Effect DFn DFd F p value ges 

Treatment 1 3 2.576 0.207 0.042 

Time Point 3 9 3.922 0.048 0.283 

Treatment:TimePoint 3 9 0.290 0.832 0.014 

Antibacterial Activity 

Effect DFn DFd F p value ges 

Treatment 1 3 7.553 .071 0.206 

Time Point 3 9 70.509 < 0.001** 0.871 

Treatment:TimePoint 3 9 0.281 0.838 0.037 
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Figure 15: Box plot displaying immunological metric assay results for those assays where a significant 

effect of time was detected: a) peroxidase activity, b) melanin concentration, and c) antibacterial 

activity. Letters represent significant groups across timepoints, regardless of treatment; no pairwise 

differences were significant for melanin concentration after multiple test correction.  
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Table 10: Results of post-hoc pairwise t-tests comparing immunological metrics of interest across 

sampling timepoints. Results only shown for those metrics where the 2-way ANOVA identified a 

significant effect of timepoint. Significance (p) values are adjusted for multiple comparisons using a 

Bonferroni correction. Bold font indicates significant  padj value. 

Peroxidase 

Comparison Statistic df p value padj 

T2-T3 -3.25 7 0.014 0.084 

T2-T4 -3.79 7 0.007 0.041* 

T2-T5 -3.55 7 0.009 0.056 

T3-T4 -2.11 7 0.73 0.44 

T3-T5 0.810 7 0.444 1 

T4-T5 2.51 7 0.04 0.242 

Melanin 

Comparison Statistic df p value padj 

T2-T3 0.375 7 0.719 1 

T2-T4 2.12 7 0.071 0.427 

T2-T5 2.87 7 0.024 0.143 

T3-T4 1.69 7 0.136 0.816 

T3-T5 2.96 7 0.021 0.127 

T4-T5 1.55 7 0.165 0.99 

Antibacterial Activity 

Comparison Statistic df p value padj 

T2-T3 0.729 7 0.489 1 

T2-T4 7.46 7 < 0.001 < 0.001** 

T2-T5 9.86 7 < 0.001 < 0.001** 

T3-T4 6.53 7 < 0.001 0.002** 

T3-T5 8.16 7 < 0.001 < 0.001** 

T4-T5 2.03 7 0.082 0.49 

 

3.6.  Analysis of TEM images from coral sampled under projects C1E0A5 and C21169 

3.6.1. TEM image analysis from Dry Tortugas corals sampled under C1E0A5 

A total of 432 TEM micrographs from Dry Tortugas corals were analyzed across six species–health 

combinations. We quantified the proportion of images showing virus-like particles (VLPs) in coral 

tissue and within intracellular Symbiodiniaceae (zooxanthellae or “zoox”) at the level of overall 

prevalence and by VLP morphotype. In C. natans tissue, the median percentage of VLP-positive images 

was 92.9% in healthy samples (range 85.7–100%), 86.7% in apparently healthy (73.3–100%), and 

81.8% in diseased colonies (0–100%; Figure 16). For M. cavernosa, tissue-level prevalence reached 

94.1% in healthy samples, 69.2% in apparently healthy, and 25.0% in diseased samples (range 0–50%; 

Figure 16). Within Symbiodiniaceae cells, VLPs were observed in every group except one diseased 

outlier. In C. natans, intracellular medians were 100% in healthy, 60.0% in apparently healthy (range 

50–100%), and 92.9% in diseased symbionts (0–100%; Figure 17). In M. cavernosa, medians were 

100% in healthy, 46.7% in apparently healthy (33.3–60.0%), and 81.7% in diseased cells (16.7–100%; 

Figure 17). Both icosahedral and filamentous VLPs were detected in every C. natans tissue sample, 

with median prevalences of 85.7%, 100.0% and 90.9% (filamentous) and 92.9%, 92.9% and 92.9% 

(icosahedral) in healthy, apparently healthy, and diseased states, respectively (Figure 18). In M. 
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cavernosa tissues, icosahedral VLPs appeared at medians of 94.1% (healthy), 69.2% (apparently 

healthy) and 50.0% (diseased), whereas filamentous forms were present only in healthy and diseased 

tissues (medians 94.1% and 50.0%, respectively) and absent in the apparently healthy group (Figure 

TEM3). Across all comparisons (where sample representation allowed), no statistically significant 

effect of health state on VLP detection was found. 

 

 

 

  

Figure 16. Prevalence of virus-like particles (VLPs) in coral tissue by species and health state. Boxplots 

show the percentage of transmission electron microscopy (TEM) tissue images containing VLPs in 

Colpophyllia natans (Cnat, left) and Montastraea cavernosa (Mcav, right) across three health states: 

Healthy, Apparently Healthy, and Diseased. Each point represents the proportion of images showing 

VLPs for an individual coral tissue sample, based on a set of TEM images collected per sample. Each 

box represents the interquartile range, the horizontal line indicates the median, and whiskers denote the 

full data range excluding outliers 
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Figure 17. Prevalence of virus-like particles (VLPs) in symbiont (zooxanthellae) cells by coral species 

and health state. Boxplots show the percentage of symbiotic algal (zooxanthellae) cell images 

containing virus-like particles (VLPs) in Colpophyllia natans (Cnat, left) and Montastraea cavernosa 

(Mcav, right), across three health states: Healthy, Apparently Healthy, and Diseased. Each point 

represents the proportion of VLP-positive cells within the set of zooxanthellae images analyzed from a 

single coral tissue sample. Boxes represent the interquartile range; horizontal lines indicate medians, 

and whiskers denote the full data range excluding outliers. 
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3.6.2. TEM image analysis from time series experiment under project C21169 

     A total of 387 transmission electron microscopy (TEM) images were analyzed from the time 

series experiment conducted under project C21169, encompassing both coral tissue and symbiotic 

dinoflagellate (zooxanthellae) compartments. Images were derived from Colpophyllia natans (n = 

47) and Montastraea cavernosa (n = 340), and categorized into four treatment groups: (i) Healthy-

Control (HC), (ii) Healthy-Healthy (HH), (iii) Early-Disease (ED), and (iv) Disease-Diseased 

(DD). Virus-like particle (VLP) detection was quantified using two complementary metrics: the 

number of TEM fields in which each morphotype (filamentous or icosahedral) was observed, and 

the percentage of total fields per condition containing that morphotype. For C. natans, all 47 images 

were from DD tissues; within this group, filamentous VLPs were rarely detected (~5% of images), 

while icosahedral VLPs were present in ~30% of images. In contrast, M. cavernosa was represented 

across three conditions (HH (n = 163), HC (n = 67), and ED (n = 110)) with no images available 

for DD tissues. In M. cavernosa, filamentous VLPs were detected in 40% of HH images, dropped 

to 10% in HC, and rose slightly to 25% in ED. Icosahedral VLPs showed a similar but more 

pronounced trend: present in 80% of HH images, declining to 5% in HC, and detected in 12% of 

ED images. 

 

Figure 18. Detection frequency of virus-like particles (VLPs) in coral tissues by health state, species, 

and VLP morphology. Boxplots show the percentage of transmission electron microscopy (TEM) 

images containing virus-like particles (VLPs) in Colpophyllia natans (Cnat, left panels) and 

Montastraea cavernosa (Mcav, right panels), separated by VLP morphology: filamentous (top row) and 

icosahedral (bottom row). Coral health states are color-coded as Healthy (H, blue), Apparently Healthy 

(AH, blue), and Diseased (D, red). Each point represents the percentage of images showing VLPs from 

a single coral sample, calculated across both host tissue and symbiont (zooxanthellae) image sets. 
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4. DISCUSSION AND MANAGEMENT RECOMMENDATIONS 

4.1.  Discussion 

4.1.1.  Metagenomics 

We found that the bacterial taxa Halarcobacter, Fusibacter, Amphritea, and Desulfocella were 

predictive of a diseased state with random forest analysis. Halarcobacter and the closely-related 

Malaciobacter, as well as many other indicator taxa of SCTLD, were shed by corals with SCTLD into 

filtered seawater in Evans et al. (2023). Malaciobacter was also found in higher abundances in the 

seawater surrounding corals affected by SCTLD (Bloomberg et al., 2025). Arcobacter, with 99% 

BLAST identity to the sequence in this study, was also identified as an indicator taxon of SCTLD 

(Becker et al., 2022). Fusibacter has been identified as an indicator of SCTLD across several studies 

(Becker et al., 2022; Evans et al., 2023; Huntley et al., 2022; Rosales et al., 2022), but we found that 

Fusibacter was not sufficiently discriminatory, as it was also a predictive taxon of an apparently 

healthy (but not naïve) state. We found that the genus Ferrimonas was a predictor of apparently 

healthy and diseased unaffected states, but there is no known association of Ferrimonas with either 

healthy or diseased corals: Ferrimonas are facultatively anaerobic, Fe(III)-reducing 

Gammaproteobacteria typically found in marine sediments and aquatic environments. The family 

Caulobacteraceae was found to be a strong predictor of naive coral states. Bacteria in this family have 

been found to be tightly associated with the algal symbiont in the upper layers of coral tissue 

(Ainsworth et al., 2015) and it has been suggested that they may play a role in host nutrient cycling, 

though bacteria in this family harbor widespread roles.  

Metagenomic functional analyses supported conclusions from community composition analyses, 

and revealed consistently high levels of aerobic microbial activity across all coral species in all health 

states except disease lesion, with elevated abundance of pathways related to aerobic respiration via 

cytochrome c (PWY-3781) and the TCA cycle. These functions may be attributed to aerobic bacteria 

such as Endozoicomonas, Tistlia, and members of Terasakiellaceae, consistent with patterns observed 

in 16S rRNA data and prior findings (Rosales et al., 2022). We also detected abundant pathways 

involved in sulfur cycling (sulfate reduction and oxidation) and nitrogen utilization (ammonia 

assimilation and nitrate reduction), alongside high relative abundance of sulfate-reducing and 

anaerobic taxa including Desulfocella, Desulfovibrio, Halodesulfovibrio, Roseimarinus, Fusibacter, 

and Halanaerobium. While sulfate reduction pathways were elevated in diseased corals, this 

difference was not statistically significant, potentially due to sample size imbalance.  

These microbial functional shifts align with host gene expression patterns showing upregulation 

of lectins and oxidative stress genes during disease progression, suggesting a host response to both 

elevated microbial respiration and increased reactive oxygen species. Concurrent downregulation of 

antiviral genes may indicate suppression of viral defense pathways, potentially facilitating viral or 

microbial colonization and exacerbating disease. We hypothesize that the heathy coral microbiome is 

dominated by aerobic taxa including Endozoicomonas, with high abundance of aerobic respiration 

pathways (TCA cycle, cytochrome c). The loss of these pathways likely reflects the disruption of 

beneficial host-microbe interactions in which products of nutrient cycling may be transferred to the 

host. As disease develops, tissue damage and mucus overproduction may lead to localized hypoxia, 

favoring the proliferation of anaerobic and sulfate-reducing bacteria such as Desulfovibrio and 

Halodesulfovibrio, as evidenced by both taxonomic and functional profiling data. The byproducts of 

sulfate reduction and nitrate respiration include toxic compounds such as hydrogen sulfide that may 

harm coral tissue and inhibit healing (Jørgensen, 1982; Philippot & Hojberg, 1999). These anaerobes 

may not be primary pathogens but amplify disease impacts through opportunistic colonization of 

diseased tissue. Coral gene expression data suggest that the host attempts to recognize and neutralize 

bacterial opportunists through the upregulation of host lectins, however, pattern recognition receptors 

such as lectins launch a non-specific immune response to both beneficial and harmful bacteria taxa 

(Kvennefors et al., 2008), potentially leading to the observed decline in symbionts such as 

Endozoicomonas. Indeed, lectins play a role in maintaining healthy symbiosis with the algal symbiont 
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(Wood-Charlson et al., 2006), and this relationship may also be impacted by the dramatic upregulation 

of lectins observed. Overexpression of host lectins can lead to tissue damage and comes at a 

considerable energetic cost to the coral, possibility contributing to the observed downregulation of 

antiviral responses. 

The Fruchterman–Reingold layout used to produce a network visualization of interactions 

between host genes and bacterial metabolic pathways helped to emphasize modular structure by 

placing strongly correlated nodes in closer proximity, aiding interpretation of functional clusters. 

Overall, the network revealed structured, non-random associations between host gene expression and 

microbial functional capacity that may underlie key disease processes. The network shows numerous 

clusters of host genes that were strongly associated with microbial pathways during disease 

development. A total of 210 relationships were found to be statistically significant, and 24 host gene 

clusters and 186 microbial pathways were part of these significant associations. Clustering within the 

network highlighted several tightly connected modules, suggesting groups of co-regulated GO terms 

and pathways. 10 clusters were identified with 10 or greater edges; all were host genes.  

The high degree of connectivity observed in Cluster 5 suggests that this group of host genes and 

associated bacterial pathways plays a central role in shaping the coral's physiological response to 

disease. The co-enrichment of host genes related to DNA repair, inflammation, apoptosis, and tissue 

remodeling indicates an active, but potentially overwhelmed, host attempt to manage cellular damage 

and maintain tissue integrity. The concurrent association with bacterial pathways involved in central 

metabolism (e.g., TCA cycle), anaerobic respiration (e.g., nitrate reduction, PWY0-1584), and 

degradation of amino acids and lipids points to a metabolically flexible microbial community 

exploiting host-derived substrates in a hypoxic, nutrient-rich environment. The presence of bacterial 

nitrate reduction and ethanol degradation pathways (ETOH-ACETYLCOA-ANA-PWY)—both 

capable of producing cytotoxic intermediates such as nitric oxide and acetaldehyde—suggests that 

microbial metabolism may contribute directly to tissue degradation and immune 

dysregulation(Philippot & Hojberg, 1999). The correlation between host developmental signaling 

(e.g., Wnt pathways, osteoblast-like gene expression) and microbial metabolism may reflect an 

attempted compensatory regeneration response that is being disrupted or hijacked by opportunistic 

microbes. Overall, the high interconnectivity of Cluster 5 supports the hypothesis that disease 

progression involves a tightly coupled but maladaptive interaction between host stress responses and 

microbial functional shifts. The observed correlation may reflect a pathological feedback loop, in 

which the host attempts to repair and re-pattern damaged tissue, while microbes exploit the disrupted 

environment through elevated metabolic activity, including fermentation, anaerobic respiration, and 

nutrient scavenging. This interaction likely contributes to sustained inflammation, impaired healing, 

and further tissue degradation in SCTLD-affected corals. 

 

4.1.2.  Virus sequence analyses 

  The large volume of sequencing data produced per coral colony in this study has allowed for a 

deep investigation into virus community diversity and dynamics in the context of SCTLD. The goal 

for Year 2 was to continue testing the current working hypothesis that viruses contribute to SCTLD 

etiology through community-level dynamics in the form of opportunistic infections (Klinges et al., 

2024; Vega Thurber & Correa, 2023; Veglia, 2023). To do this successfully, we set out to 1. Develop 

a virus classification framework that integrates multiple bioinformatic tools to improve classification 

success and confidence; 2. Determine the core viral groups per species and perform a preliminary 

assessment of phylosymbiosis as a first step toward understanding whether resident viral communities 

may influence coral disease susceptibility or severity; 3. Assess virus community dynamics across 

time and health by measuring and comparing alpha and beta diversity differences; and 4. Identify viral 

taxa with upregulated transcripts in disease margin tissues and characterize the genes they encode. 

Inferring viral pathogens from ‘omics data remains a major challenge in environmental virology, 

particularly in understudied systems such as Florida’s coral reefs, where baseline data for most coral-
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associated viral lineages are lacking (Vega Thurber et al., 2025) In addition, public databases are 

incomplete and biased toward viruses from well-studied hosts (e.g., humans, plants, and model 

organisms), leaving reef-associated viral diversity significantly underrepresented. As a result, 

assigning confident taxonomic classifications to putative viral sequences (especially at lower 

taxonomic ranks like order, family, genus, species) remains difficult. This complicates efforts to 

determine whether the same virus has been detected across studies or to track consistent signatures of 

viral community change. To address these limitations and improve classification success and 

confidence, we developed a standardized bioinformatic pipeline tailored to deal with the novelty of 

coral-associated viromes. The pipeline integrates multiple detection and classification tools, enforces 

consistent annotation practices, and mitigates the impact of inconsistent or outdated taxonomies in 

public repositories. In its initial application in this study, the pipeline provided taxonomic 

classifications for 632,670 putative viral sequences from both DNA and RNA sequencing libraries. 

Importantly, it applied a conservative approach to lower-rank assignments below “class”, allowing for 

the future implementation of lineage-specific rules for species-level designation. This framework is 

designed to be reproducible and adaptable as coral virome references improve, forming the basis for 

a coral reef-specific virus classification tool that will facilitate more effective virus studies in Florida. 

To identify disease-specific coral virus communities or a potential viral pathogen, it is first 

necessary to establish which virus taxa are consistently present in individuals and which may appear 

sporadically. This study’s sampling design, which includes samples collected across multiple time 

points from the same coral individuals, provides a unique opportunity to address this knowledge gap 

in the Dry Tortugas by characterizing the core virome specific to each species sampled. Prior to this 

study, the core viromes (inclusive of both DNA and RNA eukaryotic- and prokaryotic-infecting virus 

groups) had not been characterized for any of the four coral species. Focusing on high-confidence viral 

sequences, we identified 17 virus classes (officially recognized by the International Committee on 

Taxonomy of Viruses) as core components in at least one of the four coral species' viromes (Table 6). 

These included ten DNA virus classes and seven RNA virus classes, each present in at least 95% of 

samples within a given species (Table 6). Several core classes identified in this study, which include 

the eukaryotic virus groups Megaviricetes (DNA), Pokkesviricetes (DNA), Herviviricetes (DNA), and 

Revtraviricetes (RNA), as well as the prokaryotic virus group Caudoviricetes, have previously been 

reported as core coral virome taxa and were identified to be a core group for each species 

(Ambalavanan et al., 2021; Thurber et al., 2017). We also identified six additional DNA virus classes 

and six RNA virus classes that have not yet been recognized as part of the core coral virome. Two 

notable core RNA virus classes for all species are Stelpaviricetes and Alsuviricetes. Stelpaviricetes 

and Alsuviricetes contain the orders Patatavirales and Tymovirales, respectively, both of which are 

comprised of positive-sense single-stranded RNA viruses with filamentous morphologies matching 

virus-like particles identified in TEM images by Work et al. (2021) and Howe-Kerr et al. (2023) in 

Florida corals. Hierarchical clustering analysis revealed evidence consistent with phylosymbiosis, 

wherein more closely related coral species shared more similar core virome sequence diversity at the 

virus class level (Figure 6). Given the current hypothesis proposing a community-wide contribution 

to SCTLD, this observation provides a foundation for future investigations aimed at elucidating the 

role of core virome diversity in shaping coral holobiont responses to SCTLD. 

Assessment of virus community variability across sampling time points and colony health status 

revealed notable patterns. When all coral species were pooled, we observed a significant difference in 

virus alpha diversity across the pre-outbreak (T0), early outbreak (T1), and late outbreak (T2) periods 

(Kruskal-Wallis chi-squared = 20.604, df = 2, p < 0.01) (Figure 7). However, because time point and 

health status are inherently confounded in our sampling design, this observed difference may reflect 

changes in coral health or stress states, similar to those documented under other stress conditions 

(Grupstra et al., 2022; Howe-Kerr, Grupstra, et al., 2023). Beta diversity analyses (PERMANOVA) 

indicated significant effects of host species, sampling time point, and health status on virus community 

composition, with host species explaining the largest proportion of variance (Figure 9). The 
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statistically significant contributions of sampling timepoint and health status warrant careful 

interpretation given the confounding nature of these factors. Nonetheless, collectively these results 

suggest a potential impact of disease on virus community dynamics, consistent with a scenario of 

holobiont dysbiosis (Egan & Gardiner, 2016). To understand how coral viromes respond to disease, 

future studies should first assess how viral communities vary over time under non-diseased conditions, 

providing a baseline for normal community dynamics. 

Next, we looked to determine the virus taxa with upregulated transcripts specifically within tissue 

sampled at the disease margin on a diseased coral across species. DESeq2 analyses revealed a total of 

6,587 sequences that were differentially more abundant within disease margin tissue across all species. 

These differentially abundant sequences represented 32 different virus sequence groups of which 19 

represented recognized virus classes (Figure 9). All core virus classes besides class Maveriviricetes 

(viruses that infect giant viruses), including the two groups of filamentous RNA viruses (Alsuviricetes 

and Stelpaviricetes), had increased transcript abundance in disease margin samples (Figure V4). Three 

additional classes identified with increased transcript abundance included Monjiviricetes (negative-

strand RNA viruses), Arfiviricetes (single-stranded circular DNA viruses – ssDNA viruses have been 

identified in diseased coral tissues previously (Soffer et al., 2014)), and Chrymotiviricetes (double-

stranded RNA viruses). The specific target hosts of these viruses within coral holobionts remain 

unclear. As these virus groups were not identified as core classes in any of the studied coral species, 

their increased transcription within disease margin tissues could reflect several possibilities: i. Some 

or all these virus groups may already be present in healthy coral tissues at abundances below detection 

thresholds, becoming detectable only upon increased viral productivity in diseased tissues; ii. Some 

or all these virus groups might be directly associated with a cellular pathogen, becoming detectable 

due to pathogen invasion or proliferation within coral tissues; or (iii) Some or all these virus groups 

could represent pathogenic agents directly responsible for SCTLD symptoms. Lacking substantial 

baseline information for these groups impedes our ability to make strong declarations regarding their 

role in SCTLD, and future research should focus on producing foundational information regarding 

coral virus communities outside the context of disease.  

Finally, we aimed to examine the functional annotation of differentially expressed transcripts to 

identify genes upregulated in disease margin tissues (Table 7). While we had a low annotation rate 

for the 6,587 sequences (likely driven by the novelty of the genomic information recovered), one 

observation is the presence of genes related to reverse transcription indicating the increased activity 

of retroviruses (class Retraviricetes) in disease margin tissues. Increased reverse transcriptase activity 

could indicate retroviral integration events into host genomes, potentially disrupting host genes critical 

for immune responses or activating the transcription of neighboring genes typically silenced under 

normal conditions (Jern & Coffin, 2008) Further investigation is needed to determine how retroviruses 

might influence gene expression patterns in coral or their associated symbionts. Additionally, a notable 

observation is the elevated expression of viral structural protein genes within disease margin tissues, 

suggesting that these viral infections are at an advanced replication stage involving active particle 

production and eventual viral release via lysis or budding. Specifically, lysis of coral or dinoflagellate 

host cells could directly contribute to previously observed cytopathic effects in symbiont cells and 

coral tissues (Landsberg et al., 2020) Additional baseline data on the temporal variability of virus gene 

expression landscapes are needed to identify reliable signatures of coral disease or to reveal 

mechanisms potentially driving disease progression. 

 

4.1.3.  Histology 

This study is unique in itself as corals are shown to recover from disease which is unusual in the 

case of SCTLD, but also provides for a broader reach. Samples collected for histology in this project 

were analyzed with the same methodology as samples across two (potentially three) other diseases 

and three other locations. This approach allows researchers to visually assess tissue parameters without 

any internal bias for their own data and compare to other diseases across other regions. This has the 
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potential to create a bank of knowledge across users for a faster verification of disease state. As the 

body of data grows, so will the verification. Moving these data and the methodology behind it allows 

for streamlining these techniques across labs. 

Moving forward, this technique could be applied to outplanting and ex situ facilities, marking what 

new “healthy” colonies look like, how species differ from one another, and potentially in the future, 

how tissue markers change seasonally and over time. A public repository allows for collaboration 

across disciplines and networks to create more holistic studies.  

 

4.1.4.  Transcriptomics 

Our species-independent analyses of markers of SCTLD resistance and disease response provided 

mixed results in identifying unifying potential diagnostic markers. While we were able to identify over 

7000 shared single copy orthologs across our four species, analysis of collated gene expression of 

these orthologs failed to identify any reliable markers of disease resistance, neither predictive nor 

epidemic. This result was consistent regardless of whether or not highly-susceptible species 

Colpophyllia natans was included in our analyses. The presence of predictive resistance markers, i.e. 

genetic variation which can be used to predict variation in response of host corals to a particular 

stressor, has been confirmed previously using species-specific approaches (Jin et al., 2016; Kelley et 

al., 2021; Vollmer et al., 2023). Furthermore, clear transcriptomic differences have also been observed 

between resistant and susceptible individuals during other disease outbreaks, again using species-

specific approaches (Libro & Vollmer, 2016; Wright et al., 2017), including our own previous work 

in year one of this project (Klinges et al., 2024). Our approach here is highly unique; no studies to date 

have applied multi-species approaches to identify species independent predictive markers, and only 

two have taken a multi-species approach to consider transcriptomic differences between resistant and 

susceptible individuals during disease outbreaks (Beavers et al., 2023; MacKnight et al., 2022). These 

studies have similarly found few or no species-independent markers of resistance (Beavers et al., 2023; 

MacKnight et al., 2022).  It is possible that mechanisms of resistance are highly species specific, as 

indicated by previous studies (Beavers et al., 2023; MacKnight et al., 2022).  However, all of these 

studies have been limited by sample size and existing genetic resources. More robust genomic 

sequencing of species of interest will certainly improve identification of orthologs and statistical power 

for identifying any potential species independent markers. 

While we did not identify clear predictive markers of disease, we were successful in identifying 

species-independent markers of disease response by comparing active lesion tissue to apparently 

healthy tissue on the same colony. Notably, these markers showed high temporal variability, with only 

four shared contigs consistently differentially expressed between these two tissue types over both 

sampling points (June and August). Generally, more species-independent response markers were 

observed early in the disease outbreak, in June, suggesting stronger initial disease stages. These 

patterns are important when considering management practices as they suggest corals may mount 

strong initial responses to disease, which cannot be sustained without intervention. The waning of 

responses over time may be a direct contributor to mortality, suggesting intervention to bolster and 

maintain initial immune responses may be a helpful strategy. 

This pattern of early responses was particularly true of immunological changes, wherein 57/61 

differentially expressed orthologs were only responsive in June. Specifically, we see strong 

upregulation of a number of lectins (putative immunological receptors; Kvennefors et al., 2008; Zhou 

et al., 2017) and oxidative stress genes in June, coupled with down regulation of antiviral and 

inflammatory genes. The upregulation of lectins is indicative of increased capacity to recognize and 

respond to pathogens (Kvennefors et al., 2008; Zhou et al., 2017). Immunological receptors are highly 

diversified across cnidarian lineages (Emery et al., 2021), though our patterns observed here suggest 

a role for some evolutionarily conserve receptors in initiating responses to SCTLD. The paired 

upregulation of oxidative stress orthologs and down regulation of inflammatory orthologs may be 

indicative of general pathways mitigating immunopathology, or self-damage inflicted by immune 
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responses. Both excessive oxidative stress and inflammation can be damaging to hosts during immune 

responses, but production of antioxidants and anti-inflammatory compounds can mitigate these 

responses (Hasnain, 2018; Knight, 2000; Marshall et al., 2018).  

Most notably, we observed downregulation of antiviral genes, which is surprising given the widely 

proposed viral causative agent hypothesis. Some of these genes, like RN216, are negative regulators 

of antiviral response (Evankovich et al., 2020), and others, like XERD, are indicative of viral 

integration into host genomes (Yeh, 2020), thus explaining their downregulation. We also observed 

clear upregulation of antiviral ortholog TXD12 (Hanchapola et al., 2023). Combined, our results 

provide clear evidence for the roles of antiviral processes in response to SCTLD, though the 

directionality of these responses is not abundantly clear. 

In addition to patterns of gene expression indicative of resistance and response to disease we also 

considered species-independent patterns of association between host gene expression and other 

generated metrics of interest, specifically microbial/viral community composition and histological 

traits of interest. As expected, host gene expression was highly correlated to viral and microbial 

community composition, though the magnitude of effects of viral abundance on host gene expression 

was shocking. Viral abundance was exceptionally strongly correlated to host gene expression and had 

strong positive impacts on host immunity. Notably, many of the viral groups most associated with host 

gene expression are associated with viral phages including Streptococcus phage phiNJ2 (Tang et al., 

2013), Zobellviridae (Gorodnichev et al., 2023), Streptococcus phage phiARI0746 (Abril et al., 2020), 

Uetakevirus (Li et al., 2022), Schitoviridae (Lokareddy et al., 2024), and Brochothrix phage BL3 

(Kilcher et al., 2010). Several of these, including both Steptococcus phages, Zobellviridae, and 

Uetakevirus are phages of disease-causing bacteria (Abril et al., 2020; Gorodnichev et al., 2023; Li et 

al., 2022; Tang et al., 2013), hence the associations with immunity are likely indicative of higher 

abundance of these bacteria rather than the viruses themselves. We did also identify a 

Pseudoalteromonas phage (H103; Zheng et al., 2023)) which was also positively associated with host 

immunity. Pseudoalteromonas bacteria are frequently associated with corals, and some may have 

probiotic effects which aid in SCTLD defense (Ushijima et al., 2023). Our results suggest these 

beneficial effects may be mediated through manipulation of host immunity. 

When considering bacterial community composition, we saw similar strong associations with host 

gene expression generally, and immunity specifically. We were able to identify several microbial 

families with effects of host immunity, the most notable of which was Rhodocyclaceae, an incredibly 

diverse group of microbes spanning ecological niches (Oren, 2014). Nitrogen fixing bacterial family 

Terasakiellaceae, was also highly associated with host gene expression generally, and negatively 

associated with host immune processes, despite previous observations of associations with healthy 

host tissues (Moynihan et al., 2022) and evidence for roles in thermal adaptation (Wei et al., 2024). 

Finally, we also observed strong effects of putative microbial symbionts of both host and 

Symbiodiniaceae on host gene expression and immune function. Putative Symbiodiniaceae symbiont 

Oligoflexaceae (Aguirre et al., 2023), was positively associated with both immunological GO terms, 

and our identified immunological co-expression module. Core Symbiodiniaceae microbiome member 

Chromatiaceae (Lawson et al., 2018) was also highly associated with host gene expression, though no 

effects on host immunity were observed. Notably, we also observed negative associations between 

putative beneficial microbial family Endozoicomonadaceae (Pogoreutz & Ziegler, 2024), and 

expression of our immunological module, suggesting more complex effects of members of this family 

on host function than currently considered. Combined, our results highly complex, evolutionary 

conserved relationships between microbial abundance and host gene expression. 

Finally, we did observe significant associations between both vacuolization and maximum vacuole 

size determined by histology and host gene expression. However, there were no clear trends of 

association of these processes and host immunity, nor was exocytosis (which can be important for 

SCTLD response) associated strongly with host immunity. These findings potentially indicate species-

specific pathways controlling direct immunological functions important for SCTLD defense, 
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including vacuolization. 

 

4.1.5.  Immunological Analysis of samples from project C21169 

Our immunological assays failed to find any notable differences in immune metrics as a result of 

exposure to stony coral tissue loss disease, despite gross observations of disease progression during 

the experimental period. Instead, we identified strong signatures of the effects of experiment duration 

on immune metrics, revealing potential effects of general experimental stress which may have 

swamped out any disease signatures. The lack of feeding and frequent water changes during the 

duration of the experiment most likely induced these changes, evidenced by a general decline in costly 

melanin and antibacterial activity, and a reciprocal spike in antioxidant protein at the start of these 

declines (T3). Still, visually our data shows trends towards decreased antibacterial and melanin activity 

during early disease progression, and heightened peroxidase activity. Improved sample size, and more 

careful experimentation to reduce stress would help parse out the effects of general stress from disease 

response to provide a better picture of host immunological responses to SCTLD. 

 

4.1.6.  Analysis of TEM images from coral sampled under projects C1E0A5 and C21169 

The preliminary analysis of 819 transmission electron microscopy (TEM) images from both healthy 

and diseased coral tissues (collected in situ and in vitro) revealed the widespread presence of virus-

like particles (filamentous and spherical) in both the coral host and endosymbiotic dinoflagellate 

compartments. Consistent with sequencing results and previous findings from diverse studies 

(reviewed in Vega Thurber et al., 2017; Vega Thurber et al., 2024), these observations confirm the 

high prevalence and apparent diversity of viruses across all coral health states. When statistical 

comparisons were possible, no significant differences in VLP detection rates were observed across 

health conditions, reinforcing the idea that viral presence in coral tissues is not restricted to disease. 

These findings underscore a key limitation of using TEM as a standalone diagnostic tool for 

identifying viral pathogens in corals. Morphological similarity among unrelated viral taxa, combined 

with the potential for pleomorphic viruses (those capable of adopting multiple capsid structures 

depending on environmental conditions), complicates efforts to assign taxonomy or infer 

pathogenicity based on particle structure alone. Moreover, given the persistent presence of VLPs in 

healthy tissues and the fact that many virus groups are transcriptionally upregulated in diseased 

samples, it remains difficult to distinguish between normal components of the resident virome and true 

disease-causing agents. Until more background data on coral-associated cellular components and 

viruses (including their morphological diversity, their within-colony spatial variability, their infection 

dynamics/temporal variability in particle production in non-diseased contexts) become available, TEM 

is best used as a complementary tool in coral disease research. While TEM cannot reliably distinguish 

between pathogenic and non-pathogenic viruses, it can provide valuable spatial context, including 

evidence of cytopathic effects, viral replication structures, virus-associated structural changes, and 

host cell degradation, offering insight into the functional impact of viral activity at the cellular level 

within coral tissues (Papke et al., 2024). 

 

4.2.  Future Steps 

     While integrative analyses between different ‘omics data streams have begun to identify 

connections between host immune response, bacterial and viral community composition and function, 

and disease outcomes and histology, there is still considerable work to be done with this dataset that 

may help identify bacterial and viral functional pathways that are critical to disease development and 

the corresponding response by the coral host and by the algal symbiont. Gene expression of the algal 

symbiont has not been assessed for these samples and may provide the missing link with histological 

data that suggests a role of the algal symbiont in disease histopathology. We will build on our 

correlation-based analyses of host gene expression, bacterial taxonomic groups, and bacterial function 

by grouping host genes and microbial pathways into broader functional categories (e.g., apoptosis, 
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anaerobic metabolism) and using multivariate models to refine key associations and identify cofactors 

(symbiont composition/clade, site, coral species) that influence interactions. We will integrate these 

associations into new random forest models to assess whether functional groups or bacterial 

community member identity are better predictors of disease state. Similar analyses should also be 

performed to integrate microbial pathways with viral sequence abundance to assess potential microbial 

response to viruses and phage. These results will inform targeted experiments to test whether microbial 

byproducts like nitric oxide or sulfide contribute to host immune activation, oxidative stress, or cell 

death. The interaction between broader bacterial functional categories such as sulfate and nitrate 

reduction and breakdown of host immunity could also be tested through coral inoculation with bacteria 

cultivated in nitrate- or sulfate-rich media. 

  

4.3.  Management Recommendations 

  

As one of the first SCTLD time-series analyses performed on samples of corals from pre-exposure to 

exposure to disease development, this study has considerable implications for our understanding of 

disease development, especially in remote coral reefs.   

 

1. Corals in this study developed the hallmark histological signs of SCTLD despite their location in a 

remote region of the lower Florida Keys far from significant local stressors. Indeed, it is possible that 

their stress-naïve state pre-exposure made them more susceptible to SCLTD, as corals appeared to 

exhibit signs of immunosuppression during disease development. Practitioners and managers should 

ensure that corals in the remote reaches of the Caribbean are regularly monitored for disease 

development, and further studies should be performed in these remote areas to validate these results.    

 

2. Synergies between bacterial metabolic pathways and host immune response should be further 

explored to identify targeted treatments that block bacterial function, such as targeted antibiotic and 

biocides that directly influence sulfate reduction. 

 

3.  Similarities in response to SCTLD across species indicate a strong, multi-faceted immunological 

response during early disease stages, which wanes over time perhaps due to declining coral fitness. 

Interventions to mitigate this immunological waning may prevent mortality. 

 

4. Further study is needed to investigate the mechanisms behind the differences in immune responses 

between coral species. Understanding these mechanisms can lead to the development of targeted 

therapies and better inform species selection for restoration. 

5. Our understanding of viruses and their roles in promoting coral health or contributing to diseases 

like SCTLD remains underdeveloped. To improve the utility of coral virome data for management 

decisions, future efforts should prioritize foundational research on the temporal and spatial dynamics 

of the apparently healthy coral virome to generate valuable baseline information. In addition, our initial 

findings highlight the need for research on the diversity and ecology of core virome members under 

varying environmental conditions, to better interpret their activity and potential impacts under biotic or 

abiotic stressors. This knowledge would support the identification of virome signatures associated with 

coral health or resilience, aiding managers, researchers, and restoration practitioners in early detection 

and response strategies. 
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