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Management Summary

The rapid spread of SCTLD throughout Florida’s Coral Reef has hampered efforts to identify the
causative pathogen, due in part to the difficulty of finding disease-susceptible corals with no prior disease
exposure. This project leveraged integrative multi-omic and histological analyses to characterize SCTLD
pathogenesis and coral immunity in four species of coral collected from Dry Tortugas National Park before
and after the arrival of SCTLD. Analyses of bacterial communities uncovered taxa previously believed to
be indicators of SCTLD in apparently healthy samples collected from nearby diseased colonies, suggesting
that site-wide coral communities are likely impacted by disease presence and affirming our previous
conclusion that many apparently healthy samples in existing datasets do not represent truly naive colonies.
Our investigation of coral virome dynamics continues to support a community-wide contribution to SCTLD
etiology, marked by increased activity of core viral groups (those consistently present in healthy corals) in
diseased tissues. While sequencing approaches revealed these shifts, preliminary transmission electron
microscopy analysis did not show consistent patterns in virus-like particle abundance that could support
pathogen identification or SCTLD diagnosis. Continued research on coral viruses on Florida reefs is critical
to establish baseline knowledge, improve diagnostic power, and strengthen response efforts for SCTLD and
future coral disease outbreaks. Our histological data integration is an important first step towards improved
methods for coral diagnostics and disease identification. When considering transcriptomic data, our
inability to identify species independent markers of disease resistance highlights the need for improved
genomic resources for species of interest. Still, we demonstrate that early response to SCTLD is highly
consistent across species and involves several arms of immunity, suggesting that the lack of ability to
sustain this response may be a more direct cause of mortality. Intervention to prolong coral immune
responses may benefit reefs.
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Executive Summary

The rapid spread of SCTLD throughout Florida’s Coral Reef has had devastating impacts on these
essential coastal ecosystems. This rapid spread has hampered efforts to study many aspects of disease
biology, including investigation of causative agents and factors which contribute to hos

t resilience. Characterization of these traits is essential to creation of improve management
strategies for Florida’s Coral Reefs, but depends on availability of samples from disease-susceptible corals
with no prior disease exposure. This project leveraged unique samples from Dry Tortugas National Park
(DRTO) samples before and during SCTLD arrival to investigate numerous aspects of SCTLD biology. By
combining integrative ‘omic and histological analyses of corals sampled through time we provide novel
insight regarding the patterns underlying SCTLD outbreaks across multiple species of corals.

Assessment of bacterial community function has revealed clear patterns of host and microbial
responses associated with transitions from a healthy to diseased state. Key bacterial taxa associated with
SCTLD, such as Halarcobacter and Desulfocella, were predictive of disease state and led to observed
enrichment in genes associated with anaerobic and sulfur-related metabolism. Analyses of raw
metagenomic reads, more so than complete genome assembly, have allowed for more complete functional
profiling of the bacterial community while expanding our analyses past dominant microbial members.
Bacterial functional groups were correlated with conserved host genes, which identified highly connected
modules, particularly linking host genes for DNA repair and apoptosis with microbial anaerobic respiration
and toxic metabolite production. These findings support a model in which disease progression is driven by
a host-microbe feedback loop that impairs healing and accelerates tissue degradation.

Virus community analyses provided further evidence of increased activity among diverse core viral
lineages (those consistently present in healthy corals) within diseased tissues, suggesting a cumulative viral
contribution to SCTLD etiology rather than the involvement of a single novel viral pathogen. These patterns
are consistent with upregulated antiviral responses observed in host gene expression data. However, no
consistent patterns in virus-like particle abundance were observed in transmission electron microscopy
(TEM) images from either in situ (this project) or ex situ (C21169; PI Ushijima) diseased tissue samples.
Establishing core virome members for coral species inhabiting Florida’s reefs, as done here, improves our
ability to identify potential pathogens by helping distinguish novel invaders from active members of the
resident viral community. Despite this progress, our ability to investigate coral virus communities remains
limited by the lack of baseline data from non-diseased conditions.

Histological data generated herein has been combined with a larger set of disease histology in an
important first step towards generation of improved methods for coral diagnostics from histological
samples. This integration will allow for improved methods for diagnosing coral diseases and assessing
health via histology in a variety of settings, including nurseries and protected areas.

Analysis of transcriptomic data failed to identify species-independent markers of disease resistance,
but did find several species-independent markers of response, particularly at early stage of disease. These
included orthologs related to immune recognition, reactive oxygen processing, inflammation, and antiviral
processes. Additionally, integration of ortholog data with microbial and viral community data demonstrated
strong impacts of proposed host and Symbiodinanceae symbiotic microbes on host gene expression and
immunity, regardless of host species.

This project also included tasks associated with other FDEP projects, including a related laboratory
disease challenge experiment with a time series aspect (C21169; PI- Ushijima). Immunological analysis of
samples collected from that project did not find any differences in immune response between control and
exposed colonies of Montastraea cavernosa. Immune activity did significantly change over time, likely as
a result of experimental stress (lack of feeding, water changes, etc.), which may have dampened our ability
to detect experimental effects.
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1. BACKGROUND
1.1. Introduction

Florida’s Coral Reef is currently experiencing a multi-year disease-related mortality event that has
resulted in massive die-offs in multiple coral species. This die-off event has been attributed to the spread
of a novel coral disease, stony coral tissue loss disease (SCTLD). Approximately 21 species of coral,
including both Endangered Species Act-listed and primary reef-building species, have displayed tissue
loss lesions which often result in whole colony mortality. First observed near Virginia Key in late 2014,
the disease has since spread to the northernmost extent of Florida’s Coral Reef, and southwest past the
Marquesas in the Lower Florida Keys. The best available information indicates that the disease
outbreak is continuing to spread west and throughout the Caribbean.

The rapid spread of SCTLD throughout Florida’s Coral Reef has hampered efforts to identify the
causative pathogen, due in part to the difficulty of finding disease-susceptible corals with no prior
disease exposure. Comparative assessments of pathogen abundances in “healthy” vs diseased corals
may be confounded by the presence of latent, asymptomatic infection in healthy controls. Many
bacterial taxa found in diseased corals (incl. Rhizobiales and Rhodobacterales) have also been identified
in considerable abundance in apparently healthy conspecifics. Temporal analyses of colonies from pre-
exposure to necrosis may help reduce background variation of coral-associated bacterial and viral
communities and in coral immune function. Repeated sampling of colonies previously naive to SCTLD
not only provides a better baseline to assess microbiome composition of healthy corals, but also
eliminates the potential for inter-colony variation in microbial composition that may have inhibited
prior discovery of the causative agent. Furthermore, temporal approaches allow for improved
investigation of mechanisms of coral response to SCTLD, including those which may confer disease
resistance.

1.2. Project Goals and Tasks
This project leveraged integrative multi-omic and histological analyses to characterize samples of
four species of coral collected from Dry Tortugas National Park before and after the arrival of SCTLD.
This included samples of SCTLD-naive, SCTLD-exposed but apparently healthy, and diseased coral
health states. This integrative approach will provide insight regarding the etiological agent of SCTLD,
and help identify important mechanisms of coral response and resilience to SCTLD. The outcomes of
this project will be incorporated into an on-going coral disease response effort for Florida’s Coral Reef.

2. METHODS

2.1. Metagenomic Analyses
2.1.1. Taxonomic identification and diversity measures of additional bacterial and archaeal taxa

Analyses in this funding year focused on the characterization of additional micro-eukaryotes and

bacteria from previously sequenced samples and synergistic analyses between metagenomic and
metatranscriptomic data. PhyloFlash 3.4 (Gruber-Vodicka et al., 2020) was used to map SSU rRNA
sequences from metagenomic data against the SILVA SSU database. Alpha and beta diversity analyses
were performed on count tables and taxa assignments generated by phyloFlash. Data were aggregated
to the lowest possible taxonomic assignments and were normalized by read count across samples
(rarefied). Differences observed in Shannon—Wiener diversity index between disease classes and
species were tested with the Kruskall-Wallis rank sum test and the Pairwise Wilcoxon Rank Sum Test
with FDR multiple test correction was used for pairwise analyses. Due to the presence of numerous
high diversity samples, centered log-ratio (CLR) transformation performed to capture ratio
relationships between taxa using the tool c¢/r from the microbiome package. Beta diversity analyses
were performed on the unrarefied raw counts table produced by phyloFlash. Principal components
analysis (PCA) was performed using Euclidean distances calculated from the CLR-transformed dataset
(producing Aitchison distance) with the phyloseq command ordinate (as RDA without constraints).
Permutational Multivariate Analysis of Variance (PERMANOVA) was performed on Euclidean
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distances to test for differences in beta diversity of bacterial community compositions among groups.
PERMANOVA was performed using the function adonis from the package vegan (v2.5.579; Oksanen
etal., 2025) and was followed by pairwise analysis of variance with pairwiseAdonis (v0.0180; Martinez
Arbizu, 2020) using Euclidean distance and 999 permutations.

To identify microbial taxa predictive of coral disease states, we conducted a Random Forest
classification analysis using taxonomic and abundance output from phyloFlash. Data were aggregated
to the genus level unless taxonomic annotation was not available, in which case a higher taxonomic
level was used. Samples were grouped into four disease classes: Disease Lesion, Diseased Unaffected
(healthy tissue from diseased colonies, Apparently Healthy, and Naive. The Random Forest model was
trained to classify samples into these categories based on microbial community composition. We used
the randomForest package in R, setting the number of trees (ntree) to 1000 and allowing the model to
determine the optimal number of variables tried at each split (mtry). Out-of-bag (OOB) error rates were
calculated to estimate model accuracy, both overall and class-specific. Feature importance was assessed
using two metrics: Mean Decrease in Accuracy (MDA), which reflects the loss in classification
accuracy when a feature is removed, and Mean Decrease in Gini (MDGQG), which measures how much a
feature contributes to reducing impurity at decision nodes. To visualize important predictors, we plotted
taxa with the highest MDA and MDG values, both across all disease classes and within individual class
comparisons. Model reproducibility was monitored by examining variability in results across multiple
model runs. All data preprocessing and visualization were performed in R using ggplot2 and related
tidyverse packages.

2.1.2. Assessment of microbial functional activity

Characterization of microbial functional activity was performed using HUMAnN3 (v3.8; Beghini
et al., 2021) to profile genes, pathways, and modules from initial assemblies. Reads were annotated via
MetaPhlAn4 (v 4.1.1; Blanco-Miguez et al., 2023) by aligning to both the ChocoPhlAn DNA database
and the UniRef50 protein database. Outputs of this analysis included gene family abundance files (the
presence of groups of evolutionarily-related protein coding sequences) and pathway abundance files (a
measure of pathway completion of a function of abundance of the pathway’s component reactions).
Pathway abundance tables were then joined into a single file using humann_join_tables and
renormalized to copies per million (CPM) using Aumann_renorm_table. Pathways from HUMANN3,
counts, and sample metadata were normalized as relative abundance, imported into RStudio
(v.2022.12.0+353) with R (v.4.2.2), and plotted using ggplot2.

2.1.3. Integrative analyses of metagenomic data with transcriptomic data

To explore relationships between host functional activity and microbial metabolic potential, we
began with normalized read counts of Single Copy Orthologs (SCOs, as identified by OrthoFinder, see
methods in section 2.4 below) per sample and relative abundances of microbial metabolic pathways (as
identified by HUMANN3) per sample. 7,462 SCOs and 468 microbial pathways conserved across all
species and sample types were identified. To investigate the functional relationships between host
Single Copy Orthologs (SCOs) and microbial metabolic pathways, correlation analysis and network
analysis were performed separately on each disease class. Apparently Healthy and Diseased Unaffected
samples were grouped together based on their similarity in other analyses. Before splitting data by class,
SCOs that tended to occur together (r > 0.9) and pathways that occurred together (r > 0.9) were clustered
to reduce dimensionality using a Spearman correlation analysis on normalized SCO counts and relative
abundances of microbial pathways. Hierarchical clustering (average linkage) was then applied to the
absolute correlation distance matrix (1 —r) to group highly positively co-occurring terms into clusters,
using a fixed height threshold (h = 0.1, corresponding to r > 0.9) to define clusters. A second Spearman
correlation analysis was then performed on the clusters of SCOs/pathways on data divided by disease
class, including correlations between pathways and SCOs that were both positive (when abundance of
X pathway increased, abundance of Y SCO increased) and negative (when abundance of X pathway
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increased, abundance of Y SCO decreased, or vice versa). Resulting p-values were adjusted for multiple
testing using the False Discovery Rate (FDR) method to control for type I error due to the large number
of comparisons. Correlations exceeding the threshold |r| > 0.9) were visualized as a bipartite network
using the igraph and ggraph packages in R. The network layout was generated using the Fruchterman-
Reingold ("fr'") force-directed algorithm, which simulates attractive forces between connected nodes
and repulsive forces between all nodes to produce an interpretable spatial arrangement. This
visualization approach emphasizes network topology, highlighting hubs (nodes with high degree) and
bottlenecks (nodes with high betweenness centrality) that may play key roles in mediating functional
interactions within the disease-associated microbiome.

2.2. Viral Community Analyses

Virus community analyses were performed on previously quality-controlled DNA and RNA
sequencing reads (see Sections 2.1 and 2.3). To reduce the computational burden of downstream
analyses, all cleaned libraries were normalized prior to full pipeline processing using the program
bbnorm.sh from the BBMap toolkit (Bushnell). The assembly, detection, and taxonomic classification
of viral sequences are inherently challenging, particularly in non-model systems such as coral reefs and
coral tissues, where the diversity of viruses across most coral species and regions remains largely
unknown. In phase II, we built on phase I efforts to address these challenges by leveraging multiple
programs at each pipeline stage (i.e., assembly, detection, classification) and by developing new
bioinformatic tools to support future coral reef virus studies in Florida and beyond.

2.2.1. Processing of sequencing data for virus sequence detection

Accurate and meaningful results that allow us to understand the roles of viruses in SCTLD rely on
high-quality sequence assembly. Starting with RNA sequencing data, the objective was to generate
high-quality RNA/DNA viral transcript sequences and RNA virus genomes. To achieve this, we applied
several sequence assembly algorithms, leveraging their respective strengths to produce multiple
assemblies per library, thereby increasing the likelihood and quality of virus sequence assembly and
subsequent recovery and classification. All normalized individual sequencing libraries were first
assembled with three different SPAdes (v3.15.5; Nurk et al.,, 2017) algorithms which included
metaSPAdes (--meta), rnaSPAdes (--rna), and rnaviralSPAdes (--rnaviral). An additional assembly
using Trinity (v2.15.2; Grabherr et al., 2011) was generated for each species by assembling pooled read
libraries per species. Each assembly produced was then screened for virus-like sequences using the
program deep6 (Finke et al., 2023). All virus-like sequences identified by deep6 were then pooled into
a single fasta file. From the file containing all deep6 predicted virus sequences, a non-redundant, error-
free first pass reference set of putative virus sequences was generated using the program
EvidentialGenes (sourceforge.net/projects/evidentialgene/).

Virus sequences can be difficult to assemble due to their high variability and repetitive regions. To
address this, we performed an additional “mega-assembly” by assembling all virus-like reads together,
as this has been shown to improve sequence contiguity (Hofmeyr et al., 2020; Vosloo et al., 2021).
Cleaned reads were mapped to the initial reference set of virus-like sequences using Bowtie2 (v2.5.4;
Langmead & Salzberg, 2012) . All reads that aligned to the reference sequences were then extracted
from their source libraries and pooled into a single set of forward and reverse reads. The pooled reads
were then re-assembled with SPAdes using the metaviralSPAdes, rnaSPAdes, and rnaviralSPAdes
algorithms, as well as with Trinity. This new assembly was again screened for virus-like sequences
using the program deep6. All deep6 predicted virus sequences were then pooled with the first pass
reference set of sequences. Finally, EvidentialGenes was then used to produce a non-redundant, error-
free final reference set of putative virus sequences recovered from all the RNA sequencing data
produced.

For recovery of virus sequences from metagenomic data, first all normalized metagenomic libraries
(n = 133) were assembled using SPAdes (v3.15.5; Nurk et al., 2017) with the “--meta” option. In
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addition, reads not assigned to a sample during demultiplexing (~100—120 Gbp of non-normalized data)
were also normalized and then assembled using MEGAHIT (v1.2.9 due to the higher computational
requirements of SPAdes. All assembled contigs/scaffolds across all libraries were then combined into
a single fasta file and deduplicated using Seqgkit (v2.10.0; rmup -s; Shen et al., 2024) to remove exact
sequence redundancies. To remove cellular sequences from the non-redundant sequence set, sequences
were aligned using minimap2 (v2.29; -x asmS5; Li, 2021) to a custom database containing all publicly
available coral (n = 142) and dinoflagellate (n = 32) genomes from NCBI’s GenBank, downloaded
using the command-line tool ncbi-genome-download (v0.3.3; https://github.com/kblin/ncbi-genome-
download). All sequences that did not align to coral or dinoflagellate sequences were then extracted
and an additional round of cellular sequence screening (this time focused on prokaryotic and other
micro-eukaryotic groups) was performed with the program CAT (v6.0.1; Hauptfeld et al., 2024) using
NCBI NR database. All sequences not classified as cellular were extracted and collapsed by 100%
nucleotide identity using CD-HIT-EST v4.8.1 (Fu et al., 2012) with the parameters -c 1.0 and -aS 1.0,
thereby removing exact duplicates regardless of length. The deduplicated putative virus-like sequences
from the metagenome assemblies were then used as input for binning with vRhyme (v1.1.0; Kieft et
al., 2022) to construct virus metagenome-assembled genomes (VMAGSs). Sequences not included in
bins were extracted from the vRhyme input FASTA file and combined with the final vVMAGs,
producing a final FASTA file containing all likely viral sequences from DNA sequencing libraries,
which was then processed through the classification pipeline.

2.2.2. Virus sequence classification

Given the unexplored nature of virus diversity associated with coral reefs, a multi-tool analysis was
conducted to classify putative virus sequences. Putative virus sequences from both the metagenome
and metatranscriptomes processing were analyzed using the following programs: i. geNomad (v1.11.0;
Camargo et al., 2024), ii. Cenote-Taker 3 (v3.4.0; https://github.com/mtiszal/Cenote-Taker3); iii. CAT
(v6.0.1; Hauptfeld et al., 2024); iv. VirSorter2 (v2.2.4; Guo et al., 2021); v., CheckV (v1.0.1; Nayfach
et al., 2021); vi. VITAP (v1.7.1; Zheng et al., 2025); and viCAT (unpublished; developed by Alex
Veglia, 2025, currently in preparation for release). Results from each of the seven programs were then
compared and combined using the program viSUM (unpublished; developed by Alex Veglia, 2025,
currently in preparation for release). The program viSUM aggregates the outputs of multiple viral
classification tools, compares their assignments, and generates a unified consensus for each sequence
with associated support scores. All downstream analyses were performed on sequences that viSUM
identified as having evidence of being viral based on one or more of the classification/detection
programs used.

2.2.3. Virus sequence quantification and functional annotation

Read count matrices were generated for DNA (metagenome) and RNA (metatranscriptomes) virus
sequence sets by aligning cleaned, normalized RNA sequencing reads using the program kallisto
(v0.50.1; Bray et al., 2016). Read count matrices were then processed with RSEM (v1.3.3; Li & Dewey,
2011) to produce trimmed mean of M-values (TMM) normalized counts table to allow for cross sample
comparisons. Functional annotation of virus genes was done using the program MetaCerberus (v1.4.0;
Figueroa III et al., 2024) with the following databases: VOG (https://vogdb.org/; Oct 2024), pVOG
(2016; Grazziotin et al., 2017), PHROG (Jun 2022; Terzian et al., 2021), AMRFinder-fams (Feb 2024;
Feldgarden et al., 2021), NFixDB (Jan 2024; Bellanger et al., 2024), and GVDB (2021; Aylward et al.,
2021)

2.2.4. Virus community & gene landscape analyses

The sequence classification results, expression counts, and sample metadata were imported into
RStudio (v.2022.12.0+353) with R (v.4.2.2) and combined into a single phyloseq object (analyses
described are focused on RNA sequencing results files) using the phyloseq R package (McMurdie &
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Holmes, 2013). To identify core viromes (at the class tank level) for each coral species, we first subset
the TMM-normalized phyloseq object by host species. For each subset, counts for virus transcripts with
confidence scores above 0.28 (indicating minimum three programs identified the sequence as viral)
were aggregated at the viral class level using the rowsum() function. We then calculated the prevalence
of each class as the proportion of samples in which it was present. Core classes were defined as those
detected in >95% of samples for a given species. The union of all species-specific core classes was
used to identify corresponding viral transcripts across the full dataset. These transcripts and their counts
data were extracted to generate a new phyloseq object representing the combined core virome. Bray—
Curtis dissimilarity was calculated using the new phyloseq object with core virome transcripts with the
vegdist() function from the vegan package. Species were hierarchically clustered based on this distance
matrix using average linkage (UPGMA), and the resulting dendrogram was visualized to assess inter-
species similarity in core viral transcript profiles.

Virus community alpha diversity was calculated per sample with the raw counts data using the
Shannon index (H') as implemented in phyloseq (i.e. via estimate richness(phyobj,
measures="Shannon"), which calls vegan::diversity with index="shannon"). We then tested for overall
differences in Shannon diversity across the three sampling time points (TO, T1, T2) using a Kruskal—
Wallis rank-sum test (kruskal.test() in R’s stats package), because residuals from a linear model of
Shannon failed normality (Shapiro—Wilk via shapiro.test(), also in stats). For any significant Kruskal—
Wallis result, we performed pairwise Wilcoxon rank-sum tests (wilcox.test() in stats) with Benjamini—
Hochberg adjustment (p.adjust(method="BH") to identify which time-point pairs differed. The same
procedure (Kruskal-Wallis followed by pairwise Wilcoxon) was applied separately within each coral
species to assess time-point effects on a-diversity. Finally, to evaluate whether health status (healthy
vs diseased vs quiesced) influenced Shannon diversity, we ran a Kruskal-Wallis test on Shannon by
health category (again with Wilcoxon post hoc as above) across all species.

Beta diversity was calculated on TMM-normalized counts by first transforming each library to
relative transcript abundances. Bray—Curtis dissimilarities were then computed using the distance()
function in phyloseq with method = "bray". We confirmed that multivariate dispersion did not differ by
time point, sample site, or health status (all betadisper() + permutest() p > 0.05), indicating no
significant heterogeneity of spread. We then rana PERMANOVA using adonis2(bc_dist ~ host_species
+ time point + health_status, data = meta_ df, permutations = 999, by = "margin"). In this model,
“host_species” captures differences among coral species, “time point” tests for changes across the
outbreak timeline, and ‘“health status” compares healthy versus diseased/quiesced samples. To
examine within-species effects, we subset the data by coral species and reran adonis2(bc sub ~
time point + health_status, data = meta_sub, permutations = 999, by = "margin") on the corresponding
Bray—Curtis distance matrix. This two-factor, within-species PERMANOVA evaluated whether viral
B-diversity differed by time point or health status within each coral species independently.

Differential abundance of viral transcripts was assessed with DESeq2 (Love et al., 2014) using a
negative-binomial GLM with the formula ~ host_species + tissue_type, where host species (cavernosa,
faveolata, franksi, natans) was included as a covariate to account for baseline differences in each coral’s
virome, and tissue type (healthy as the reference) was used to estimate the log.-fold-change in
disease_margin versus healthy samples across all species. Similar to core virome analyses, only virus
sequences with confidence scores above 0.28 (indicating minimum three programs identified the
sequence as viral) were used for differential expression analyses. Differential abundance of these
upregulated virus taxa in the RNA sequencing data was visualized in a heatmap using the
abundance heatmap() function from the phylosmith R package and the trimmed mean of M-values
(TMM) normalized counts table. Gene information for differentially expressed (upregulated)
transcripts were then extracted from functional annotation results and grouped by potential function.

2.3. Histological Analyses
Samples were fixed in zinc-buffered formalin (Z-fix, Anatech), then seawater for 24 hours, then
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stored in 70% ethanol and shipped to Louisiana State University. Corals were decalcified with a 1%
HCI EDTA solution and stored in 70% ethanol until processed. Corals were processed using a Leica
ASP6025, embedded in paraffin wax blocks on a Leica EG1150H embedding machine, and sectioned
at five mm thickness on a Leica RM2125RTS microtome. All samples were sectioned in both cross
and longitudinal orientation with three to five polyps in each orientation. Seven sections were made
500 pum apart. Histological slides were stained with hematoxylin and eosin stain on a Leica ST5020,
viewed on an Olympus BX41 microscope with an Olympus SC180 camera attachment, and analyzed
using ImagelJ software.

Slides were analyzed across two methodologies, tissue quantification and measurements following
Rossin et al. (in review). Tissue quantification was split between consistency and intensity of disease
signs ranked as absent, low, medium, and high. The disease signs noted were necrosis, vacuolization,
exocytosis, gastrodermal separation, and degraded symbionts. Consistency referred to the signs
occurring over the five slides analyzed — regardless of intensity of sign. Intensity referred to the degree
of the disease sign when it was seen. Additionally, certain tissue parameters were noted for
presence/absence: eroded gastrodermis, amoebocytes, loss of eosin from the mesoglea, loss of
structural integrity, and fungus or sponge. This quantification was then compared between species and
time points.

Disease measurements were performed using five 60,000 mm? images per tissue sample. Each
micrograph was split into twelve 5000 mm? grid-cells. A random number generator determined which
section the cells were measured within. The areas of 15 symbionts within their vacuoles were measured
per sample. Additionally, presence of gastrodermal separation and degraded symbionts was noted, as
well as the proportion of symbionts undergoing exocytosis within the grid-cell of interest.

A Bayesian hierarchical linear model was used to detect differences between apparently healthy
and diseased samples according to four histological measurements: vacuolization, symbiont size,
degraded symbiont presence, proportion exocytosis, and gastrodermal separation. This model used
non-informative priors. A second Bayesian hierarchical model was employed in which the first level
of the model was a binomial generalized linear model with an intercept and five predictors, which
were each modeled as random effects with j = 6 levels for species. Where y; is the binomially-
distributed response variable of disease state (0 = putatively healthy and 1 = diseased), a is the
intercept, bi4 are the slopes, and x_s are the predictor values, exocytosis, gastrodermal separation,
symbiont size, degraded symbiont presence, and vacuolization. The subscript j indexes the random
effect of species (j = 6) and the subscript i indexes the observed data (i = n). The second level of the
model was unconditional; i.e., no model was applied to the random effect estimates and only grand
mean estimates of the five level one parameters were estimated. Model variance-covariance was
estimated using a scaled-inverse Wishart distribution. The model was run in JAGS (version 1.5.2)
using the package JAGSUI (Su & Yajima, 2015) in R. All parameters were given diffuse normal priors.
Models were initialized with a randomly selected value for all five parameters from a normal
distribution with a mean of zero and standard deviation of one. We ran three Markov chain Monte
Carlo (MCMC) chains each for 40,000 iterations but removed 5,000 for burn in and thinned by two,
for a total of 105,000 iterations used for posterior analysis.

Model convergence was evaluated from the values, where < 1.1 indicated convergence.
Additionally, we plotted all posteriors and visually confirmed convergence. We interpreted predictor
effects based on where 0 was in relation to their posterior distributions. We did not take full advantage
of the Bayesian hierarchical model potential as we did not have informed priors or utilize a second
level model in this study. All Bayesian hierarchical models converged below 1.1 and were accepted.

2.4. Transcriptomic Analyses
The analyses conducted in phase II are directly complementary to data produced during phase I of
this project. Herein we performed the following tasks: 1) refined de novo transcriptomes for each of
our sampled species and generated improve read count matrices, 2) identified single copy orthologs
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consistent across all species for identification of species-independent markers of resistance, 3)
conducted differential expression modeling to identify species-independent markers of resistance, and
4) conducted integrative, correlative analyses to identify species-independent associations between
ortholog expression and microbiota, viral community members, and histological traits of interest. Full
details on sammple collection and intitial processing can be found in the report for year 1 (Klinges et
al., 2024).

2.4.1. De novo transcriptome refinement

De novo transcriptomes were generated from five random samples for each coral species using a
modification of previously established protocols (Beavers et al., 2023). Before assembly, two pre-
filtering steps were implemented to remove as many non-coral reads as possible. First, any reads
aligning to potential eukaryotic contamination were filtered out from the available viral, human, fungi,
and protozoa genomic databases from kraken2 (Wood et al., 2019). Next the reads were filtered using
BBSplit (Bushnell) against all publicly available Symbiodiniaceae transcriptomes that could be located
(n=29, Table 1).

Table 1. List of transcriptomes used for BBSplit pre-filtering step in transcriptome assembly and read
filtering. Asterisks denote those which were also used for BBSplit filtering/host and symbiont
separation of reads.

Species Associated Publication Download Link
Symbiodinium http://smic.reefgenomics.org/download/
microadriaticum® | (Aranda et al., 2016) Smic.transcriptomeRef.cov5.fa.gz
Symbiodiniumspp., https://marinegenomics.oist.jp/symb/do
"Y106" (Shoguchi et al., 2018) wnload/syma transcriptome 37.fasta.gz
Breviolum http://zoox.reefgenomics.org/download/
aenigmaticum (Parkinson et al., 2016) Symbiodinium aenigmaticum.tar.gz
Breviolum http://zoox.reefgenomics.org/download/
minutum* (Parkinson et al., 2016) Symbiodinium minutum.tar.gz
Breviolum http://zoox.reefgenomics.org/download/
pseudominutum (Parkinson et al., 2016) Symbiodinium pseudominutum.tar.gz
Breviolum http://zoox.reefgenomics.org/download/
psygmophilum (Parkinson et al., 2016) Symbiodinium psygmophilum.tar.gz
Cladocopium
proliferum
(formerly thought
to be C. goreaui) | (Davies et al., 2016) http://ssid.reefgenomics.org/
Cladocopiumspp., https://marinegenomics.oist.jp/symb/do
"Y103"* (Shoguchi et al., 2018) wnload/symC transcriptome 40.fasta.gz
Durusdinium https://datadryad.org/stash/downloads/fil
trenchii* (Bellantuono et al., 2019) e stream/258199

“Raw” transcriptome assemblies were then generated using these filtered reads with Trinity v2.9.1
(Grabherr et al., 2011). The resulting transcriptome was then filtered to retain only the longest isoform
per gene. Next, the program TransDecoder was be used to identify transcripts with open reading frames
and transcripts without an identified coding region were be removed (Haas). The program CD-HIT was
used to remove redundant transcripts (Fu et al., 2012). As a final filtration step to ensure as much
symbiont contamination as possible was removed, the resultant transcriptome was blasted against a
custom database assembled from all publicly available Symbiodiniaceae proteomes (n = 17, Table 2)
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following established protocols (Stankiewicz et al., 2025). Resultant transcriptome completeness was
assessed using BUSCO (Manni et al., 2021). Finally, the transcriptome was annotated via comparison
to the UniProt database using blast v2.15.0 (Camacho et al., 2009).

Table 2. List of proteomes used for blast filtering step in transcriptome assembly.

Species Associated Publication Download Link
https://datadryad.org/stash/dataset/doi: 10
Symbiodinium fitti (Reich et al., 2021) .5061/dryad.xgxd254g8

https://espace.library.uq.edu.au/view/UQ
Symbiodinium linucheae | (Gonzalez-Pech et al., 2021) | :f1b3all
Symbiodinium https://espace.library.uq.edu.au/view/UQ
microadriaticum (Gonzalez-Pech et al., 2021) | :f1b3all
https://espace.library.uq.edu.au/view/UQ
Symbiodinium natans (Gonzalez-Pech et al., 2021) | :f1b3all

Symbiodinium https://espace.library.uq.edu.au/view/UQ
necroappatans (Gonzalez-Pech et al., 2021) | :f1b3all
Symbiodinium https://espace.library.uq.edu.au/view/UQ
tridacnidorum (Gonzalez-Pech et al., 2021) | :f1b3all
Symbiodiniumspp. http://sampgr.org.cn/downloads/syma_au
"Y106" (Shoguchi et al., 2018) g 37.aa.longest.fa.tar.gz
https://marinegenomics.oist.jp/symb/dow
Breviolum minutum (Shoguchi et al., 2013) nload/symbB.v1.2.augustus.prot.fa.gz
https://espace.library.uq.edu.au/view/UQ
Cladocopium goreaui (Chen et al., 2020) :8279c9a
https://espace.library.uq.edu.au/view/UQ
Cladocopium goreaui (Chen et al., 2022) :tba3259
https://espace.library.uq.edu.au/view/UQ
Cladocopiumspp., "C92" | (Chen et al., 2020) :8279¢9a
http://plut.reefgenomics.org/cladocopium
Cladocopiumspp., "C15" | (Messer et al., 2024) download/
Cladocopiumspp., http://sampgr.org.cn/downloads/symC_a
"Y103" (Shoguchi et al., 2018) ug 40.aa.longest.fa.tar.gz
https://marinegenomics.oist.jp/symbd/vie
Durusdinium trenchii (Shoguchi et al., 2021) wer/download?project id=102

https://espace.library.uq.edu.au/view/UQ
:27da3e7/Dtrenchii. CCMP2556 PROT _
Durusdinium fasta.gz?dsi_version=be68147¢743657b4
trenchii"CCMP2556" (Dougan et al., 2024) €92ef4d7eb8012¢ce
https://espace.library.uq.edu.au/view/UQ
:27da3e7/Dtrenchii_SCF082 PROT fast
Durusdinium a.gz?dsi_version=6d08446e7b3c2b35dd
trenchii"SCF082" (Dougan et al., 2024) b5a3edce528200

Prior to alignment, raw read files were first processed using the program fastp to remove adapters
and filter out poor-quality reads (Chen, 2023; Chen et al., 2018). The following parameters were used
for fastp: minimum quality score of 25, minimum phred quality score of 20, minimum read length of
50 bp, minimum complexity threshold of 30%, removal of any polyG or polyX tails, n base limit of 2,
and base correction enabled in overlap regions. Next, these quality-filtered reads were run through
BBsplit (Bushnell) to separate host and Symbiodiniaceae reads. Specifically, reads were filtered against
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a single transcriptome for each of the four dominant genera of Symbiodiniaceae known to commonly
associate with Caribbean stony corals (Table 1, denoted by asterisk), and their respective generated do
novo coral host transcriptome that had previously been assembled. The resulting reads which matched
to the host transcriptome were then fully aligned to that same de novo transcriptome using Salmon
(Patro et al., 2017).

2.4.2. Ortholog Analyses- Identification of species specific markers of SCTLD resistance

Leveraging our polished and high quality de novo transcriptomes, we then sought to identify single
copy orthologs for downstream multi-species analyses. Single copy orthologs (SCOs) refer to single
copy transcripts which are conserved across a group of species, identified based on transcript similarity.
The combined sequence similarity and lack of copy number variation across species makes SCOs an
ideal subset for comparing gene expression datasets across species. We identified single copy orthologs
following well established pipelines. Specifically we first generated predicted proteomes for each
transcriptome using Transdecoder (Haas) and collapsed similar sequences with CD-HIT (Fu et al.,
2012). We then analyzed the resultant proteomes with Orthofinder (v. 2.5.2; Emms & Kelly, 2019)
using default parameters. The resultant data was used to create a transcript to gene file for importing
reads corresponding only to SCOs into R for downstream analysis.

To identify species-independent markers of SCTLD resistance we combined our set of identified
single copy orthologs (SCO; present in all species) with previously generated read count matrices,
isolating expression of SCOs only. We then focused on two main types of markers: 1) SCOs whose
expression prior to disease onset predicted eventual disease susceptibility (predictive models) and 2)
SCOs which were differentially expressed between healthy tissue from resistant colonies and
apparently healthy tissue from susceptible colonies at either disease onset timepoint (June or August;
epidemic models). We also identified those genes which were significantly differentially expressed
between apparently healthy and diseased tissue within susceptible colonies to gain insight regarding
the mechanisms of response to SCTLD (response models). In each case we used the R package dream
(within the variancePartition package) to fit linear mixed models to our data, allowing for the addition
of random effects of colony ID and site where needed. Dream is built upon existing R packages limma
and voom, but adds necessary steps to fit random effects (Hoffman & Roussos, 2021). In each grouping
of models we ran two sets of models, one which incorporated and interaction with species to identify
species-specific responses, and a second model without the species interaction term to identify species
independent responses (main effects cannot be interpreted when included in an interaction term,
necessitating this approach). Table 3 details models used. Additionally, we used the makeContrasts()
function for hypothesis testing contrasts of interest. To facilitate hypothesis testing and contrast
specification, we set the intercept to 0 in all models and, where necessary, collapsed factors into one
term. For example, in the epidemic & response models, sampling time, tissue type, and species were
collapsed into one group and contrasts specified to identify SCOs with species specific differences
between tissues of interest within a given month (“interaction” model). The main effect model for this
category used a combination of timepoint and tissue type to investigate species independent differences
between tissue types of interests within a given month. Contrasts run are listed in Table 4.
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Table 3: Summary of Model Groups and models used to identify species independent markers of
resistance. In each case models with interaction terms were followed up with main effect models to
confidently identify species independent markers. category=disease susceptible of resistant;
timepoint_tis_spec = combination of timepoint collected, tissue type, and species; timepoint_tis_spec
= combination of timepoint collected and tissue type

Model Group Type Model Factors of
Interest
Predictive Interaction ~0-+category*species+(1[site) category*species
Models
Main Effect ~0-+category-+species+(1]site) category
Epidemic & Interaction ~0-+timepoint_tis spec month_tis_spec
Response +(1]site)+(1]ID)
Models Mai . o . .
ain Effect ~0+timepoint_tis +species month_tis_type
+(1[site)+(1[ID)

Once our models were run, we then compared results of the interaction and main effect models
within a group to identify candidate SCOs marking resistance. Specifically, an SCO was classified as
a species independent marker if it was significant for the main effect factor of interest (category or
month-tissue type comparison) and not significant for any factor of interest in our interaction model.
SCOs which were significant for contrasts in our interaction models were deemed species dependent
markers and flagged for later analysis. In the case of Epidemic and Response Models, an additional
filtering step was used; our list of best marker SCOs only included those SCOs which were identified
as species independent markers in either June and August (i.e. consistently differentially expressed
between healthy and apparently healthy or apparently healthy and disease margin tissues) with
congruent log-fold changes in both months. Candidate markers with immune functions were identified
by search associated annotations, specifically assigned gene ontology terms, for a breadth of immune
keywords. Representative graphs were constructed in R using ggplot to demonstrae patterns of interest.

Table 4: Summary of contrasts specified within each model group/type and the hypotheses tested.
category=disease susceptible of resistant; timepoint_tis_spec = combination of timepoint collected,
tissue type, and species; timepoint_tis_spec = combination of timepoint collected and tissue type.

Model Type Contrast Hypothesis
Group Tested
Predictive Interaction RES-SUS X MCAV-CNAT species specific
Models RES-SUS X MCAV-OFAV differences
RES-SUS X MCAV-OFRA between resistant
RES-SUS X OFAV-CNAT and susceptible
RES-SUS X OFAV-OFRA colonies prior to
RES-SUS X OFRA-CNAT disease arrival
Main RES-SUS species
Effect independent
differences
between resistant
and susceptible
colonies prior to
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disease arrival

Epidemic
Model

Interaction

June. AH MCAV-June H MCAV
June AH CNAT-June H CNAT

June AH MCAV-June H MCAV
June AH OFAV-June H OFAV
June. AH MCAV-June H MCAV
June AH OFRA-June H OFRA

June AH OFAV-June H OFAV

June AH CNAT-June H CNAT

June AH OFAV-June H OFAV

June AH OFRA-June H OFRA

June AH OFRA-June H OFRA

June AH CNAT-June H CNAT
Aug AH MCAV-Aug H MCAV
Aug AH CNAT-Aug H CNAT
Aug AH MCAV-Aug H MCAV
Aug AH OFAV-Aug H OFAV
Aug AH MCAV-Aug H MCAV
Aug AH OFRA-Aug H OFRA
Aug AH OFAV-Aug H OFAV
Aug AH CNAT-Aug H CNAT
Aug AH OFAV-Aug H OFAV
Aug AH OFRA-Aug H OFRA
Aug AH OFRA-Aug H OFRA
Aug AH CNAT-Aug H CNAT

VS.

VS.

VS.

VS.

VS.

VS.

VS.

VS.

VS.

VS.

VS.

VS.

species specific
differences

between healthy
tissue on resistant

and susceptible

colonies during
disease outbreak
in each time point
(June or August)

Main
Effect

June AH-June H
Aug AH-Aug H

species
independent
differences
between healthy
tissue on resistant
and susceptible
colonies during
disease outbreak
in each time point
(June or August)
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Response Interaction June. AH MCAV-June DM _MCAV species specific

Models vs. June AH CNAT-June DM_CNAT differences
June. AH MCAV-June DM MCAV between
vs. June AH OFAV-June DM_OFAV apparently
June. AH MCAV-June DM _MCAV healthy and
vs. June AH OFRA-June DM_OFRA diseased tissue on
June AH OFAV-June DM OFAYV vs. susceptible
June AH CNAT-June DM _CNAT colonies in each
June AH OFAV-June DM OFAV wvs. time point (June
June AH OFRA-June DM _OFRA or August)

June AH OFRA-June DM_OFRA vs.
June AH CNAT-June DM CNAT
Aug AH MCAV-Aug DM_MCAV vs.
Aug AH CNAT-Aug DM_CNAT
Aug AH MCAV-Aug DM MCAV vs.
Aug AH OFAV-Aug DM _OFAV
Aug AH MCAV-Aug DM_MCAV vs.
Aug AH OFRA-Aug DM OFRA
Aug AH OFAV-Aug DM OFAV vs.
Aug AH CNAT-Aug DM_CNAT
Aug AH OFAV-Aug DM OFAV vs.
Aug AH OFRA-Aug DM OFRA
Aug AH OFRA-Aug DM OFRA vs.
Aug AH CNAT-Aug DM_CNAT

Main June AH-June DM species dependent
Effect Aug AH-Aug DM differences
between
apparently
healthy and
diseased tissue on
susceptible
colonies in each
time point (June
or August)

2.4.3. Integrative Analyses. Linking Transcriptomic, Microbial, Viral, and Histological Data

Next, we shifted to focus on identification of SCOs which were highly correlated to microbial/viral
community composition or histological traits of interest. This was conducted via integrative correlative
analyses following established pipelines adapted from other systems (Fuess et al., 2021). To identify
microbial taxa associated with SCOs, we first filtered generated 16S data to retain only those ASVs
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which accounted for a minimum average of .1% abundance across samples, yielding 120 ASVs.
Generated proportions of each of these taxa were then correlated to normalized read counts for our
7,462 SCOs using a pairwise kendall correlation. The top 5% of associations based on p-value were
retained for downstream analyses, specifically gene ontology enrichment analysis with GOMWU
(Wright et al., 2017).

A similar approach was used for viral community analyses. First, we filtered generated sequences
to retain only those with the maximum rank support score at the domain level to ensure retained
sequences corresponded to putative viruses. A total of 145,783 out of a starting 621,896 sequences fit
this filtering qualification. We then collapsed sequences to the Order level, or highest level of taxonomy
if not assigned to an order, by combining TPM normalized read counts for all IDs within the same
Taxonomic group. Any sequences which were unclassified at the order level were removed at this step
(106,939 out of 146,783 sequences retained). It was necessary to collapse reads to the Order level as
all sequences passing confidence filters were unclassified at the Family, Genus, and Species levels. In
the end, we generated TPM normalized read counts for a total of 235 viral groups. This data was then
correlated to normalized read counts for our 7,462 SCOs using a pairwise kendall correlation. The top
5% of associations based on p-value were retained for downstream analyses, specifically gene ontology
enrichment analysis with GOMWU (Wright et al., 2017).

Finally, to correlate histological features of interest with transcriptomic data, we used a Network-
based approach. A single co-expression network was generated from our normalized ortholog data
using Weighted Gene Correlation Network Analysis (Langfelder & Horvath, 2008). We then correlated
expression of resultant groups of orthologs to our top microbial families and mean histological traits of
interest (vacuolization, max vacuole size, and exocytosis). Modules of interest were further analyzed
using gene ontology enrichment analysis with GOMWU (Wright et al., 2017).

2.5. Immunological Analysis of samples from project C21169

Fragments of corals used in experiments described in FDEP project C21169 (Lead PI Ushijima) were
received by the team at Texas State University (PI Fuess) for processing and analysis for immunological
activity. Full details of experimental methods can be found in the relevant project reports for C21169.
Herein we describe processing and analysis of these samples for immunological activity only. Assays are
modified versions of those established for tropical corals (Changsut et al., 2022; Fuess et al., 2016;
Mydlarz & Palmer, 2011).

Tissue was removed from frozen coral fragments using a Paasche airbrush and 100 mM Tris + 0.05mM
DTT (pH 7.8) buffer. This tissue slurry was then be homogenized for 1 min. and placed on ice for 7 — 10
min. For melanin analyses, a 1 mL aliquot of tissue slurry was taken at this step and placed into a pre-
weighed 1.5 mL tube and flash frozen, then stored at -20° C until analysis. For all other protein analyses,
remaining tissue slurry was centrifuged at 3500 rpm for 5 min. and two aliquots of the supernatant (aka
protein extract) will be transferred into 2 mL tubes and flash frozen, then stored at -80 °C until analysis.

All of the following assays were conducted in triplicate, including negative controls using the
Tris+DTT buffer used to homogenize, and were measured on the BioTek Cytation 1 imaging reader, unless
specified otherwise. Protein concentration was measured for each sample before conducting any assays
using a Red660 assay. Protein extract (10 uL) was combined with 150 uL of G-Biosciences Red660.
Sample absorbance was read at 660 nm and compared to a bovine serum albumin (BSA) standard curve
to determine sample protein concentration. Measurements from subsequent assays were all standardized
by protein concentrations unless mentioned otherwise.

To measure phenoloxidase (PO) activity, 20 uL of protein extract, 45 uL of 50 mM PBS pH 7.0, and
30 uL of 10 mM dopamine were combined and the changes in absorbance measured every 45 seconds for
15 min. at 490 nm. PO activity was then calculated using the most linear part of the curve in the first 1-5
minutes of the reaction. To measure total phenoloxidase activity, total phenoloxidase (TPO) activity was
measured. TPO was measured by combining 20 uL of protein extract, 20 uL of 50 mM PBS pH 7.0, 25 uL
of 0.1 mg/mL trypsin, and allowing this mixture to incubate at room temperature for 30 minutes. Then 30
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uL of 10 mM dopamine was added, and changes in absorbance were immediately measured every 45
seconds for 15 min. at 490 nm. TPO activity was then calculated using the most linear part of the curve in
the first 1-5 minutes of the reaction (Mydlarz & Palmer, 2011).

Melanin concentrations were measured using the 1.0 mL of protein slurry aliquoted during airbrushing
into a pre-weighed tube. These samples were first dried in a vacufuge for 12+ hours until completely
dehydrated. The tubes containing the dried samples were then weighed, and 250 uLL of 1 mm glass beads
and 400 uL of 10M sodium hydroxide were added. A 2 mg/mL melanin standard stock was made using
melanin and 10M sodium hydroxide. This standard and the prepared samples were then incubated for 48
hours in the dark for digestion of tissues. Finally, absorbance at 410 nm of a serial dilution using the
melanin standard and 40 uL of each sample was measured. The measurements of each sample were
standardized using the curve generated from the serial dilution. Melanin is reported standardized by sample
dry tissue weight (Mydlarz & Palmer, 2011).

To measure catalase activity, 2.5 ul of protein extract was combined with 47.5 uL of 50 mM
phosphate-buffered saline pH 7.0 (PBS) and 75 uL of 25 mM H,0,. Negative controls of Tris+DTT and a
set of serial dilution wells using the PBS and H,O, were included as well. Changes in absorbance (catalase
activity) were then measured every 45 seconds for 15 minutes at the 240 nm wavelength. Catalase activity
was then calculated using the most linear part of the curve in the first 1-5 minutes of the reaction and
standardized using the serial dilution curve (Mydlarz & Palmer, 2011).

To measure peroxidase activity, 10 uL of protein extract was combined with 20 uL of 10 mM
phosphate-buffered saline pH 6.0 (PBS), 25 uL of 5 mM of guaiacol, and 20 uL of 20 mM H,0,. Negative
controls of Tris+DTT. Changes in absorbance (catalase activity) were then measured every 45 seconds for
15 minutes at the 470 nm wavelength. Peroxidase activity was then calculated using the entire curve
(Mydlarz & Harvell, 2007)

To measure bacterial killing ability, bacteria doubling time/hour using a Vibrio coralliilyticus strain
isolated from an O. faveolata colony in Florida will be used, as this species has been identified in relation
to several stony coral diseases and will therefore serve as a good estimate of antibiotic activity (Ushijima
et al., 2020). Specifically, we are using a plasmid-transformed strain, Oft6-21 pBU164, which expresses a
yellow-fluorescent protein (YFP). This bacteria strain was cultured in sterile glycerol artificial seawater
(GASW) broth media at 27° C until it reached an RFU (relative fluorescence units) of approximately 750.
Then, 60 uL of protein extract (diluted to a standard protein concentration) and 140 uL of the diluted
bacterial stock will be combined, incubated at 27° C for 12 hours, measuring YFP fluorescence every ten
minutes. Bacterial doubling time was then calculated for each sample from the logarithmic growth phase.

To identify signatures of changes in immunological activity we conducted a two-way repeated
measures ANOVA on each immunological assay independently. We incorporated fixed factors of interest:
time point and treatment, and accounted for repeated sampling at the level of host genotype. Data was
checked against appropriate statistical assumptions (normality, no outliers, etc) prior to analyses and
transformed when necessary. When factors of interest were identified as significant we conducted post
hoc tests in the form of paired t-tests to determine significance of groups. All statistical analyses and
graphing were conducted in R.

2.6. Analysis of TEM images from coral sampled under projects C1E0AS and C21169
Transmission electron microscopy (TEM) image datasets from projects CIEOAS and C21169 were
processed using the same approaches. To minimize observer bias and assess the reproducibility of
observations, multiple individuals independently analyzed the same images. Three independent pairs were
established to review and analyze TEM images of coral tissue samples acquired at magnifications of
10,000% and 50,000x%, saved as uncompressed TIFF files. Each pair was assigned different subsets of TEM
image folders, allowing for a systematic pairing of analyses. However, to further prevent systematic bias,
individuals working on the same day did not cross-check the same images. Instead, each analyst used an
overlapping set of images distributed on different days, which helped to strengthen the reliability of the
analyses. All images were processed using Imagel version 1.53c. Analysis began at lower magnifications
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(ranging from 45.9% to 150%). Analysts uniformly adjusted brightness and contrast settings and applied
an unsharp mask with a radius of 2 pixels for edge enhancement. Subsequently, each analyst manually
reviewed the images to annotate icosahedral virus-like particles (diameters of 20—200 nm with smooth
perimeters) and filamentous virus-like particles (thread-like structures up to several um in length), using
the Region of Interest Manager for accuracy (Work et al., 2021).

From these standardized annotations, we derived four complementary summary tables. First, a
distribution-by-morphotype table aggregated the total number of images, mean particle count per image,
standard deviation, morphotype richness, and dominant morphotypes for each time point: pre-outbreak,
during outbreak, and post-outbreak. Second, a site-specific occurrence table cross-tabulated morphotype
combinations against baseline and outbreak reefs, reporting both the number of images in which each
combination appeared and the corresponding cluster counts. Third, a morphology-by-health-status table
compared each morphotype in terms of total cluster events, number of images surveyed, and mean particle
abundance across diseased, apparently healthy, and baseline samples. Finally, a health-by-site table tallied
total virus-like particle (VLP) counts by health status at each reef. When replication was sufficient for
statistical analysis, we looked to test for influence of health on virus-like particle rate of detection (i.e.,
percentage of photos with VLPs detected). To do this, VLP presence proportions were arcsine-square-root
transformed to control for variances. We then used a linear mixed-effects model in R (packages: /me4 and
ImerTest) where Health was the main effect tested, and Colony (nested within Species) was included as a
random effect to account for repeated measurements within the same groups. Next, a type Il ANOVA
(Satterthwaite’s method) was used to get p-values for the Health effect. If significant, pairwise
comparisons between health states were done with Tukey adjustment using the emmeans package. All
tests used a significance level of a = 0.05.

3. RESULTS

3.1. Metagenomic Analyses
3.1.1. Analyses identifying bacteria and microeukaryotes from metagenomic data

Additional bacterial, archaeal, and microeukaryotic taxa were classified from metagenomic data

using the program PhyloFlash. This tool produced html files summarizing taxonomic composition of
identified SSU rRNA sequences as well as alignments of read data to reference databases and
assemblies of full-length 16S and 18S rRNA sequences from metagenomic data. Text summaries of
top taxa (Bacteria, Archaea, Eukaryota) found in each sample group per species were produced from
taxon read count data. These taxa assignments were used for downstream analysis. Bacterial taxonomy
was used for alpha and beta analyses below. Annotation of Eukaryota was very poor; >80% of
eukaryotic reads were only annotated to Opisthokonta. Dominant archaea in samples included
Woesearchaeales and Nitrosopumilales, and no clear patterns emerged in archaeal abundance based on
coral species or health state.

3.1.2. Assessments of alpha and beta diversity from metagenomic data
Alpha diversity analyses were performed on count tables and taxa assignments generated by
phyloFlash. Health status (disease state) had a significant impact on microbial diversity as quantified
by Shannon diversity (omnibus test p = 1.623e-06, y2 = 29.665) and numbers of observed bacterial
taxa from shotgun DNA sequencing data (p = 5.67e-11, 2 = 50.699). Corals that were naive to disease
(i.e., sampled before disease arrived to the region) and samples taken from active disease lesions had
the highest microbial diversity. Although bacterial richness was significantly higher (at p < 0.05) in
both naive and lesion samples from Colpophyllia natans and Orbicella faveolata than in apparently
healthy sample types (samples taken from unaffected sections of diseased corals and healthy corals
sampled from sites with disease), bacterial richness trended highest in naive samples (Figure 1A). No
significant differences in microbial diversity were observed in Montastraea cavernosa and Orbicella
franksi samples by health status, though in both species within-sample diversity in naive samples
appeared to be higher, though highly variable between samples (Figure 1A and B). Across all
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diversity metrics, diversity was equally high in naive samples as in disease lesion samples, and other
sample types generally had lower bacterial diversity. There were no significant differences found in
Shannon diversity or species richness by coral species (p = 0.3574, y2 = 3.23) or by site (p = 0.4735,

12 = 1.50).

Bacterial community composition as assessed from metagenomic data was significantly influenced
by health status (Disease Lesion, Diseased — Unaffected, Apparently Healthy, Naive) (R*> = 0.079, F
= 3.668, p = 0.001). All health status categories were significantly different from one another (p <
0.01) except for diseased unaffected and apparently healthy (R> = 0.017, F = 1.092, p = 0.1990)
(Figure 2A). Additionally, community composition significantly differed by sampling month (R* =
0.055, F =2.510, p = 0.001) and species (R*> = 0.055, F = 2.495, p = 0.001, Figure 2B), but F values
were small for these variables, indicating that variability between and within groups was similar. Site
was not found to be a significant driver of community composition (R*=0.018, F = 1.104, p =0.14).
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Figure 1: Differences in taxon richness (A) and Shannon-Wiener diversity (B) by health status
(Naive, Apparently Healthy, Diseased — Unaffected, and Disease Lesion). Boxes sharing a letter are
not significantly different from each other using an FDR corrected significance level of p < 0.05.
Pairwise comparisons were only performed within each coral species.
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Figure 2: NMDS ordinations of bacterial taxa as identified by phyloFlash in samples using Bray—Curtis
distance. A) ellipses plotted by health status, B) ellipses plotted by coral species.

3.1.3. Species-independent markers of disease status

Random forest classification was used to identify microbial taxa that best discriminate among coral
disease classes (Disease Lesion, Diseased — Unaffected, Apparently Healthy, Naive) based on taxon
abundance profiles from phyloFlash aggregated to the genus level. The random forest model, trained
on data produced by phyloFlash, achieved an overall out-of-bag (OOB) error rate of 36.09%, indicating
moderate classification accuracy across all disease classes. For each class in the dataset, a binary
classifier was trained to distinguish that class from all others (one-vs-all approach). Error rates varied
by class, with the lowest error observed in Disease Lesion samples (13.33%) and the highest in Disease
— Unaffected samples (85.71%). This was likely due to similarities in bacterial community composition
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Figure 3: Out-of-bag (OOB) error rates for the Random Forest classification model predicting disease
classes. The plot shows the overall OOB error rate (black line) as well as the class-specific OOB error
rates for each disease class, represented by colored lines. These error rates indicate the proportion of
samples misclassified during model training, providing an internal estimate of model accuracy without
the need for a separate test set.
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observed in Disease Unaffected and Apparently Healthy samples (see alpha and beta diversity
analyses).

Variable importance was assessed using both Mean Decrease in Accuracy (MDA) and Mean
Decrease in Gini (MDG). The taxa with the highest MDA across all health categories were
Pseudomonas (MDA =4.851367), Aestuariibacter (MDA = 3.827359), Fusibacter (MDA =3.658612),
and an unclassified genus in the family Cyclobacteriaceae (MDA = 3.535318). Similarly, the taxa with
the highest MDG across all health categories were Pseudomonas (MDG = 0.9959390),
Alkalispirochaeta (MDG = 0.7627235), Endozoicomonas (MDG = 0.9200709), and Desulfatitalea
(MDG =0.7503214). These taxa are important across all classes with Pseudomonas consistently ranked
highly across both importance metrics. The importance of these taxa indicates that these taxa respond
strongly to disease exposure and progression.

In contrast, taxa that were associated strongly with a single disease condition may be better
predictors of health status. For example, unclassified taxa within the family Caulobacteraceaec were
found to have high MDA and MDG within Naive coral samples across all species. This indicates that
this taxon may be a member of the naive coral microbiome that was lost upon sitewide exposure to
disease (all disease classes after SCTLD arrived to the region). Mean Decrease in Accuracy (MDA) is
the best metric to identify potential predictors of a class, as this metric measures how much the model’s
overall accuracy decreases when a specific feature (e.g., a taxon) is randomly permuted. Taxa that were
predictors of the Disease Lesion health status based on MDA included Halarcobacter, Fusibacter,
Amphritea, and Desulfocella (Figure 4). These taxa may play a potential role in lesion formation or
persistence. Ferrimonas was most predictive of Diseased Unaffected samples, possibly indicating
microbiome adaptations that help maintain tissue integrity despite adjacent lesions. Notably,
Fusibacter, Ferrimonas, and the unclassified taxon from Family Caulobacteraceaec were associated
with Apparently Healthy samples, suggesting that these samples represent a transitional stage between
Naive and Diseased Unaffected.

Top Taxa Predicting Each Disease Class

Apparently Healthy Disease Lesion

Family _Caulobacteraceae - NG Halarcobacter 1 [
Fusibacter | [N Pseudoteredinibacter - [
Ferrimonas 4 [N Amphritea- [
Aestuariibacter 1 [INENEGE Family_Arcobacteraceae - [ NG
Unclassified_ASV_447 GG Fusibacter 4 [ NNENEGEE
Family_Rhodobacteraceae - [ Malaciobacter 1 [N
Roseimarinus 4 [|1INEGN Desulfocella < [N
Lewinella { [N Marinifilum - [
Oleiphilus 4 I Desulfobotulus 4 [
Maritimimonas - [ Ferrimonas + [N
]
3 Diseased Unaffected Naive
Ferrimonas 4 Family_Clade |14

Saprospira 4

Family_Caulobacteraceae -

Unclassified_ASV_121 4
Family_OM182 clade 4
Unclassified_ASV_593
Synechococcus CC9902
Pseudomonas - |
Unclassified_ASV_1028+ |
Unclassified_ASV_475+
Unclassified_ASV_1479
8 0 2 4 6 8
Mean Decrease in Accuracy

Family_Rhodobacteraceae -
Urania-1B-19 marine sediment group 4
Thalassotalea 4

Unclassified_ASV_41 4

Unclassified ASV 14274
Thermovirga -

Ruegeria 4

Formosa

o
n
IS
(o2}

Figure 4: Top microbial taxa predictive of each disease class based on Mean Decrease in Accuracy
(MDA) from Random Forest classification. Each bar represents the MDA value of a taxon, indicating
its importance in predicting the corresponding disease class. Higher MDA values suggest greater
contribution to model accuracy when predicting that class. Taxa were ordered by importance within
each facet. Only the top 10 predictors per class are shown. Disease classes include Diseased Lesion,
Diseased Unaffected, Apparently Healthy (exposed), and Naive (unexposed) samples.
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3.1.4. Integrative analyses of metagenomic data with transcriptomic data

To investigate the functional relationships between host Single Copy Orthologs (SCOs) and
microbial metabolic pathways, correlation analysis and network analysis were performed separately on
each disease class. Host genes and bacterial metabolic pathways were first clustered across all samples
to identify co-occurring genes/pathways that would influence network modularity. Spearman
correlation with hierarchical clustering was used to find biologically relevant modules of co-occurring
genes and pathways (i.e., host gene to host gene correlations greater than 0.9) that were persistent across
disease states. This assumes that biological functions within the host and the bacterial community are
not completely restructured by disease development. Then, abundance of pathways within each module
was averaged (as read count data were already normalized) to produce a summary metric (mean
abundance) for each module. Samples were then split by disease class (e.g., Diseased Lesion, Naive)
and Spearman correlations (positive and negative) were identified between host genes and bacterial
pathways within disease classes.

A total of 188 clusters of bacterial pathways and 24 clusters of SCOs were produced from
hierarchical clustering. Data were then examined by disease class to identify how interactions between
host gene groups and bacterial metabolic pathways were influenced by disease development. For
disease lesion samples, correlation analysis between pathways and SCOs found a total of 229
significant correlations (|r] > 0.8) FDR-corrected p < 0.05), involving 24 unique SCOs and 87 unique
bacterial pathways. The resulting bipartite network consisted of 107 nodes (24 SCO nodes and 83
Pathway nodes) and 106 edges after the removal of 2 dyads (nodes only connected to one another).

The average degree for the disease network was 1.981308, meaning that each node was connected
on average to ~2 other nodes. Density of the network was low at 0.01869159, where a density of 1
means that every node is connected to every other node. Modularity for the network was 0.7992376
(scale of 0 to 1) suggesting that there were groups of genes/pathways that were highly connected and
that there was a higher degree of internal connectivity within these groups than between them.

Cluster 5, identified through network analysis, exhibited the highest connectivity among all
modules, with a degree of 23, indicating it was the most functionally integrated cluster in the host-
microbe network. This was a complex module of SCOs associated with DNA integration, repair,
recombination, and synthesis (indicative of tissue damage and attempted regeneration) clustered with
other SCOs associated with immune and inflammatory response, regulation of apoptosis and
mitochondrial ADP transmembrane transport. Interestingly, host cluster 5 also contained genes
involved in ossification and osteoblast-related genes, which although derived from vertebrate
annotations, may represent analogs of extracellular matrix production, calcification, or structural
remodeling in coral tissue. Lastly, this cluster contained genes involved in Wnt signaling (including
canonical and planar cell polarity pathways), which governs cell fate, polarity, and tissue organization,
likely reflects a breakdown and attempted re-patterning of host tissue architecture under stress. Cluster
5 was strongly associated with bacterial pathways involved in core aerobic energy metabolist (bacterial
TCA cycle, ubiquinol biosynthesis) but also stress-associated fermentative and anaerobic pathways
(ethanol degradation, nitrate reduction, proline-to-cytochrome electron transfer), potentially indicative
of hypoxic microenvironments. Also linked to cluster 5 were genes involved in the degradation of
amino acids; fatty acids; and sugars, consistent with nutrient scavenging from host tissue or decaying
organic matter.
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Table 5: Average degree, density, and network modularity for each of the three networks created
correlating Single Copy Orthologs (SCOs) and bacterial functional pathways. Average degree is
calculated as the average number of connections (edges) each node has in the network. Density is
calculated as the proportion of all possible edges in the network that are actually present. Modularity is
a measure of how well the network can be divided into distinct modules or communities.

Avg Degree Density Modularity
Apparently Healthy 6.191335740 0.0111959 0.53721668
Naive 4 0.17391304 0.48460614
Disease Lesion 1.981308 0.01869159 0.7992376

3.2. Viral Community Analyses
3.2.1. Virus sequence detection and classification success

Figure 5: Network visualization of statistically significant correlations between Single Copy
Orthologs (SCOs) (orange nodes) and bacterial functional pathways (green nodes). Edges represent
Spearman correlations between nodes, with edge color and transparency indicating the strength and
direction of the correlation (blue = strong negative, red = strong positive, white = neutral). Node
placement is determined by the Fruchterman-Reingold layout algorithm, which positions strongly
connected nodes closer together to emphasize modular structure. Only correlations above |r| > 0.8
are shown. Node labels indicate GO terms or pathway names; edge transparency reflects correlation
magnitude.
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Viral sequences were identified independently from RNA and DNA sequencing libraries to
generate a final non-redundant set of putative viral contigs. Evidence of viral origin for each sequence
was supported by one or more detection or classification tools. In the metatranscriptomic (RNA
sequencing) dataset, the program deep6 predicted 3,058,884 sequences as potentially viral. Of these
~3 million putative virus sequences, 621,896 sequences were determined to be likely viral representing
whole or partial RNA virus genomes or DNA/RNA virus transcripts (herein referred to as metatV
sequence set) that were the focus of downstream analyses. From the metagenomic data, there was a
starting total of 22,881,581 non-redundant contigs sourced from all sample libraries. Of these,
17,747,362 were determined to be of cellular origin either via alignment to known coral/dinoflagellate
genome sequences or by the program CAT. From the remainder of the sequences, post length filtering
(<1000 bp was removed), there were 1,311,959 putative non-cellular sequences, of which 10,774 had
substantial evidence indicating viral origin (herein referred to as metagV sequence set). These 10,774
putative virus sequences represent whole or partial DNA virus genomic sequences.

Classifying viral sequences from non-model systems like coral reefs with sparse reference
databases makes confident assignments at lower ranks (Order—Species) challenging. For that reason,
we only report taxonomic results at ranks where classification confidence is highest (e.g., Realm—
Class). Putative viral sequences from both metatranscriptome and metagenome sequence sets (metatV
and metagV, respectively) spanned all known viral realms. However, only the metatV set contained
sequences belonging to the viral Realm Adnaviria, which is a double-stranded DNA virus realm that
includes filamentous archaea-infected viruses. In both sequence sets, the top three most abundance
classes were Caudoviricetes (tailed, prokaryotic dSDNA viruses), Retraviricetes (eukaryote-infecting
retroviruses), and Megaviricetes (eukaryote-infecting giant dsDNA viruses). Of the 535,006 metatV
transcripts classified at the class rank, 338,084 (64.4%) fell into six classes - five of which are
eukaryotic virus classes: Megaviricetes (n = 216,121), Revtraviricetes (n = 45,421), Pokkesviricetes
(n=33,754), Naldaviricetes (n = 26,625), and Herviviricetes (n = 16,163).

3.2.2. Core virome characterization and evidence for phylosymbiosis

Core virome analysis revealed 32 different viral sequence taxa (i.e., sequences grouped into a
recognized virus class or sequences with a provided classification but lacking a class designation) that
were present in at least 95% of samples within a species. Of these 32 groups, 17 corresponded to
recognized viral classes spanning diverse DNA and RNA virus taxa (Table 6). These included 10
DNA virus classes, some of which had the highest number of recovered transcripts, such as
Megaviricetes (giant viruses), Caudoviricetes (tailed bacteriophages), Herviviricetes (herpesviruses),
Naldaviricetes, and Pokkesviricetes (poxviruses) (Table 6A). The remaining seven classes represented
RNA virus taxa, including Duplopiviricetes, Pisoniviricetes, Revtraviricetes, and most notably
Stelpaviricetes, which includes +ssRNA filamentous viruses (Table 6B). Hierarchical clustering based
on Bray—Curtis distances of core virome taxa revealed evidence of phylosymbiosis (the tendency of
closely related species to share similar viral communities), with O. faveolata and O. franksi forming
a distinct cluster, while M. cavernosa and C. natans were more dissimilar (Figure 6).

Table 6 (next pages). Summary of viral classes identified across all coral species assessed. (A) DNA
virus classes and (B) RNA virus classes detected in coral viromes. For each class, the genome type is
provided based on information within the International Committee on Taxonomy of Viruses (ICTV)
taxonomy database (2024 release; Walker et al., 2022). Genome type includes double-stranded (ds) or
single-stranded(ss) DNA/RNA, as well as reverse-transcribing genomes. *Indicates viral class present
in all core viromes except C. natans. **Indicates viral class present in all core viromes except M.
cavernosa.

AgreementNumber C3D3C6
June 2025



A) DNA Virus
class

Genome type

B) RNA Virus class Genome type
Alsuviricetes Positive-sense
ssRNA genomes
Duplopiviricetes** | Double-stranded
RNA (dsRNA)
genomes
Ellioviricetes Negative-sense
ssRNA genomes
(segmented)
Leviviricetes Positive-sense
ssRNA genomes
Pisoniviricetes Positive-sense
ssRNA genomes
Revtraviricetes Reverse-transcribing
viral genomes (RNA
or DNA)
Stelpaviricetes Positive-sense

ssSRNA genomes

Maveriviricetes dsDNA genomes (~17-30
kb, circular or linear)

Megaviricetes dsDNA genomes (often
>100 kb)

Naldaviricetes Large circular dsDNA
genomes

Pokkesviricetes Linear dsDNA genomes

Polintoviricetes dsDNA genomes

Quintoviricetes* Single-stranded DNA
(ssDNA) genomes

Tectiliviricetes ~ Linear dsDNA genomes
(non-enveloped icosahedral
virions)

Caudoviricetes  dsDNA genomes

Faserviricetes Circular ssDNA genomes
(positive-sense)

Herviviricetes dsDNA genomes
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Figure 6. Hierarchical clustering of coral species based on core viral class transcript
presence/abundance using Bray-Curtis dissimilarities. The dendrogram illustrates differences in core
virome composition and expression profiles across species, with O. faveolata and O. franksi forming
a distinct cluster, while M. cavernosa and C. natans are more dissimilar. Distances on the y-axis
represent pairwise Bray-Curtis dissimilarity values, indicating relative divergence in viral community

structure among host species.
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3.2.3 Virus community dynamics across time and health state

One major objective for Phase II of this project was to assess virus community variability over
time, before and during the SCTLD outbreak at Dry Tortugas National Park. As a first step, we
assessed alpha diversity (Shannon’s H' index) across sampling time points (TO: Pre-outbreak, T1:
Early outbreak, T2: Late outbreak). When considering all species, we observed a statistically
significant difference in alpha diversity between time points (Kruskal-Wallis chi-squared = 20.604, df
=2, p=<0.01). Pairwise comparisons between time points revealed that virus alpha diversity at TO
(pre-outbreak) was significantly different from both the early outbreak (T1; Wilcoxon rank-sum exact
test, p = 0.03) and late outbreak (T2; Wilcoxon rank-sum exact test, p = 0.01). Additionally, T1
community alpha diversity also differed significantly from T2 (Wilcoxon rank-sum exact test, p =
0.01). When assessing whether this pattern was also observed within species, only M. cavernosa
(Wilcoxon rank-sum exact test: TO vs. T1, p <0.01; TO vs. T2, p <0.01) and O. faveolata (Wilcoxon
rank-sum exact test: TO vs. T2, p < 0.01) virus communities showed significant differences across
time points (Figure 7).
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Figure 7. Viral alpha diversity (Shannon H’ Index) across time points, coral species, and sites.
Boxplots show the Shannon diversity index of viral communities associated with four coral species
(Montastraea cavernosa, Orbicella faveolata, Orbicella franksi, and Colpophyllia natans) sampled
at three time points relative to a stony coral tissue loss disease (SCTLD) outbreak: pre-outbreak
(TO), early outbreak (T1), and late outbreak (T2). Colors represent samples from three reef sites
(SCTLD25: red, SCTLD26: green, SCTLD2S: blue). Asterisks indicate statistically significant
pairwise comparisons between time points (Wilcoxon rank-sum exact test: p < 0.05, p < 0.01).
Differences in alpha diversity patterns were observed across species and time points, with some
species showing significant shifts in viral diversity during early and/or late outbreak

Next, we assessed virus community beta diversity across coral species, health status, and timepoint.
We used PERMANOVA (adonis2, Bray-Curtis distance, 999 permutations) to assess the contribution
of host species, time point, and health status to virus community composition. All three factors had
statistically significant effects: host species explained the largest proportion of variance (R* = 0.480,
F =41.69, p =0.001), followed by time point (R> = 0.016, F = 2.02, p = 0.021) and health status (R>
=0.013, F=1.65, p=10.047). Within-species PERMANOV As revealed that only O. faveolata showed
a clear health effect: dispersions were homogeneous (p > 0.05), and B-diversity differed significantly
between healthy and diseased (R? = 0.112, p = 0.001). In M. cavernosa, although PERMANOVA
flagged a strong time-point effect (R2 = 0.118, p = 0.003), dispersion among T0/T1/T2 was unequal
(p = 0.003), so that result is likely driven by spread rather than a true centroid shift; its health effect
was marginal (p = 0.06). For O. franksi and C. natans, health status groups had significantly different
dispersions (p = 0.001), making their borderline PERMANOVA health p-values (p = 0.05-0.08)
uninterpretable. Neither species showed a reliable time-point effect (all p > 0.3). Thus, only O.
faveolata exhibits a B-diversity shift by health status. Visualization of sample clustering based on
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computed Bray-Curtis distances with a Principal Coordinates Analysis (PCoA) did not reveal any
obvious clustering by health status or time point across species (Figure 8).
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Figure 8. Principal Coordinates Analysis (PCoA) of viral community composition within each
coral species, based on Bray-Curtis dissimilarities. Each panel represents one species (M.
cavernosa, O. faveolata, O. franksi, C. natans). Points are colored by time point (TO = pre-
outbreak, T1 = early outbreak, T2 = late outbreak) and shaped by health status (diseased, healthy,
quiesced). The percentage of variation explained by each axis is indicated in brackets.

3.2.3 Upregulated virus groups and genes within disease margin tissues

Differential abundance analysis revealed 6,588 sequences that were upregulated in diseased margin
tissue samples across species. The six most upregulated taxa correspond to viral classes identified as
part of the core virome: Megaviricetes, Caudoviricetes, Naldaviricetes, Pokkesviricetes,
Retraviricetes, and Herviviricetes (Figure 9). CheckV results indicate that 6,535 of the upregulated
sequences are likely transcripts or genome fragments. The remaining upregulated sequences were
classified as high-quality (n = 52, showing >90% genome completeness) or complete (n = 2, with
evidence of being complete genomes). These complete and near-complete genomes were
representative of members within the orders Ortervirales (n = 46; retroviruses) and Picornavirales (n
= 2), while two transcripts remained unclassified. From the 6,588 sequences, functional annotations
were found for just 930 open-reading frames (ORFs) by the program MetaCerberus. A large proportion
of these ORFs were annotated as polyproteins or accessory factors (n=464) and hypothetical/unknown
proteins (n=142). The remaining ORFs were annotated as proteins involved in reverse transcription
(n=107), metabolic processes (n=84), virus replication/transcription (n=84), and viral structural
proteins (n=61).
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Figure 9. Heatmap of top 20 viral groups within significantly increased transcript abundance in
diseased margin coral tissue samples (Wald test, DESeq2, adjusted p < 0.1). Abundances are based
on TMM-normalized counts and logl0-transformed for visualization. Each column represents a
diseased sample, grouped by coral species (M. cavernosa, O. faveolata, O. franksi, C. natans), and
each row corresponds to a viral class. Color intensity reflects transcript abundance, with gray

indicating absence. Taxa labels containing “ U” indicate that that group of sequences were
classified as a virus that has yet to be assigned to a recognized class.

Table 7. Virus-derived proteins predicted from differentially abundant transcripts in diseased coral
tissues, grouped by functional category based on annotations from virus focused databases PVOG,
VOG, PHROG, and GVDB, as well as potential auxiliary metabolic genes identified by NFixDB and
AMRFinder.

Category Count Insight
464 Diverse polyproteins and accessory factors, such as RNA
Other replication polyproteins, enzymatic polyproteins, and

unclassified enzymatic domains that may bundle multiple
functions in a single ORF.

Hypothetical/Unknown 142 Uncharacterized proteins may represent novel viral functions
or unannotated domains.
Reverse transcription 107 Reverse transcriptase proteins suggest retrotransposition or
genome integration events by retroviruses.
Metabolic (AMG-like) 84 Auxiliary metabolic genes manipulate host metabolic

pathways to support viral replication influencing host
interactions within tissues.

Replication/Transcription 72 These enzymes drive viral genome replication and
transcription, fueling viral proliferation.
Structural 61 Structural proteins form the virus capsid or mediate host

attachment, essential for infectivity. Indicative of later
infection stage (virus particle production).
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3.3. Histological Analyses

Histopathology analysis of the diseased and healthy corals from the Dry Tortugas National Park
revealed a similar pattern for diseased M. cavernosa and O. faveolata corals as previous studies
(Beavers et al., 2023) Rossin et al in review) from St. Thomas, USVI and Florida. For the Dry Tortugas
samples, an interesting discrepancy from previous studies was in exocytosis, where healthy colonies
had high exocytosis. This is unusual compared to other studies but could be connected to a higher
turnover of symbionts in this region. Methodology and results are included in a public Github repository
(https://github.com/ashleyrossin/dry tortugas). The goal of this repository is to provide a public
reference for how to collect quantitative histological data and how it can effectively be used in disease
identification.

3.4. Transcriptomic & Associated Integrative Analyses

40

3.4.1. Species independent markers of disease resistance

Ortholog analyses comparing refined transcriptomes for the four species identified a set of 7,462
conserved single copy orthologs. Analysis of this set of orthologs did not identify any species
independent resistance markers; no orthologs were consistently significantly differentially expressed
between resistant and susceptible colonies across all species either before or during the disease
outbreak. We did however identify 533 transcripts which were consistently responsive to SCLTD
(differentially expressed between apparently healthy and disease margin tissue) across all species. Of
these only 4 were significant in both June and August, 491 were differentially expressed in June only,
and 38 in August only. A total of 61 of these orthologs (~12%) were identified as putatively associated
with immunity, all but 4 of which were significantly differentially expressed in June only. Immune
orthologs were roughly evenly divided between up and down regulation in response to disease (29 up,
32 down).

Notable trends of differential expression include strong upregulation of orthologs associated with
oxidative stress and immune receptors in June only (Figure 10). Furthermore, orthologs associated
with inflammation and antiviral response were frequently downregulated in response to disease
(Figure 11)
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Figure 10: Box plots of expression of immune related orthologs involved in immune recognition (top
row) and oxidative stress (bottom three rows), the majority of which were significantly upregulated in
disease margin tissue compared to apparently healthy portions of colonies. Stars indicate significant
differences between tissues. AH- apparently healthy, DM- disease margin
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Figure 11: Box plots of expression of immune related orthologs involved in inflammation (top two rows)
and viral response (bottom two rows), most of which were significantly downregulated in disease margin
tissue compared to apparently healthy tissue. Stars indicate significant differences between tissues. AH-
apparently healthy, DM- disease margin
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3.4.2. Species independent correlations between microbiome/viral community composition and
histological markers and host gene expression

Investigation of associations between normalized ortholog expression and 16S microbial data
revealed strong correlations between microbial abundance and host gene expression. A total of 356 out
of 390 identified bacterial families were correlated to at least one ortholog; every ortholog was
correlated to at least one bacterial family. Herein we focus on the top 5% most correlated bacterial
families (~20; Table 8) and their associations with the top 5% most correlated orthologs (~376),
following established methods from other systems. The top 20 most correlated bacterial families
included common coral-associated microbes including Endozoicomonadaceae.

Table 8: Summary of microbial families associated with the highest number of orthologs. Listed are
number of associations with the top 5% most correlated orthologs, and number of enriched biological
process GO terms.

Microbial Family Associated Orthos (top 5%) | Associated GO Terms
Blastocatellaceae 259 20
Caminicellaceae 260 22
Chloroflexaceae 225 32
Christensenellaceae 293 25
Chromatiaceae 138 5
Desulfobacteraceae 179 26
Desulfotomaculales Incertae Sedis 280 16
Dethiobacteraceae 306 35
Endozoicomonadaceae 228 15
Halobacteroidaceae 139 15
Inquilinaceae 161 16
Kiloniellaceae 201 20
Lentimicrobiaceae 157 4
Lentisphaeraceae 240 30
Nisacaceae 257 20
Oligoflexaceae 276 27
Prolixibacteraceae 229 9
Rhodocyclaceae 68 264

AgreementNumber C3D3C6
June 2025



44

Spirochaetaceae 230 34

Terasakiellaceae 238 27

We then considered gene ontology enrichment of the associations between top families and top
genes at the level of family. Fifteen microbial families had associations with top genes which were
enriched for processes associated with immunity, seven of which were associated with two or more
terms (Figure 12). Of these, four families were positively associated with immunity, two were
neutrally, and one was negatively associated. Of all families, Rhodocyclcaceae was associated with
the most immune terms, though no clear trend of positive or negative association with immunity could
be ascertained.

Kiloniellaceae Lentisphaeraceae Dligoflexaceae Polixibacteraceae

-4 0 1 2 00 05 10 15 20 00 05 10 15 2 1 0 1 2
Desulfobacteraceae Rhodocylcaceae Terasakicllaceae
e _— 1| | Immune Role
I_- — positive
-|: - neutral
— = regaive

1 2 -= -1 0 1

3
—log(padj)

Figure 12: Significance and enrichment of biological process go terms of interest associated with
7of the microbial families of interest. Only those families which were associated with at least two
terms of interest are shown. Families are ordered based on associations: the top row includes
families with positive associations and the bottom row is split between those with neutral and
negative associations. Each bar indicates a significantly enriched biological GO term; color
indicates the association of the term with immunity; the direction of bar indicates positive or
negative enrichment; the magnitude of bars indicates the negative log of the adjusted p value.

Next, we considered associations between normalized viral sequence abundance (aggregated at the
level of viral Order or similar taxonomic groups) and normalized ortholog abundance. In general viral
sequence abundance was highly correlated with normalized ortholog abundance (Table 9). Every viral
group was significantly associated with at least one ortholog and vice versa. Furthermore, of the top
22 orders, 12 (over half) were correlated to the full set of top genes. Viral groups were consistently
associated with a core set of biological process GO terms, including a set of six immune-related terms
mostly related to antigen presentation. Nearly every group was positively associated with these terms,
and negatively associated with melanin biosynthesis (Figure 13).
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Table 9: Summary of viral group associated with the highest number of orthologs. Listed are number
of associations with the top 5% most correlated orthologs, and number of enriched biological process
GO terms.

Viral Group Associated Orthos Associated GO Terms
(top 5%)
Bingvirus 383 24
Brochothrix phage BL3 383 25
Burrovirus 336 28
Carmenvirus 383 24
Clostridium phage phiCT19406C 383 24
Decurrovirus 383 25
Godonkavirus 328 23
Halcyonevirus 383 24
Klebsiella phage phiKO2 240 11
Lacusarxvirus 184 17
Lightbulbvirus 355 25
Nonagvirus 344 25
Pseudoalteromonas phage H103 383 25
Pseudomonas phage JBD44 379 24
Schitoviridae 295 32
Spizizenvirus 383 24
Streptococcus phage phiARI0746 383 24
Streptococcus phage phiNJ2 383 25
Uetakevirus 318 22
Vertoviridae 317 18
Vividuovirus 383 25
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Figure 13: Heatmap displaying enrichment of significantly enriched immune-related GO terms
associated with each viral order of interest. Colors are representative of delta rank (metric of positive or
negative enrichment); blank/white cells indicate nonsignificant enrichment. Viral orders (columns) and

GO terms (rows) are hierarchically clustered based on patterns of enrichment.
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Finally, to further consider associations between host gene expression and histological markers of
interest as well as our identified microbial families of interest (Table 8) we constructed a gene
coexpression network with our normalized ortholog read count matrix, and the correlated average
expression of resultant modules (groups of orthologs) to histological traits of interest and relative
abundance of microbial families of interest. Our coexpression network consisted of 15 modules
ranging in size from 33 to 1,727 transcripts. Overall, module expression was highly correlated to traits
of interest (Figure 14). We saw strong patterns of association between most microbial families of
interest and module gene expression, with the exception of Halobacteroidaceae, which was not
correlated to any modules, and Lentimicrobiaceae, which was only correlated to two modules.
Histological traits vacuolization (mean_symb vac) and max vacuole size (mean_max_vac) were
highly correlated to gene expression, but exocytosis (mean_prop _exo) was only correlated to one
module of interest. Likewise, the red and brown modules were most correlated to bacterial families
and histological traits of interest, though neither had clear roles in immune function. The brown
module was enriched for orthologs related to sensory and nervous processes, and the red module
showed no significant biological process enrichment, though it did contain several hub (highly
connected) orthologs related to apoptosis. Gene ontology enrichment analysis revealed one clear
immune module, dark green, which was enriched for over twenty biological process GO terms related
to immunity, and several more related to response to biotic stimuli/stress. This module was positively
associated with Lentisphaeraceae, Nisaecaceae, and Oligoflexaceac abundance, but negatively
associated with Endozoicomonadaceae abundance.
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Figure 14: Heatmap displaying associations between average expression of each coexpression network
module (rows) and traits of interest: microbial family abundance and histological traits (columns). Only
significant correlations (p<0.05) are displayed. Correlation value (R2) and p value are shown for each
association. Boxes are colored based on correlation value in accordance with displayed scale (pink for
positive associations, blue for negative associations).

3.5. Immunological Analysis of samples from project C21169
Differences in immunological activity were largely driven by time, regardless of SCTLD exposure
or immune pathway in question (Table 9). Specifically, peroxidase, melanin abundance, and
antibacterial activity all significantly changed over the course of the experiment regardless of
treatment. Catalase and total phenoloxidase were not significantly different as a result of any measured
factor.
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Table 9. Results of two-way repeated measures ANOVA testing the effects of treatment, timepoint,
and their interaction on each of the measured immune activity assays independently. Bold font indicates

significant p value.

Catalase

Effect DFn DFd F p value ges
Treatment 1 2 8.483 0.100 0.406
Time Point 3 6 3.305 0.099 0.315
Treatment: TimePoint 3 6 1.511 0.305 0.127

Peroxidase
Effect DFn DFd F p value ges
Treatment 1 3 7.493 0.071 0.078
Time Point 3 9 4.170 0.042* 0.444
Treatment: TimePoint 1 3.58 0.665 0.493 0.064
Total Phenoloxidase

Effect DFn DFd F p value ges
Treatment 1 3 1.457 0.314 0.041
Time Point 3 9 0.606 0.628 0.046
Treatment: TimePoint 3 9 0.649 0.603 0.077

Melanin
Effect DFn DFd F p value ges
Treatment 1 3 2.576 0.207 0.042
Time Point 3 9 3.922 0.048 0.283
Treatment:TimePoint 3 9 0.290 0.832 0.014
Antibacterial Activity

Effect DFn DFd F p value ges
Treatment 1 3 7.553 .071 0.206
Time Point 3 9 70.509 <0.001** 0.871
Treatment: TimePoint 3 9 0.281 0.838 0.037

For the three immunological metrics which did change over time, the effect of time seemed to be
driven by shifts midway through exposure, around timepoint 4 (Figure 15, Table 10). For example,
peroxidase spiked at timepoint 4, when lesions were first appearing on exposed colonies. Similarly,
antibacterial activity was significantly lower at timepoints 4 & 5, when lesions were apparent,
compared to early exposure. Melanin showed similar patterns though no posthoc comparisons were

significantly different.
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Figure 15: Box plot displaying immunological metric assay results for those assays where a significant
effect of time was detected: a) peroxidase activity, b) melanin concentration, and ¢) antibacterial
activity. Letters represent significant groups across timepoints, regardless of treatment; no pairwise
differences were significant for melanin concentration after multiple test correction.
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Table 10: Results of post-hoc pairwise t-tests comparing immunological metrics of interest across
sampling timepoints. Results only shown for those metrics where the 2-way ANOVA identified a
significant effect of timepoint. Significance (p) values are adjusted for multiple comparisons using a
Bonferroni correction. Bold font indicates significant padj value.

Peroxidase

Comparison Statistic df p value padj
T2-T3 -3.25 7 0.014 0.084
T2-T4 -3.79 7 0.007 0.041*
T2-T5 -3.55 7 0.009 0.056
T3-T4 -2.11 7 0.73 0.44
T3-T5 0.810 7 0.444 1

T4-T5 2.51 7 0.04 0.242
Melanin

Comparison Statistic df p value padj
T2-T3 0.375 7 0.719 1

T2-T4 2.12 7 0.071 0.427
T2-T5 2.87 7 0.024 0.143
T3-T4 1.69 7 0.136 0.816
T3-T5 2.96 7 0.021 0.127
T4-T5 1.55 7 0.165 0.99
Antibacterial Activit

Comparison Statistic df p value padj
T2-T3 0.729 7 0.489 1

T2-T4 7.46 7 <0.001 <0.001**
T2-T5 9.86 7 <0.001 <0.001**
T3-T4 6.53 7 <0.001 0.002%*
T3-T5 8.16 7 <0.001 <0.001**
T4-T5 2.03 7 0.082 0.49

3.6. Analysis of TEM images from coral sampled under projects C1E0AS and C21169

50

3.6.1. TEM image analysis from Dry Tortugas corals sampled under C1E0AS5

A total of 432 TEM micrographs from Dry Tortugas corals were analyzed across six species—health
combinations. We quantified the proportion of images showing virus-like particles (VLPs) in coral
tissue and within intracellular Symbiodiniaceae (zooxanthellae or “zoox) at the level of overall
prevalence and by VLP morphotype. In C. natans tissue, the median percentage of VLP-positive images
was 92.9% in healthy samples (range 85.7-100%), 86.7% in apparently healthy (73.3—-100%), and
81.8% in diseased colonies (0—100%; Figure 16). For M. cavernosa, tissue-level prevalence reached
94.1% in healthy samples, 69.2% in apparently healthy, and 25.0% in diseased samples (range 0—50%;
Figure 16). Within Symbiodiniaceae cells, VLPs were observed in every group except one diseased
outlier. In C. natans, intracellular medians were 100% in healthy, 60.0% in apparently healthy (range
50-100%), and 92.9% in diseased symbionts (0—100%; Figure 17). In M. cavernosa, medians were
100% in healthy, 46.7% in apparently healthy (33.3—60.0%), and 81.7% in diseased cells (16.7-100%;
Figure 17). Both icosahedral and filamentous VLPs were detected in every C. natans tissue sample,
with median prevalences of 85.7%, 100.0% and 90.9% (filamentous) and 92.9%, 92.9% and 92.9%
(icosahedral) in healthy, apparently healthy, and diseased states, respectively (Figure 18). In M.
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cavernosa tissues, icosahedral VLPs appeared at medians of 94.1% (healthy), 69.2% (apparently
healthy) and 50.0% (diseased), whereas filamentous forms were present only in healthy and diseased
tissues (medians 94.1% and 50.0%, respectively) and absent in the apparently healthy group (Figure
TEM3). Across all comparisons (where sample representation allowed), no statistically significant
effect of health state on VLP detection was found.
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Figure 16. Prevalence of virus-like particles (VLPs) in coral tissue by species and health state. Boxplots
show the percentage of transmission electron microscopy (TEM) tissue images containing VLPs in
Colpophyllia natans (Cnat, left) and Montastraea cavernosa (Mcav, right) across three health states:
Healthy, Apparently Healthy, and Diseased. Each point represents the proportion of images showing
VLPs for an individual coral tissue sample, based on a set of TEM images collected per sample. Each
box represents the interquartile range, the horizontal line indicates the median, and whiskers denote the
full data range excluding outliers
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Figure 17. Prevalence of virus-like particles (VLPs) in symbiont (zooxanthellae) cells by coral species
and health state. Boxplots show the percentage of symbiotic algal (zooxanthellae) cell images
containing virus-like particles (VLPs) in Colpophyllia natans (Cnat, left) and Montastraea cavernosa
(Mcav, right), across three health states: Healthy, Apparently Healthy, and Diseased. Each point
represents the proportion of VLP-positive cells within the set of zooxanthellae images analyzed from a
single coral tissue sample. Boxes represent the interquartile range; horizontal lines indicate medians,
and whiskers denote the full data range excluding outliers.
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Figure 18. Detection frequency of virus-like particles (VLPs) in coral tissues by health state, species,
and VLP morphology. Boxplots show the percentage of transmission electron microscopy (TEM)
images containing virus-like particles (VLPs) in Colpophyllia natans (Cnat, left panels) and
Montastraea cavernosa (Mcav, right panels), separated by VLP morphology: filamentous (top row) and
icosahedral (bottom row). Coral health states are color-coded as Healthy (H, blue), Apparently Healthy
(AH, blue), and Diseased (D, red). Each point represents the percentage of images showing VLPs from
a single coral sample, calculated across both host tissue and symbiont (zooxanthellae) image sets.

3.6.2. TEM image analysis from time series experiment under project C21169

A total of 387 transmission electron microscopy (TEM) images were analyzed from the time
series experiment conducted under project C21169, encompassing both coral tissue and symbiotic
dinoflagellate (zooxanthellae) compartments. Images were derived from Colpophyllia natans (n =
47) and Montastraea cavernosa (n = 340), and categorized into four treatment groups: (i) Healthy-
Control (HC), (ii) Healthy-Healthy (HH), (iii) Early-Disease (ED), and (iv) Disease-Diseased
(DD). Virus-like particle (VLP) detection was quantified using two complementary metrics: the
number of TEM fields in which each morphotype (filamentous or icosahedral) was observed, and
the percentage of total fields per condition containing that morphotype. For C. natans, all 47 images
were from DD tissues; within this group, filamentous VLPs were rarely detected (~5% of images),
while icosahedral VLPs were present in ~30% of images. In contrast, M. cavernosa was represented
across three conditions (HH (n = 163), HC (n = 67), and ED (n = 110)) with no images available
for DD tissues. In M. cavernosa, filamentous VLPs were detected in 40% of HH images, dropped
to 10% in HC, and rose slightly to 25% in ED. Icosahedral VLLPs showed a similar but more
pronounced trend: present in 80% of HH images, declining to 5% in HC, and detected in 12% of
ED images.
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4. DISCUSSION AND MANAGEMENT RECOMMENDATIONS
4.1. Discussion
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4.1.1. Metagenomics

We found that the bacterial taxa Halarcobacter, Fusibacter, Amphritea, and Desulfocella were
predictive of a diseased state with random forest analysis. Halarcobacter and the closely-related
Malaciobacter, as well as many other indicator taxa of SCTLD, were shed by corals with SCTLD into
filtered seawater in Evans et al. (2023). Malaciobacter was also found in higher abundances in the
seawater surrounding corals affected by SCTLD (Bloomberg et al., 2025). Arcobacter, with 99%
BLAST identity to the sequence in this study, was also identified as an indicator taxon of SCTLD
(Becker et al., 2022). Fusibacter has been identified as an indicator of SCTLD across several studies
(Becker et al., 2022; Evans et al., 2023; Huntley et al., 2022; Rosales et al., 2022), but we found that
Fusibacter was not sufficiently discriminatory, as it was also a predictive taxon of an apparently
healthy (but not naive) state. We found that the genus Ferrimonas was a predictor of apparently
healthy and diseased unaffected states, but there is no known association of Ferrimonas with either
healthy or diseased corals: Ferrimonas are facultatively anaerobic, Fe(Ill)-reducing
Gammaproteobacteria typically found in marine sediments and aquatic environments. The family
Caulobacteraceae was found to be a strong predictor of naive coral states. Bacteria in this family have
been found to be tightly associated with the algal symbiont in the upper layers of coral tissue
(Ainsworth et al., 2015) and it has been suggested that they may play a role in host nutrient cycling,
though bacteria in this family harbor widespread roles.

Metagenomic functional analyses supported conclusions from community composition analyses,
and revealed consistently high levels of aerobic microbial activity across all coral species in all health
states except disease lesion, with elevated abundance of pathways related to aerobic respiration via
cytochrome ¢ (PWY-3781) and the TCA cycle. These functions may be attributed to aerobic bacteria
such as Endozoicomonas, Tistlia, and members of Terasakiellaceae, consistent with patterns observed
in 16S rRNA data and prior findings (Rosales et al., 2022). We also detected abundant pathways
involved in sulfur cycling (sulfate reduction and oxidation) and nitrogen utilization (ammonia
assimilation and nitrate reduction), alongside high relative abundance of sulfate-reducing and
anaerobic taxa including Desulfocella, Desulfovibrio, Halodesulfovibrio, Roseimarinus, Fusibacter,
and Halanaerobium. While sulfate reduction pathways were eclevated in diseased corals, this
difference was not statistically significant, potentially due to sample size imbalance.

These microbial functional shifts align with host gene expression patterns showing upregulation
of lectins and oxidative stress genes during disease progression, suggesting a host response to both
elevated microbial respiration and increased reactive oxygen species. Concurrent downregulation of
antiviral genes may indicate suppression of viral defense pathways, potentially facilitating viral or
microbial colonization and exacerbating disease. We hypothesize that the heathy coral microbiome is
dominated by aerobic taxa including Endozoicomonas, with high abundance of aerobic respiration
pathways (TCA cycle, cytochrome c). The loss of these pathways likely reflects the disruption of
beneficial host-microbe interactions in which products of nutrient cycling may be transferred to the
host. As disease develops, tissue damage and mucus overproduction may lead to localized hypoxia,
favoring the proliferation of anaerobic and sulfate-reducing bacteria such as Desulfovibrio and
Halodesulfovibrio, as evidenced by both taxonomic and functional profiling data. The byproducts of
sulfate reduction and nitrate respiration include toxic compounds such as hydrogen sulfide that may
harm coral tissue and inhibit healing (Jergensen, 1982; Philippot & Hojberg, 1999). These anaerobes
may not be primary pathogens but amplify disease impacts through opportunistic colonization of
diseased tissue. Coral gene expression data suggest that the host attempts to recognize and neutralize
bacterial opportunists through the upregulation of host lectins, however, pattern recognition receptors
such as lectins launch a non-specific immune response to both beneficial and harmful bacteria taxa
(Kvennefors et al., 2008), potentially leading to the observed decline in symbionts such as
Endozoicomonas. Indeed, lectins play a role in maintaining healthy symbiosis with the algal symbiont
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(Wood-Charlson et al., 2006), and this relationship may also be impacted by the dramatic upregulation
of lectins observed. Overexpression of host lectins can lead to tissue damage and comes at a
considerable energetic cost to the coral, possibility contributing to the observed downregulation of
antiviral responses.

The Fruchterman—Reingold layout used to produce a network visualization of interactions
between host genes and bacterial metabolic pathways helped to emphasize modular structure by
placing strongly correlated nodes in closer proximity, aiding interpretation of functional clusters.
Overall, the network revealed structured, non-random associations between host gene expression and
microbial functional capacity that may underlie key disease processes. The network shows numerous
clusters of host genes that were strongly associated with microbial pathways during disease
development. A total of 210 relationships were found to be statistically significant, and 24 host gene
clusters and 186 microbial pathways were part of these significant associations. Clustering within the
network highlighted several tightly connected modules, suggesting groups of co-regulated GO terms
and pathways. 10 clusters were identified with 10 or greater edges; all were host genes.

The high degree of connectivity observed in Cluster 5 suggests that this group of host genes and
associated bacterial pathways plays a central role in shaping the coral's physiological response to
disease. The co-enrichment of host genes related to DNA repair, inflammation, apoptosis, and tissue
remodeling indicates an active, but potentially overwhelmed, host attempt to manage cellular damage
and maintain tissue integrity. The concurrent association with bacterial pathways involved in central
metabolism (e.g., TCA cycle), anaerobic respiration (e.g., nitrate reduction, PWYO0-1584), and
degradation of amino acids and lipids points to a metabolically flexible microbial community
exploiting host-derived substrates in a hypoxic, nutrient-rich environment. The presence of bacterial
nitrate reduction and ethanol degradation pathways (ETOH-ACETYLCOA-ANA-PWY)—both
capable of producing cytotoxic intermediates such as nitric oxide and acetaldehyde—suggests that
microbial metabolism may contribute directly to tissue degradation and immune
dysregulation(Philippot & Hojberg, 1999). The correlation between host developmental signaling
(e.g., Wnt pathways, osteoblast-like gene expression) and microbial metabolism may reflect an
attempted compensatory regeneration response that is being disrupted or hijacked by opportunistic
microbes. Overall, the high interconnectivity of Cluster 5 supports the hypothesis that disease
progression involves a tightly coupled but maladaptive interaction between host stress responses and
microbial functional shifts. The observed correlation may reflect a pathological feedback loop, in
which the host attempts to repair and re-pattern damaged tissue, while microbes exploit the disrupted
environment through elevated metabolic activity, including fermentation, anaerobic respiration, and
nutrient scavenging. This interaction likely contributes to sustained inflammation, impaired healing,
and further tissue degradation in SCTLD-affected corals.

4.1.2. Virus sequence analyses
The large volume of sequencing data produced per coral colony in this study has allowed for a
deep investigation into virus community diversity and dynamics in the context of SCTLD. The goal
for Year 2 was to continue testing the current working hypothesis that viruses contribute to SCTLD
etiology through community-level dynamics in the form of opportunistic infections (Klinges et al.,
2024; Vega Thurber & Correa, 2023; Veglia, 2023). To do this successfully, we set out to 1. Develop
a virus classification framework that integrates multiple bioinformatic tools to improve classification
success and confidence; 2. Determine the core viral groups per species and perform a preliminary
assessment of phylosymbiosis as a first step toward understanding whether resident viral communities
may influence coral disease susceptibility or severity; 3. Assess virus community dynamics across
time and health by measuring and comparing alpha and beta diversity differences; and 4. Identify viral
taxa with upregulated transcripts in disease margin tissues and characterize the genes they encode.
Inferring viral pathogens from ‘omics data remains a major challenge in environmental virology,
particularly in understudied systems such as Florida’s coral reefs, where baseline data for most coral-
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associated viral lineages are lacking (Vega Thurber et al., 2025) In addition, public databases are
incomplete and biased toward viruses from well-studied hosts (e.g., humans, plants, and model
organisms), leaving reef-associated viral diversity significantly underrepresented. As a result,
assigning confident taxonomic classifications to putative viral sequences (especially at lower
taxonomic ranks like order, family, genus, species) remains difficult. This complicates efforts to
determine whether the same virus has been detected across studies or to track consistent signatures of
viral community change. To address these limitations and improve classification success and
confidence, we developed a standardized bioinformatic pipeline tailored to deal with the novelty of
coral-associated viromes. The pipeline integrates multiple detection and classification tools, enforces
consistent annotation practices, and mitigates the impact of inconsistent or outdated taxonomies in
public repositories. In its initial application in this study, the pipeline provided taxonomic
classifications for 632,670 putative viral sequences from both DNA and RNA sequencing libraries.
Importantly, it applied a conservative approach to lower-rank assignments below “class”, allowing for
the future implementation of lineage-specific rules for species-level designation. This framework is
designed to be reproducible and adaptable as coral virome references improve, forming the basis for
a coral reef-specific virus classification tool that will facilitate more effective virus studies in Florida.

To identify disease-specific coral virus communities or a potential viral pathogen, it is first
necessary to establish which virus taxa are consistently present in individuals and which may appear
sporadically. This study’s sampling design, which includes samples collected across multiple time
points from the same coral individuals, provides a unique opportunity to address this knowledge gap
in the Dry Tortugas by characterizing the core virome specific to each species sampled. Prior to this
study, the core viromes (inclusive of both DNA and RNA eukaryotic- and prokaryotic-infecting virus
groups) had not been characterized for any of the four coral species. Focusing on high-confidence viral
sequences, we identified 17 virus classes (officially recognized by the International Committee on
Taxonomy of Viruses) as core components in at least one of the four coral species' viromes (Table 6).
These included ten DNA virus classes and seven RNA virus classes, each present in at least 95% of
samples within a given species (Table 6). Several core classes identified in this study, which include
the eukaryotic virus groups Megaviricetes (DNA), Pokkesviricetes (DNA), Herviviricetes (DNA), and
Revtraviricetes (RNA), as well as the prokaryotic virus group Caudoviricetes, have previously been
reported as core coral virome taxa and were identified to be a core group for each species
(Ambalavanan et al., 2021; Thurber et al., 2017). We also identified six additional DNA virus classes
and six RNA virus classes that have not yet been recognized as part of the core coral virome. Two
notable core RNA virus classes for all species are Stelpaviricetes and Alsuviricetes. Stelpaviricetes
and Alsuviricetes contain the orders Patatavirales and Tymovirales, respectively, both of which are
comprised of positive-sense single-stranded RNA viruses with filamentous morphologies matching
virus-like particles identified in TEM images by Work et al. (2021) and Howe-Kerr et al. (2023) in
Florida corals. Hierarchical clustering analysis revealed evidence consistent with phylosymbiosis,
wherein more closely related coral species shared more similar core virome sequence diversity at the
virus class level (Figure 6). Given the current hypothesis proposing a community-wide contribution
to SCTLD, this observation provides a foundation for future investigations aimed at elucidating the
role of core virome diversity in shaping coral holobiont responses to SCTLD.

Assessment of virus community variability across sampling time points and colony health status
revealed notable patterns. When all coral species were pooled, we observed a significant difference in
virus alpha diversity across the pre-outbreak (T0), early outbreak (T1), and late outbreak (T2) periods
(Kruskal-Wallis chi-squared = 20.604, df = 2, p <0.01) (Figure 7). However, because time point and
health status are inherently confounded in our sampling design, this observed difference may reflect
changes in coral health or stress states, similar to those documented under other stress conditions
(Grupstra et al., 2022; Howe-Kerr, Grupstra, et al., 2023). Beta diversity analyses (PERMANOVA)
indicated significant effects of host species, sampling time point, and health status on virus community
composition, with host species explaining the largest proportion of variance (Figure 9). The
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statistically significant contributions of sampling timepoint and health status warrant careful
interpretation given the confounding nature of these factors. Nonetheless, collectively these results
suggest a potential impact of disease on virus community dynamics, consistent with a scenario of
holobiont dysbiosis (Egan & Gardiner, 2016). To understand how coral viromes respond to disease,
future studies should first assess how viral communities vary over time under non-diseased conditions,
providing a baseline for normal community dynamics.

Next, we looked to determine the virus taxa with upregulated transcripts specifically within tissue
sampled at the disease margin on a diseased coral across species. DESeq?2 analyses revealed a total of
6,587 sequences that were differentially more abundant within disease margin tissue across all species.
These differentially abundant sequences represented 32 different virus sequence groups of which 19
represented recognized virus classes (Figure 9). All core virus classes besides class Maveriviricetes
(viruses that infect giant viruses), including the two groups of filamentous RNA viruses (Alsuviricetes
and Stelpaviricetes), had increased transcript abundance in disease margin samples (Figure V4). Three
additional classes identified with increased transcript abundance included Monjiviricetes (negative-
strand RNA viruses), Arfiviricetes (single-stranded circular DNA viruses — ssDNA viruses have been
identified in diseased coral tissues previously (Soffer et al., 2014)), and Chrymotiviricetes (double-
stranded RNA viruses). The specific target hosts of these viruses within coral holobionts remain
unclear. As these virus groups were not identified as core classes in any of the studied coral species,
their increased transcription within disease margin tissues could reflect several possibilities: i. Some
or all these virus groups may already be present in healthy coral tissues at abundances below detection
thresholds, becoming detectable only upon increased viral productivity in diseased tissues; ii. Some
or all these virus groups might be directly associated with a cellular pathogen, becoming detectable
due to pathogen invasion or proliferation within coral tissues; or (iii) Some or all these virus groups
could represent pathogenic agents directly responsible for SCTLD symptoms. Lacking substantial
baseline information for these groups impedes our ability to make strong declarations regarding their
role in SCTLD, and future research should focus on producing foundational information regarding
coral virus communities outside the context of disease.

Finally, we aimed to examine the functional annotation of differentially expressed transcripts to
identify genes upregulated in disease margin tissues (Table 7). While we had a low annotation rate
for the 6,587 sequences (likely driven by the novelty of the genomic information recovered), one
observation is the presence of genes related to reverse transcription indicating the increased activity
of retroviruses (class Retraviricetes) in disease margin tissues. Increased reverse transcriptase activity
could indicate retroviral integration events into host genomes, potentially disrupting host genes critical
for immune responses or activating the transcription of neighboring genes typically silenced under
normal conditions (Jern & Coffin, 2008) Further investigation is needed to determine how retroviruses
might influence gene expression patterns in coral or their associated symbionts. Additionally, a notable
observation is the elevated expression of viral structural protein genes within disease margin tissues,
suggesting that these viral infections are at an advanced replication stage involving active particle
production and eventual viral release via lysis or budding. Specifically, lysis of coral or dinoflagellate
host cells could directly contribute to previously observed cytopathic effects in symbiont cells and
coral tissues (Landsberg et al., 2020) Additional baseline data on the temporal variability of virus gene
expression landscapes are needed to identify reliable signatures of coral disease or to reveal
mechanisms potentially driving disease progression.

4.1.3. Histology

This study is unique in itself as corals are shown to recover from disease which is unusual in the
case of SCTLD, but also provides for a broader reach. Samples collected for histology in this project
were analyzed with the same methodology as samples across two (potentially three) other diseases
and three other locations. This approach allows researchers to visually assess tissue parameters without
any internal bias for their own data and compare to other diseases across other regions. This has the
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potential to create a bank of knowledge across users for a faster verification of disease state. As the
body of data grows, so will the verification. Moving these data and the methodology behind it allows
for streamlining these techniques across labs.

Moving forward, this technique could be applied to outplanting and ex situ facilities, marking what
new “healthy” colonies look like, how species differ from one another, and potentially in the future,
how tissue markers change seasonally and over time. A public repository allows for collaboration
across disciplines and networks to create more holistic studies.

4.1.4. Transcriptomics

Our species-independent analyses of markers of SCTLD resistance and disease response provided
mixed results in identifying unifying potential diagnostic markers. While we were able to identify over
7000 shared single copy orthologs across our four species, analysis of collated gene expression of
these orthologs failed to identify any reliable markers of disease resistance, neither predictive nor
epidemic. This result was consistent regardless of whether or not highly-susceptible species
Colpophyllia natans was included in our analyses. The presence of predictive resistance markers, i.e.
genetic variation which can be used to predict variation in response of host corals to a particular
stressor, has been confirmed previously using species-specific approaches (Jin et al., 2016; Kelley et
al.,2021; Vollmer et al., 2023). Furthermore, clear transcriptomic differences have also been observed
between resistant and susceptible individuals during other disease outbreaks, again using species-
specific approaches (Libro & Vollmer, 2016; Wright et al., 2017), including our own previous work
in year one of this project (Klinges et al., 2024). Our approach here is highly unique; no studies to date
have applied multi-species approaches to identify species independent predictive markers, and only
two have taken a multi-species approach to consider transcriptomic differences between resistant and
susceptible individuals during disease outbreaks (Beavers et al., 2023; MacKnight et al., 2022). These
studies have similarly found few or no species-independent markers of resistance (Beavers et al., 2023;
MacKnight et al., 2022). It is possible that mechanisms of resistance are highly species specific, as
indicated by previous studies (Beavers et al., 2023; MacKnight et al., 2022). However, all of these
studies have been limited by sample size and existing genetic resources. More robust genomic
sequencing of species of interest will certainly improve identification of orthologs and statistical power
for identifying any potential species independent markers.

While we did not identify clear predictive markers of disease, we were successful in identifying
species-independent markers of disease response by comparing active lesion tissue to apparently
healthy tissue on the same colony. Notably, these markers showed high temporal variability, with only
four shared contigs consistently differentially expressed between these two tissue types over both
sampling points (June and August). Generally, more species-independent response markers were
observed early in the disease outbreak, in June, suggesting stronger initial disease stages. These
patterns are important when considering management practices as they suggest corals may mount
strong initial responses to disease, which cannot be sustained without intervention. The waning of
responses over time may be a direct contributor to mortality, suggesting intervention to bolster and
maintain initial immune responses may be a helpful strategy.

This pattern of early responses was particularly true of immunological changes, wherein 57/61
differentially expressed orthologs were only responsive in June. Specifically, we see strong
upregulation of a number of lectins (putative immunological receptors; Kvennefors et al., 2008; Zhou
et al.,, 2017) and oxidative stress genes in June, coupled with down regulation of antiviral and
inflammatory genes. The upregulation of lectins is indicative of increased capacity to recognize and
respond to pathogens (Kvennefors et al., 2008; Zhou et al., 2017). Immunological receptors are highly
diversified across cnidarian lineages (Emery et al., 2021), though our patterns observed here suggest
a role for some evolutionarily conserve receptors in initiating responses to SCTLD. The paired
upregulation of oxidative stress orthologs and down regulation of inflammatory orthologs may be
indicative of general pathways mitigating immunopathology, or self-damage inflicted by immune
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responses. Both excessive oxidative stress and inflammation can be damaging to hosts during immune
responses, but production of antioxidants and anti-inflammatory compounds can mitigate these
responses (Hasnain, 2018; Knight, 2000; Marshall et al., 2018).

Most notably, we observed downregulation of antiviral genes, which is surprising given the widely
proposed viral causative agent hypothesis. Some of these genes, like RN216, are negative regulators
of antiviral response (Evankovich et al., 2020), and others, like XERD, are indicative of viral
integration into host genomes (Yeh, 2020), thus explaining their downregulation. We also observed
clear upregulation of antiviral ortholog TXD12 (Hanchapola et al., 2023). Combined, our results
provide clear evidence for the roles of antiviral processes in response to SCTLD, though the
directionality of these responses is not abundantly clear.

In addition to patterns of gene expression indicative of resistance and response to disease we also
considered species-independent patterns of association between host gene expression and other
generated metrics of interest, specifically microbial/viral community composition and histological
traits of interest. As expected, host gene expression was highly correlated to viral and microbial
community composition, though the magnitude of effects of viral abundance on host gene expression
was shocking. Viral abundance was exceptionally strongly correlated to host gene expression and had
strong positive impacts on host immunity. Notably, many of the viral groups most associated with host
gene expression are associated with viral phages including Streptococcus phage phiNJ2 (Tang et al.,
2013), Zobellviridae (Gorodnichev et al., 2023), Streptococcus phage phiARI0746 (Abril et al., 2020),
Uetakevirus (Li et al., 2022), Schitoviridae (Lokareddy et al., 2024), and Brochothrix phage BL3
(Kilcher et al., 2010). Several of these, including both Steptococcus phages, Zobellviridae, and
Uetakevirus are phages of disease-causing bacteria (Abril et al., 2020; Gorodnichev et al., 2023; Li et
al., 2022; Tang et al., 2013), hence the associations with immunity are likely indicative of higher
abundance of these bacteria rather than the viruses themselves. We did also identify a
Pseudoalteromonas phage (H103; Zheng et al., 2023)) which was also positively associated with host
immunity. Pseudoalteromonas bacteria are frequently associated with corals, and some may have
probiotic effects which aid in SCTLD defense (Ushijima et al., 2023). Our results suggest these
beneficial effects may be mediated through manipulation of host immunity.

When considering bacterial community composition, we saw similar strong associations with host
gene expression generally, and immunity specifically. We were able to identify several microbial
families with effects of host immunity, the most notable of which was Rhodocyclaceae, an incredibly
diverse group of microbes spanning ecological niches (Oren, 2014). Nitrogen fixing bacterial family
Terasakiellaceae, was also highly associated with host gene expression generally, and negatively
associated with host immune processes, despite previous observations of associations with healthy
host tissues (Moynihan et al., 2022) and evidence for roles in thermal adaptation (Wei et al., 2024).
Finally, we also observed strong effects of putative microbial symbionts of both host and
Symbiodiniaceae on host gene expression and immune function. Putative Symbiodiniaceae symbiont
Oligoflexaceae (Aguirre et al., 2023), was positively associated with both immunological GO terms,
and our identified immunological co-expression module. Core Symbiodiniaceae microbiome member
Chromatiaceae (Lawson et al., 2018) was also highly associated with host gene expression, though no
effects on host immunity were observed. Notably, we also observed negative associations between
putative beneficial microbial family Endozoicomonadaceae (Pogoreutz & Ziegler, 2024), and
expression of our immunological module, suggesting more complex effects of members of this family
on host function than currently considered. Combined, our results highly complex, evolutionary
conserved relationships between microbial abundance and host gene expression.

Finally, we did observe significant associations between both vacuolization and maximum vacuole
size determined by histology and host gene expression. However, there were no clear trends of
association of these processes and host immunity, nor was exocytosis (which can be important for
SCTLD response) associated strongly with host immunity. These findings potentially indicate species-
specific pathways controlling direct immunological functions important for SCTLD defense,
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including vacuolization.

4.1.5. Immunological Analysis of samples from project C21169

Our immunological assays failed to find any notable differences in immune metrics as a result of
exposure to stony coral tissue loss disease, despite gross observations of disease progression during
the experimental period. Instead, we identified strong signatures of the effects of experiment duration
on immune metrics, revealing potential effects of general experimental stress which may have
swamped out any disease signatures. The lack of feeding and frequent water changes during the
duration of the experiment most likely induced these changes, evidenced by a general decline in costly
melanin and antibacterial activity, and a reciprocal spike in antioxidant protein at the start of these
declines (T3). Still, visually our data shows trends towards decreased antibacterial and melanin activity
during early disease progression, and heightened peroxidase activity. Improved sample size, and more
careful experimentation to reduce stress would help parse out the effects of general stress from disease
response to provide a better picture of host immunological responses to SCTLD.

4.1.6. Analysis of TEM images from coral sampled under projects CIEOAS and C21169

The preliminary analysis of 819 transmission electron microscopy (TEM) images from both healthy
and diseased coral tissues (collected in situ and in vitro) revealed the widespread presence of virus-
like particles (filamentous and spherical) in both the coral host and endosymbiotic dinoflagellate
compartments. Consistent with sequencing results and previous findings from diverse studies
(reviewed in Vega Thurber et al., 2017; Vega Thurber et al., 2024), these observations confirm the
high prevalence and apparent diversity of viruses across all coral health states. When statistical
comparisons were possible, no significant differences in VLP detection rates were observed across
health conditions, reinforcing the idea that viral presence in coral tissues is not restricted to disease.
These findings underscore a key limitation of using TEM as a standalone diagnostic tool for
identifying viral pathogens in corals. Morphological similarity among unrelated viral taxa, combined
with the potential for pleomorphic viruses (those capable of adopting multiple capsid structures
depending on environmental conditions), complicates efforts to assign taxonomy or infer
pathogenicity based on particle structure alone. Moreover, given the persistent presence of VLPs in
healthy tissues and the fact that many virus groups are transcriptionally upregulated in diseased
samples, it remains difficult to distinguish between normal components of the resident virome and true
disease-causing agents. Until more background data on coral-associated cellular components and
viruses (including their morphological diversity, their within-colony spatial variability, their infection
dynamics/temporal variability in particle production in non-diseased contexts) become available, TEM
is best used as a complementary tool in coral disease research. While TEM cannot reliably distinguish
between pathogenic and non-pathogenic viruses, it can provide valuable spatial context, including
evidence of cytopathic effects, viral replication structures, virus-associated structural changes, and
host cell degradation, offering insight into the functional impact of viral activity at the cellular level
within coral tissues (Papke et al., 2024).

Future Steps

While integrative analyses between different ‘omics data streams have begun to identify
connections between host immune response, bacterial and viral community composition and function,
and disease outcomes and histology, there is still considerable work to be done with this dataset that
may help identify bacterial and viral functional pathways that are critical to disease development and
the corresponding response by the coral host and by the algal symbiont. Gene expression of the algal
symbiont has not been assessed for these samples and may provide the missing link with histological
data that suggests a role of the algal symbiont in disease histopathology. We will build on our
correlation-based analyses of host gene expression, bacterial taxonomic groups, and bacterial function
by grouping host genes and microbial pathways into broader functional categories (e.g., apoptosis,
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anaerobic metabolism) and using multivariate models to refine key associations and identify cofactors
(symbiont composition/clade, site, coral species) that influence interactions. We will integrate these
associations into new random forest models to assess whether functional groups or bacterial
community member identity are better predictors of disease state. Similar analyses should also be
performed to integrate microbial pathways with viral sequence abundance to assess potential microbial
response to viruses and phage. These results will inform targeted experiments to test whether microbial
byproducts like nitric oxide or sulfide contribute to host immune activation, oxidative stress, or cell
death. The interaction between broader bacterial functional categories such as sulfate and nitrate
reduction and breakdown of host immunity could also be tested through coral inoculation with bacteria
cultivated in nitrate- or sulfate-rich media.

4.3. Management Recommendations

61

As one of the first SCTLD time-series analyses performed on samples of corals from pre-exposure to
exposure to disease development, this study has considerable implications for our understanding of
disease development, especially in remote coral reefs.

1. Corals in this study developed the hallmark histological signs of SCTLD despite their location in a
remote region of the lower Florida Keys far from significant local stressors. Indeed, it is possible that
their stress-naive state pre-exposure made them more susceptible to SCLTD, as corals appeared to
exhibit signs of immunosuppression during disease development. Practitioners and managers should
ensure that corals in the remote reaches of the Caribbean are regularly monitored for disease
development, and further studies should be performed in these remote areas to validate these results.

2. Synergies between bacterial metabolic pathways and host immune response should be further
explored to identify targeted treatments that block bacterial function, such as targeted antibiotic and
biocides that directly influence sulfate reduction.

3. Similarities in response to SCTLD across species indicate a strong, multi-faceted immunological
response during early disease stages, which wanes over time perhaps due to declining coral fitness.
Interventions to mitigate this immunological waning may prevent mortality.

4. Further study is needed to investigate the mechanisms behind the differences in immune responses
between coral species. Understanding these mechanisms can lead to the development of targeted
therapies and better inform species selection for restoration.

5. Our understanding of viruses and their roles in promoting coral health or contributing to diseases
like SCTLD remains underdeveloped. To improve the utility of coral virome data for management
decisions, future efforts should prioritize foundational research on the temporal and spatial dynamics
of the apparently healthy coral virome to generate valuable baseline information. In addition, our initial
findings highlight the need for research on the diversity and ecology of core virome members under
varying environmental conditions, to better interpret their activity and potential impacts under biotic or
abiotic stressors. This knowledge would support the identification of virome signatures associated with
coral health or resilience, aiding managers, researchers, and restoration practitioners in early detection
and response strategies.
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