Field and Lab Audits
What is an Audit?

• Check that data and processes are of sufficient quality for environmental decision-making
 • Data Quality Objectives (DQOs) met?
 • SOPs, methods and project-specific requirements followed?
• Documentation sufficient to recreate event?
• Opportunity for learning and tweaking processes
Audit Overview

- Program and project DQOs and Data Quality Indicators (DQIs) as audit criteria
 - QA rule requirements (62-160 FAC)
 - Program rules and requirements
 - DEP SOP requirements (DEP-SOP-001/01, DEP-SOP-002/01 and DEP-SOP-003/11)
 - Project QA plan requirements, if applicable (contracts and grants)
 - Analytical method requirements for labs
 - NELAC (or TNI) requirements for labs
 - DEP data usability criteria (DEP-EA-001/07)
Audit Overview - Field

- Field audits
 - **System** (evaluation of procedures, equipment and documentation)
 - **Performance** (evaluation of sampler’s technique, knowledge of DEP SOPs and record-keeping)
 - **Project** (tracking specific sample results through field records for data validation and usability assessment)
Audit Overview - Laboratory

- Laboratory audits
 - **System** (evaluation of procedures, equipment and documentation)
 - Usually performed by DOH ELCP
 - **Project** (tracking specific sample results through lab records for data validation and usability assessment)
Lab Audits - DoH vs. DEP

• DoH looks at the Big Picture –
 • Is there a Quality System?
 • Do processes and procedures meet NELAC (TNI) Requirements?
 • Lab certification sets the minimum bar

• DEP looks at specific data-
 • How effective are the system and processes in generating data for a specific purpose?
 • Typically tracks selected data through documents
 • Are data usable for a specific purpose?
Audit Overview - Project

- **Project audits** including data review
 - Tiered approach determines depth or degree of evaluation
 - Routine data review for compliance with permits and rules can incorporate lower level tiers of audit criteria
 - **Examples:**
 - Date checks for holding times
 - Method number checks for approved methods
 - Result checks for applicable “reversals”
 - Data qualifier code checks for QC problems
 - MDL and PQL value checks for DQO attainment
Audit Overview – Internal vs external

• Internal audits
 • Required for all sampling organizations (FA 4200)
 • System, performance and project audits recommended
 • Coordinated by your QA Officer
 • Assistance with audits offered by AEQAS
 • Internal “Quality of Science” reviews conducted by AEQAS for DEP internal program quality system evaluation, if requested

• External audits (conducted by DEP)
 • Authorized by QA rule
 • Applicable to any person or organization involved in data generation or support activities
Records to reconstruct history of each sample

- **Documentation** is critical to assessing data usability
- Can an independent auditor **reconstruct** how the sample was collected, received in lab, processed and analyzed, test results evaluated, reported, etc.
 - Can the calibration condition of field-testing instruments used to measure sample characteristics be verified?
Audit Checklists

- Generic sampling checklists in FA 1000 (DEP SOPs) and on QA Officer Resources page:
 - http://www.dep.state.fl.us/water/sas/qa/officer.htm
 - Lab checklists for selected analytes on QAO webpage

- Other checklist versions available from AEQAS

- Serve as on-site reminders of audit criteria

- Provide detailed feedback as part of audit report

- May need project-specific checklist
 - Derive from project DQOs and DQIs
Field Checklists

• DEP SOPs are basis for typical audit
 • Sampling collection
 • Sampling equipment
 • Sample preservation
 • Field testing calibrations
 • Documentation of field-related activities

• Audits of project-specific data records will track the selected samples or data points
 • Documentation per QA rule must be available
Lab checklists

- Analytical methods, NELAC (TNI) standards, DEP-EA-001/07, Program-specific DQOs, contract requirements, etc. are basis for checklists
 - Checklists require tailoring to the above for given audit and data selected
 - Data records audits track individual data or samples through the lab records
 - “Systems” audits may also inspect available equipment & supplies, record-keeping structure, and conduct analyst interviews
 - Documentation per QA rule requirements must be available for audits
Data Review And Audits

Checklists

TMDL Data Evaluation Checklists - Use these checklists as guidance to evaluate the usability of your data for the TMDL Program:

- Field Performance Audit Checklist
- Data Evaluation Checklist

Field Audit Checklists - Use these example checklists as guidance for conducting internal audits.

- Documentation Checklist
- Field Quality Control Checklist
- Field Testing Checklist
- General Sampling Checklist
- Aqueous Sampling Checklist
- Groundwater Sampling Checklist
- Surface Water Sampling Checklist
- Stream Condition Index (SCI) Sampling Checklist
- Qualitative Periphyton Sampling Checklist

Lab Audit Checklists (MSExcel file)

Data Usability Document

Department of Health Environmental Laboratory Certification Program (DOH ELCP) Checklists and Other Information

Common Problems Seen During Audits

- Common TMDL Audit Deficiencies - List of common field and laboratory audit deficiencies from TMDL or RCRA audits.
- Groundwater Sampling Audit Issues

Audits

Performance Audit Inspection (PAI) Typical Records Request List (Sampling and Analyses)

http://www.dep.state.fl.us/water/sas/qa/dr-audits.htm
Audit Report

• Complete relevant checklists

• Send preliminary report of audit findings which clearly outlines major and minor deficiencies and recommendations
 • Include checklists (if appropriate)
 • Send to audited and/or responding entity
 • Copy to associated DEP staff

• Ask for response and strategy for addressing issues
 • Indicate mandatory corrective actions

• Consider responses and prepare final audit report
 • Note acceptable corrective actions

• Document any data usability recommendations
Corrective Action

- Work with the audited party to develop corrective actions. Examples:
 - Additional staff training
 - Procedure changes
 - Record-keeping changes
- Auditor and audited party should agree to actions (detailed in audit report)
- Follow up with audited party to ensure compliance and understanding
 - Additional audit may be required
Usability Recommendation Process

- Evaluate each sample-analyte combination per applicable criteria
 - Assess criticality of any failures
 - Identify mitigating data and facts
 - Determine qualification status of analytical result

- Tally number and percentage of qualified sample results for analyte

- Characterize analyte (field and) laboratory system with respect to selected audit data
Usability Recommendation Process (cont’d.)

• Evaluate response from audited entity
 • Usually documented in final audit report

• Audit more data records as necessary
 • Repeat evaluation process for additional data

• Recommend qualified or unqualified use of analyte data for the audited calendar ranges or project, permit, etc.
 • Document usability recommendation for individual sample results or for larger set of data

• Resolve data management issues – database records
Data Records Selection Criteria

- Driven by program, project or site, permit, contract, problem, etc.

- What is purpose of audit? Examples:
 - Assess overall usability for a dataset?
 - Determine usability for specific data points?
 - Evaluate compliance data for a permit?
 - Investigate a known problem with the data?
 - Respond to fraud allegation or other complaint?
 - Follow-up to verify corrective actions?
Data Records Selection Criteria - Example

- Identify “major” data generators or other category of generators of ambient monitoring data used for surface water impairment assessment
- Choose relevant analytes specific to audited entity
- Pick sample records for low-med-hi concentrations for each audit year, including non-detects
- Include data records for 5-year range or other date span
- Target minimum of 15 audit samples
General Audit Topics & Problems Encountered During Audits
Field Records Audit Topics

• Sample collection information
 • Location, date, time, analytes, preservation, matrices, collection equipment & procedures
 • Groundwater purging information

• Field testing information
 • Measurement results
 • Calibration verification

• DEP SOPs are audit criteria
 • Basis for checklists for performance and documentation
Lab Records Audit Topics

- Sample preservation & holding time
- Instrument calibration & verification
- Analytical sensitivity (MDL & PQL)
- Analytical precision & accuracy
- Blank contamination control
- Sample concentration bracketing
- Method-specific procedures
- Data reduction, reporting & transcription
Holding Times

• Criteria established in DEP SOP tables per DEP QA rule & 40 CFR Part 136

• Field record is audited to verify collection date and time

• Lab analytical record is used to verify sample prep and analysis date and time, as applicable
Evaluation of Sample Preservation

- Criteria established in DEP SOP tables per DEP QA rule & 40 CFR Part 136
- Field records should indicate type(s) of preservation for each sample container
 - Includes field check of required preservation pH
 - Field info transmitted to lab should also indicate any other specific preservations
Evaluation of Sample Preservation (cont’d.)

- Lab records are evaluated independently of field records
 - pH preservation and chilling is not verified upon laboratory sample receipt
 - Records are checked for any indication of verification of sample pH and temperature
 - Check with pH paper (pH value recorded or noted within specified range)
 - “Received in ice” OK only for same-day delivery
Calibration Evaluation - Examples

- Minimum number of standards used
- Corr. Coeff. ≥ 0.995 where applicable
- “Second-source” standard used to verify initial calibration
- All verifications within specified range (method or other criterion)
- Sample and QC results “bracketed” between acceptable calibration verifications
Spike Evaluation

- LCS usually takes precedence over matrix spike
 - Matrix spike evaluated where required by method or other criterion
 - Matrix spike evaluated for parent sample

- Recovery calculations verified by auditor using raw data
 - Example default recovery targets:
 - 90% - 110% for nutrients
 - 85% - 115% for metals (LCS)
 - 70% - 130% for metals (Matrix Spike)
Auditing of Data Reduction & Reporting

- **Final results** are verified according to method-specified calculation formulas.
- **Raw sample responses** from the instrumentation are compared to standard responses.
- **Specific QC evaluations** are applied to the analyses, for example:
 - Metals, microbiology and BOD QC per method requirements.
- **Reports or databases** are compared to audit results.
Field Issues - Field Sampling Performance

- Not having proper, functioning equipment out in the field
- Not following DEP SOPs
- "Sloppy" contamination control and sample handling (e.g., cross-contamination of equipment between samples, agitation/aeration of VOCs)
- Not documenting required information
Field Issues - Field Testing

- DEP SOP calibration verification protocols for test instruments were not followed.
- Pre-deployment checks on field test and sampling equipment were not conducted.
 - Equipment does not work during sampling event
- Standards used for calibrating field measurements did not bracket sample concentrations.
- Field meter calibration criteria not met
 - Calibration acceptance criteria were not being assessed (at all)
Field Issues - Documentation

- Various calibration records incomplete
 - Including linkage between meter calibration records and sample measurement data
 - Sources for field calibration standards were not documented
 - Calibration verifications not documented
Field Issues- General Documentation

• Sample preservation and verification (including filtration) not recorded
• Groundwater purging records incomplete
• Lack of clear, unique identification of samples
• No documentation of sampling equipment used to collect samples
Lab Issues – Procedure and documentation

• Lab Procedural & Documentation Issues
 • Lab doesn’t check received field samples for proper preservation (i.e. doesn’t document the check)
 • Lab QC data generated at concentrations not relevant to the project sample concentrations (spikes and duplicates)
 • Lab doesn’t evaluate the results of analytical blanks for impact on sample results
 • Critical aspects of sample preparation are not recorded (e.g., filtration times for chlorophyll, method-required processing steps for other tests)
Lab Issues – data reporting

- Lab data reporting
 - Reported MDLs and PQLs not low enough to meet project or program DQOs
 - Lab QC data is “selectively” used to report unqualified sample results
 - Sample results are reported without qualification whose concentrations are outside of the calibration range
 - Sample results reported with missing or inappropriate data qualifier codes
Problems With Calibration Range

- Samples outside of calibration range reported without qualification
 - Standards used for the calibration curve define the calibration range
 - PQL (LOQ) concentration should be bracketed by curve
 - Lowest calibration standard may be at the lab PQL (LOQ)
 - Results above highest standard are estimated values

- QC samples are evaluated per above
 - Blanks, spikes and duplicates outside of range are estimated results
Blank Contamination

- Blanks not adequately evaluated
 - Sample results reported without qualification
 - Blank results selectively used or ignored

- Blanks are evaluated based on chronology and batching
 - Before and after sample result (relative to analytical run times)
 - Prepared blanks in prep batch

- “10%” criterion applied to contamination level

- Sample results are evaluated against any applicable field-QC blank results
MDL & PQL Problems

- Lab MDL or PQL is too high for indicated use
 - Data not usable for non-detect samples
 - Estimated values for sample results <PQL *may* be problematic
 - Elevated MDL/PQL from unnecessary sample dilutions not usable
Spiking Problems

- LCS analyzed concentration too high relative to sample concentration range or desired PQL
 - Applicable for non-detect results
 - Evaluation of recovery near PQL (if appropriate QC check used)
 - Spike concentration not appropriate to samples

- Matrix spike analyzed concentration too high or too low relative to unspiked parent samples
 - Evaluated on case-by-case basis for the parent sample and analytical run

- Spike not digested or processed with samples
Precision Evaluation & Problems

• When lab controls precision using duplicate results <PQL
 • RPD or %RSD may not be representative

• LCS duplicates take precedence over MS duplicates and sample duplicates
 • Sample duplicates evaluated for parent sample
Selective Use of Calibration & QC Results

- Blanks, spikes, duplicates and standards are audited against the run-time and batch relationships to samples
 - Lab ignores failed results; uses good results to pass verifications or QC measures
 - Lab selectively uses chronologically related data to pass verifications or QC measures
 - Lab selectively uses batch-related QC results
 - Lab uses data NOT justifiably related to samples to pass verifications or QC measures; e.g., re-runs on different days
Qualified Data Reporting

- Laboratory fails to report results with appropriate qualifiers
 - DEP QA rule data qualifier codes

- Sample results are independently qualified by auditors based on audit results
 - Audit qualified results are compared to reported data or database records
Audits – Examples and Resources

- DEP Audit reports page
 - http://www.dep.state.fl.us/labs/cgi-bin/reports/search.asp

- QAO Resources page – Data Review & Audits

- DOH certification inspection checklists
 - http://www.dep.state.fl.us/labs/dohforms.htm

- Additional checklists from AEQAS