Final
2016 Progress Report for the
Lake Okeechobee
Basin Management Action Plan

Division of Environmental Assessment and Restoration
Water Quality Restoration Program
Florida Department of Environmental Protection

with participation from the
Lake Okeechobee Stakeholders

June 2017
Acknowledgments

This 2016 Progress Report for the Lake Okeechobee Basin Management Action Plan (BMAP) was prepared as part of a statewide watershed management approach to restore and protect Florida's water quality. It was prepared by the Florida Department of Environmental Protection with participation from the Lake Okeechobee stakeholders listed in the table on the next page.

For additional information on the watershed management approach in the Lake Okeechobee Basin, contact:

Sara Davis, Basin Coordinator
Florida Department of Environmental Protection
Watershed Restoration Program, Watershed Planning and Coordination Section
2600 Blair Stone Road, Mail Station 3565
Tallahassee, FL 32399-2400
Email: Sara Davis
Phone: (850) 245–8825
## List of Lake Okeechobee BMAP Participants

<table>
<thead>
<tr>
<th>Type of Governmental or Private Entity</th>
<th>Participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counties</td>
<td>Glades, Highlands, Martin, Okeechobee, Orange, Osceola, Polk</td>
</tr>
<tr>
<td>Municipalities</td>
<td>City of Avon Park, City of Kissimmee, City of Edgewood, City of Okeechobee, City of Orlando, City of Sebring</td>
</tr>
<tr>
<td>Special Districts</td>
<td>Okeechobee Utility Authority, Istokpoga Marsh Watershed Improvement District, Reedy Creek Improvement District, Spring Lake Improvement District</td>
</tr>
<tr>
<td>Agencies</td>
<td>Florida Department of Agriculture and Consumer Services, Florida Department of Environmental Protection, South Florida Water Management District, Southwest Florida Water Management District, St. Johns River Water Management District, Florida Department of Transportation District 1, Florida Department of Transportation District 4, Florida Department of Transportation District 5</td>
</tr>
<tr>
<td>Other Interested Parties</td>
<td>Agriculture, Archbold Biological Station, Audubon of Florida, Conservancy of Southwest Florida, Everglades Foundation, Florida Fruit and Vegetable Association, Florida Farm Bureau, Lee County Board of County Commissioners, Lykes Ranch, U.S. Department of Agriculture Natural Resources Conservation Service, One Florida Foundation, Soil Water Engineering Technology, Inc., Southeast Milk, Inc., Sugar Cane Growers Cooperative of Florida</td>
</tr>
</tbody>
</table>
## Table of Contents

Acknowledgments ..........................................................................................................................2  
List of Acronyms and Abbreviations ...........................................................................................9  
Summary .......................................................................................................................................11  
Section 1 : Introduction ...............................................................................................................15  
  1.1 Purpose of the Report ...................................................................................................15  
  1.2 Total Maximum Daily Load (TMDL) for the Lake Okeechobee Basin ...................15  
  1.3 Responsible Parties and Key Stakeholders ................................................................15  
  1.4 Assumptions and Considerations Regarding TMDL Implementation ....................16  
Section 2 : Activities During the Reporting Year .................................................................17  
  2.1 Coordinating Agency Projects and Initiatives ............................................................17  
  2.2 SFWMD Activities ........................................................................................................22  
    Taylor Creek/Nubbin Slough Sub-watershed Projects .........................................................22  
    Upper and Lower Kissimmee Sub-watershed Projects .......................................................22  
    DWM Program ................................................................................................................23  
    Other Restoration Strategies ...........................................................................................24  
  2.3 FDOT Activities .............................................................................................................24  
    District 1 ..........................................................................................................................24  
    District 5 ..........................................................................................................................24  
  2.4 Agricultural Activities ...................................................................................................25  
    Agricultural BMPs and Enrollment Efforts ....................................................................25  
    Project Updates ...............................................................................................................26  
    WAM Updates ................................................................................................................26  
  2.5 City, County, and Special District Activities ..............................................................28  
    City of Avon Park .............................................................................................................28  
    City of Edgewood ............................................................................................................28  
    City of Kissimmee ............................................................................................................29  
    City of Orlando ...............................................................................................................29  
    City of Sebring ................................................................................................................29  
    Glades County ................................................................................................................29  
    Highlands County ..........................................................................................................29  
    Okeechobee County .......................................................................................................29  
    Orange County ..............................................................................................................29  
    Osceola County ...............................................................................................................30  
    Polk County .....................................................................................................................30  
    Spring Lake Improvement District (SLID) .......................................................................30  
    Istokpoga Marsh Watershed Improvement District (IMWID) .........................................30  
  2.6 Summary of Accomplishments ....................................................................................30  
Section 3 : Water Quality Monitoring .......................................................................................33
3.1 Water Quality Monitoring .................................................................................................. 33
   Monitoring Objectives ........................................................................................................ 33
   Data Management and Assessment .................................................................................... 33
   Water Quality Analyses ..................................................................................................... 34
   Individual Station Seasonal Mann-Kendall and Mann-Kendall (AGM) Trend Results. 36

Section 4: Other Efforts .............................................................................................................. 39

4.1 Lake Tohopekaliga Nutrient Reduction Plan (NRP) .......................................................... 39

4.2 Management Strategies for the Southern Sub-watersheds ............................................. 39
   Urban Stormwater ............................................................................................................. 39
   Agricultural BMPs ............................................................................................................ 39
   Public Education and Outreach ....................................................................................... 39
   Sediment Removal/Canal Cleaning .................................................................................. 40
   Bolles Cross Canal Improvements .................................................................................. 40

Section 5: Compliance ............................................................................................................... 41

Appendices ................................................................................................................................ 42

Appendix A: Projects To Achieve the TMDL ....................................................................... 42
Appendix B: Future BMAP Projects ....................................................................................... 70
Appendix C: Agricultural Enrollment and Reductions .......................................................... 71
Appendix D: BMAP Monitoring Network ............................................................................. 82
Appendix E: Water Quality Analyses ..................................................................................... 91
   Methods ............................................................................................................................. 91
   Results ............................................................................................................................... 91
Appendix F: Important Links ................................................................................................. 104
List of Figures

Figure S-1. Lake Okeechobee Sub-watersheds ................................................................. 13
Figure S-2. Progress towards the TMDL through December 31, 2016................................. 14
Figure 1. Progress towards the TMDL through December 31, 2016 ............................... 31
Figure C-1. BMP enrollment in the Lake Okeechobee Watershed as of September 30, 2016.... 75
Figure C-2. Agricultural lands in the LET enrolled in BMP programs as of September 30, 2016 ..................................................................................................................... 80
Figure D-1. Water quality monitoring network for the Lake Okeechobee Watershed as of December 2016 ...................................................................................... 90
Figure E-1. Mann-Kendall trend analysis for TP at Orange County Station BCA .......... 92
Figure E-2. Mann-Kendall trend analysis for TP at Osceola County Station ETO5253114 .... 92
Figure E-3. Mann-Kendall trend analysis for TP at Osceola County Station Judges_DCH 93
Figure E-4. Mann-Kendall trend analysis for TP at Osceola County Station Partin_CNL .... 93
Figure E-5. Mann-Kendall trend analysis for TP at Osceola County Station Runnymeadе 94
Figure E-6. Mann-Kendall trend analysis for TP at Orlando/Orange County Station SCC .... 94
Figure E-7. Mann-Kendall trend analysis for TP at Orange County Station XLKEHS62 .... 95
Figure E-8. Mann-Kendall trend analysis for TN at Orange County Station BCA ............. 95
Figure E-9. Mann-Kendall trend analysis for TN at Osceola County Station ETO5253114 ... 96
Figure E-10. Mann-Kendall trend analysis for TN at Osceola County Station Runnymeadе 96
Figure E-11. Mann-Kendall trend analysis for TN at Orlando/Orange County Station SCC ... 97
Figure E-12. Mann-Kendall trend analysis for TN at Orange County Station XLKEHS62 .... 97
Figure E-13. Seasonal Mann-Kendall trend analysis for TP at Orange County Station BCA ... 98
Figure E-14. Seasonal Mann-Kendall trend analysis for TP at Osceola County Station ETO5253114 .............................................................. 98
Figure E-15. Seasonal Mann-Kendall trend analysis for TP at Osceola County Station Judges_DCH .............................................................. 99
Figure E-16. Seasonal Mann-Kendall trend analysis for TP at Osceola County Station Partin_CNL .............................................................. 99
Figure E-17. Seasonal Mann-Kendall trend analysis for TP at Orange County Station Runnymeadе .............................................................. 100
Figure E-18. Seasonal Mann-Kendall trend analysis for TP at Orlando/Orange County Station SCC .............................................................. 100
Figure E-19. Seasonal Mann-Kendall trend analysis for TP at Orange County Station XLKEHS62 .............................................................. 101
Figure E-20. Seasonal Mann-Kendall trend analysis for TN at Orange County Station BCA .... 101
Figure E-21. Seasonal Mann-Kendall trend analysis for TN at Osceola County Station Runnymeadе .............................................................. 102
Figure E-22. Seasonal Mann-Kendall trend analysis for TN at Orlando/Orange County Station SCC .............................................................. 102
List of Tables

Table 1. Coordinating agency initiatives ...................................................................................... 17
Table 2. Projects under development by the Coordinating Agencies.............................................19
Table 3. BMP enrollment and future enrollment requirements for the Fisheating Creek Sub- watershed................................................................. 27
Table 4. BMP enrollment and future enrollment requirements for the Indian Prairie Sub- watershed................................................................. 27
Table 5. BMP enrollment and future enrollment requirements for the Lake Istokpoga Sub- watershed................................................................. 27
Table 6. BMP enrollment and future enrollment requirements for the Lower Kissimmee Sub- watershed................................................................. 28
Table 7. BMP enrollment and future enrollment requirements for the Taylor Creek/Nubbin Slough Sub-watershed ................................................................. 28
Table 8. BMP enrollment and future enrollment requirements for the Upper Kissimmee Sub- watershed................................................................. 28
Table 9. Projects completed during the reporting period .............................................................. 32
Table 10. Local entity stations used in trend analyses ................................................................. 35
Table 11. Summary of trend analysis results for TP concentrations ............................................ 37
Table 12. Summary of trend analysis results for TN concentrations ............................................ 38
Table 13. Local entity projects to achieve the TMDL ................................................................. 41
Table 14. Agency projects to achieve the TMDL ......................................................................... 41
Table A-1. Projects in the Fisheating Creek Sub-watershed ........................................................ 43
Table A-2. Projects in the Indian Prairie Sub-watershed ............................................................ 44
Table A-3. Projects in the Lake Istokpoga Sub-watershed .......................................................... 45
Table A-4. Projects in the Lower Kissimmee Sub-watershed ....................................................... 47
Table A-5. Projects in the Taylor Creek/Nubbin Slough Sub-watershed ...................................... 49
Table A-6. Projects in the Upper Kissimmee Sub-watershed ....................................................... 52
Table A-7. Projects under development with the Coordinating Agencies ................................ 65
Table A-8. Other initiatives ........................................................................................................ 68
Table C-1. Agricultural land uses in the Lake Okeechobee BMAP ............................................. 71
Table C-2. BMP enrollment for the Fisheating Creek Sub-watershed ....................................... 72
Table C-3. BMP enrollment for the Indian Prairie Sub-watershed ........................................... 72
Table C-4. BMP enrollment for the Lake Istokpoga Sub-watershed ......................................... 73
Table C-5. BMP enrollment for the Lower Kissimmee Sub-watershed ..................................... 73
Table C-6. BMP enrollment for the Taylor Creek/Nubbin Slough Sub-watershed .................... 74
Table C-7. BMP enrollment for the Upper Kissimmee Sub-watershed ..................................... 74
Table C-8. Agricultural acreage in the LET for the northern sub-watersheds ............................ 76
Table C-9. Agricultural acreage in the LET for the Indian Prairie Sub-watershed ....................... 77
Table C-10. Agricultural acreage in the LET for the Lake Istokpoga Sub-watershed ............... 77
Table C-11. Agricultural acreage in the LET for the Lower Kissimmee Sub-watershed .......... 78
Table C-12. Agricultural acreage in the LET for the Taylor Creek/Nubbin Slough Sub-watershed ........................................................................................................ 78
Table C-13. Agricultural acreage in the LET for the Upper Kissimmee Sub-watershed ......... 79
Table C-14. Agricultural acreage in the LET for the Fisheating Creek Sub-watershed ............ 79
Table C-15. Summary of TP load reductions on agricultural lands ........................................ 81
Table D-1. BMAP monitoring network ...................................................................................... 83
## List of Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF</td>
<td>Flow Proportional Composite Autosampler</td>
</tr>
<tr>
<td>ac-ft</td>
<td>Acre-Feet</td>
</tr>
<tr>
<td>ac-ft/yr</td>
<td>Acre-Feet Per Year</td>
</tr>
<tr>
<td>ACT</td>
<td>Autosampler Composite Time Proportional</td>
</tr>
<tr>
<td>BCC</td>
<td>Board of County Commissioners</td>
</tr>
<tr>
<td>BMAP</td>
<td>Basin Management Action Plan</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practice</td>
</tr>
<tr>
<td>CDS</td>
<td>Continuous Deflective Separation (Unit)</td>
</tr>
<tr>
<td>CERP</td>
<td>Comprehensive Everglades Restoration Plan</td>
</tr>
<tr>
<td>cfs</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>CIB</td>
<td>Curb Inlet Basket</td>
</tr>
<tr>
<td>CY</td>
<td>Calendar Year</td>
</tr>
<tr>
<td>DEP</td>
<td>Florida Department of Environmental Protection</td>
</tr>
<tr>
<td>DWM</td>
<td>Dispersed Water Management</td>
</tr>
<tr>
<td>EAA</td>
<td>Everglades Agricultural Area</td>
</tr>
<tr>
<td>EAAEPD</td>
<td>Everglades Agricultural Area Environmental Protection District</td>
</tr>
<tr>
<td>ERP</td>
<td>Environmental Resource Permit</td>
</tr>
<tr>
<td>F.A.C.</td>
<td>Florida Administrative Code</td>
</tr>
<tr>
<td>FAVT</td>
<td>Floating Aquatic Vegetation Tilling</td>
</tr>
<tr>
<td>FDACS</td>
<td>Florida Department of Agriculture and Consumer Services</td>
</tr>
<tr>
<td>FDOT</td>
<td>Florida Department of Transportation</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FRESP</td>
<td>Florida Ranchlands Environmental Services Project</td>
</tr>
<tr>
<td>F.S.</td>
<td>Florida Statutes</td>
</tr>
<tr>
<td>FY</td>
<td>Fiscal Year</td>
</tr>
<tr>
<td>FYN</td>
<td>Florida Yards and Neighborhoods</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>HWTT</td>
<td>Hybrid Wetland Treatment Technologies</td>
</tr>
<tr>
<td>IDS</td>
<td>Integrated Delivery Schedule</td>
</tr>
<tr>
<td>kg/yr</td>
<td>Kilograms Per Year</td>
</tr>
<tr>
<td>KRRP</td>
<td>Kissimmee River Restoration Project</td>
</tr>
<tr>
<td>lbs/yr</td>
<td>Pounds Per Year</td>
</tr>
<tr>
<td>LET</td>
<td>Load Estimation Tool</td>
</tr>
<tr>
<td>LOPP</td>
<td>Lake Okeechobee Protection Plan</td>
</tr>
<tr>
<td>LOW</td>
<td>Lake Okeechobee Watershed</td>
</tr>
<tr>
<td>LOWCP-P2TP</td>
<td>Lake Okeechobee Watershed Construction Project Phase II Technical Plan</td>
</tr>
<tr>
<td>MAPS</td>
<td>Managed Aquatic Plant Systems</td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of Understanding</td>
</tr>
<tr>
<td>MS4</td>
<td>Municipal Separate Storm Sewer System</td>
</tr>
<tr>
<td>MSTU</td>
<td>Municipal Services Taxing Unit</td>
</tr>
<tr>
<td>mt</td>
<td>Metric Tons</td>
</tr>
<tr>
<td>mt/yr</td>
<td>Metric Tons Per Year</td>
</tr>
<tr>
<td>NEEPP</td>
<td>Northern Everglades and Estuaries Protection Program</td>
</tr>
<tr>
<td>NE-PPP</td>
<td>Northern Everglades Public Private Partnership</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>NOI</td>
<td>Notice of Intent</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service</td>
</tr>
<tr>
<td>NRP</td>
<td>Nutrient Reduction Plan</td>
</tr>
<tr>
<td>NSBB</td>
<td>Nutrient Separating Baffle Box</td>
</tr>
<tr>
<td>OAWP</td>
<td>Office of Agricultural Water Policy</td>
</tr>
<tr>
<td>O&amp;M</td>
<td>Operations and Maintenance</td>
</tr>
<tr>
<td>PES</td>
<td>Payment for Environmental Services</td>
</tr>
<tr>
<td>POR</td>
<td>Period of Record</td>
</tr>
<tr>
<td>PSA</td>
<td>Public Service Announcement</td>
</tr>
<tr>
<td>QA/QC</td>
<td>Quality Assurance/Quality Control</td>
</tr>
<tr>
<td>SFER</td>
<td>South Florida Environmental Report</td>
</tr>
<tr>
<td>SFWMD</td>
<td>South Florida Water Management District</td>
</tr>
<tr>
<td>SLID</td>
<td>Spring Lake Improvement District</td>
</tr>
<tr>
<td>SR</td>
<td>State Road</td>
</tr>
<tr>
<td>SRF</td>
<td>State Revolving Fund</td>
</tr>
<tr>
<td>STA</td>
<td>Stormwater Treatment Area</td>
</tr>
<tr>
<td>STORET</td>
<td>Storage and Retrieval (Database)</td>
</tr>
<tr>
<td>SWET</td>
<td>Soil and Water Engineering Technology, Inc.</td>
</tr>
<tr>
<td>SWFWMD</td>
<td>Southwest Florida Water Management District</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Determined</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total Maximum Daily Load</td>
</tr>
<tr>
<td>TN</td>
<td>Total Nitrogen</td>
</tr>
<tr>
<td>TP</td>
<td>Total Phosphorus</td>
</tr>
<tr>
<td>UF–IFAS</td>
<td>University of Florida Institute of Food and Agricultural Sciences</td>
</tr>
<tr>
<td>USACE</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>USDA</td>
<td>U.S. Department of Agriculture</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>WAM</td>
<td>Watershed Assessment Model</td>
</tr>
<tr>
<td>WBID</td>
<td>Waterbody Identification (Number)</td>
</tr>
<tr>
<td>WCD</td>
<td>Water Control District</td>
</tr>
<tr>
<td>WMA</td>
<td>Water Management Alternative</td>
</tr>
<tr>
<td>WY</td>
<td>Water Year</td>
</tr>
</tbody>
</table>
Summary

Total Maximum Daily Load (TMDL)

In 2001, the Florida Department of Environmental Protection (DEP) adopted a total phosphorus (TP) TMDL for Lake Okeechobee after 9 segments in Lake Okeechobee were identified as impaired by TP. The TMDL is a total annual phosphorus load to Lake Okeechobee of 140 metric tons per year (mt/yr), of which 35 mt/yr fall directly on the lake through atmospheric deposition. The remaining 105 mt/yr of TP are allocated to the entire Lake Okeechobee Watershed (LOW), which consists of 9 sub-watersheds (Figure S-1). The attainment of the TMDL will be calculated using a 5-year rolling average of the monthly loads calculated from measured flow and concentration values. As DEP refines its load estimation model, sub-watershed expectations may be developed for future basin management action plan (BMAP) iterations.

Activities During the Reporting Period

During the second year following BMAP adoption, numerous efforts to improve water quality in the LOW have progressed. In addition to site-specific projects, the Coordinating Agencies—DEP, the South Florida Water Management District (SFWMD), and the Florida Department of Agriculture and Consumer Services (FDACS)—have continued work on other initiatives that will achieve nutrient reductions in the LOW.

During the reporting period (January 1, 2016, to December 31, 2016), Okeechobee County completed 2 projects: Oak Park (OK-2) and Lock 7 Bypass Culvert System (OK-7). Orange County completed the Lake Down Alum Treatment Facility (OC-28) and Lake Glen Mary study (OC-38), and the Spring Lake Improvement District (SLID) completed the construction of a Stormwater Treatment Area (STA) (SLID-1). The Florida Department of Transportation (FDOT) also began construction on 4 projects in the LOW.

In addition, the reduction potential for agricultural BMP program enrollment of 100 % of eligible acres was updated based on the September 2016 enrollment information provided by FDACS. Counties, municipalities, and other stakeholders continued to plan and implement water quality projects and management strategies in the watershed. Figure S-2 shows progress towards the TP TMDL load reductions based on projects submitted for the six northern sub-watersheds.

Summary of Load Reductions

Phase I of the Lake Okeechobee BMAP will be carried out over a 10-year period. Load reductions are currently considered for projects located in the six northern sub-watersheds and this report reflects activities only 2 years into the 10-year phase. Much of the progress tracked over the first years of BMAP implementation has been on larger-scale initiatives and projects.
**Water Quality Monitoring**

Local entities (Osceola County, Orange County, City of Orlando, and City of Kissimmee) continued water quality monitoring consistent with the BMAP. The SFWMD also continued monitoring at stations in the BMAP monitoring plan (*Appendix D*).
Figure S-1. Lake Okeechobee Sub-watersheds
Figure S-2. Progress towards the TMDL through December 31, 2016
Section 1: Introduction

1.1 Purpose of the Report

This is the second annual progress report for the Lake Okeechobee Basin Management Action Plan (BMAP). Section 2 describes the activities that occurred during the reporting period from January 1, 2016, through December 31, 2016. Section 3 describes the water quality monitoring that occurred during the reporting period. Section 4 describes other initiatives and projects in the Lake Okeechobee Watershed (LOW) that aim to reduce nutrient loading to the lake, and Section 5 summarizes the status of projects that each entity has committed to in the BMAP and annual reports.

1.2 Total Maximum Daily Load (TMDL) for the Lake Okeechobee Basin

The Florida Department of Environmental Protection (DEP) adopted a total phosphorus (TP) TMDL for Lake Okeechobee in 2001, after 9 segments with waterbody identification (WBID) numbers in Lake Okeechobee were identified as impaired by TP: WBIDs 3212A, 3212B, 3212C, 3212D, 3212E, 3212F, 3212G, 3212H, and 3212I. The TMDL is an annual TP load to Lake Okeechobee of 140 metric tons per year (mt/yr), of which 35 mt/yr are estimated to fall directly on the lake through atmospheric deposition. The remaining 105 mt/yr of TP are allocated to the entire LOW, which consists of 9 sub-watersheds. The attainment of the TMDL will be calculated using a 5-year rolling average using the monthly loads calculated from measured flow and concentration values. As DEP refines its load estimation model, sub-watershed expectations may be developed for future BMAP iterations.

1.3 Responsible Parties and Key Stakeholders

The BMAP process engages local stakeholders and promotes coordination and collaboration to address TP reductions. In February 2013, DEP initiated the BMAP development process and held a series of technical meetings involving stakeholders and the general public. DEP requested that stakeholders provide information on activities and projects that would reduce nutrient loading. For this first BMAP phase, the reductions are to occur over a 10-year period for the Coordinating Agencies—DEP, the South Florida Water Management District (SFWMD), and the Florida Department of Agriculture and Consumer Services (FDACS)—to develop additional projects to help meet the TMDL. Periodic updates to the BMAP will be conducted during the 10-year time frame, as necessary and appropriate.

This report includes projects in the six northern sub-watersheds that have been completed, planned, or ongoing since 2009. However, DEP recognizes that stakeholders throughout the watershed have implemented stormwater management projects as well as statutorily mandated diversions away from Lake Okeechobee prior to 2009 and that these efforts have benefited water quality. Additional reductions will be included in future BMAP updates as DEP continues to work with stakeholders to identify new projects. Appendix A lists projects that will be or have been implemented under this first phase of the BMAP.
1.4 Assumptions and Considerations Regarding TMDL Implementation

The water quality impacts of BMAP implementation are based on several fundamental assumptions about the pollutants targeted by the TMDLs, modeling approaches, waterbody response, and natural processes. In addition, there are important considerations about the nature of the BMAP and its long-term implementation. More details on these assumptions and considerations can be found in the Lake Okeechobee BMAP.
Section 2: Activities During the Reporting Year

Section 2.1 through Section 2.6 describe the accomplishments over the past year. Many of the activities that occurred during this second annual reporting period focused on projects and initiatives listed in the BMAP. In each annual report, newly identified projects are added to the project tables. Several individual projects have been added since BMAP adoption; stakeholders and the Coordinating Agencies continue work on the individual projects listed in the tables in Appendix A.

2.1 Coordinating Agency Projects and Initiatives

During the reporting period, a host of restoration work in the LOW moved forward. In addition to site-specific projects, the Coordinating Agencies continued work on other initiatives to achieve nutrient reductions in the LOW. Table 1 contains updates on those initiatives listed in the Lake Okeechobee BMAP.

Table 1. Coordinating agency initiatives

<table>
<thead>
<tr>
<th>Initiative</th>
<th>Explanation</th>
<th>Start Date</th>
<th>Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensive Everglades Restoration Plan (CERP) Planning</td>
<td>SFWMD is reinitiating the formulation of storage components of the LOW Project, with the U.S. Army Corps of Engineers (USACE; federal partner).</td>
<td>Summer 2016</td>
<td>The LOW Project is a component of CERP that will identify regional-scale features north of Lake Okeechobee to improve the quantity, timing, and distribution of flows to better manage lake water levels and reduce undesirable discharges to downstream estuaries. Since the Lake Okeechobee BMAP was adopted, the LOW Project Implementation Report was identified as one of the next CERP feasibility studies to be conducted as identified in the USACE Integrated Delivery Schedule (IDS). Work by the USACE and SFWMD on this planning effort commenced in June 2016. The initial stage of the planning effort included identifying the initial array of alternatives, which are being developed into the overall scope for the plan. The planning process is anticipated to take three years to complete. After the planning process, future work is contingent on future congressional authorization and appropriations. The LOW Construction Project Phase II Technical Plan (LOWCP-P2TP) relies heavily on the LOW Project to help achieve the plan goals of maintaining the lake within an ecologically desirable range and minimizing undesirable discharges to the northern estuaries.</td>
</tr>
<tr>
<td>Owner- Implemented BMP Verification</td>
<td>FDACS and DEP are developing a plan for best management practice (BMP) verification.</td>
<td>Spring 2015</td>
<td>FDACS is currently working with DEP to identify possible sites that have implemented owner-implemented and cost-shared BMPs. DEP is currently evaluating possible sites for monitoring.</td>
</tr>
<tr>
<td>Initiative</td>
<td>Explanation</td>
<td>Start Date</td>
<td>Update</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td><strong>Cost-Share BMP Effectiveness Verification</strong></td>
<td>FDACS and DEP are developing an approach to evaluate the effectiveness of various types of cost-share projects.</td>
<td>Fall 2015</td>
<td>In late 2015, FDACS contracted with Soil Water Engineering Technology, Inc. (SWET) to assess the treatment efficiencies (TP and total nitrogen [TN] reductions in concentration and loads) as well as the storage capacities of various common cost-share BMPs in the LOW. The TP and TN reductions for the evaluated cost-share BMPs will be provided to DEP, so revised nutrient-reduction benefits can be attributed to cost-share BMPs included in this BMAP. FDACS will also use the TP and TN reductions and storage capacities to review future cost-share applications and maximize the nutrient reduction potential that can be achieved with the available cost-share dollars. The report was finalized in summer 2016 and includes expected nutrient reductions and cost ranges. FDACS and DEP will coordinate on how to apply the report findings to current cost-share projects in the LOW.</td>
</tr>
<tr>
<td><strong>Watershed Assessment Model (WAM) Revisions</strong></td>
<td>In November 2016, the SFWMD and FDACS executed an amended agreement in support of WAM revisions. The planned completion date is 2017. DEP will work to develop targets based on this information.</td>
<td>Fall 2014</td>
<td>In early 2015, FDACS contracted with SWET to revise the WAM, which was used as the basis for the BMAP Load Estimation Tool (LET). This effort was jointly funded by the SFWMD and DEP. Under this contract, SWET updated the model datasets and extended the WAM simulation period through 2013 for all six sub-watersheds north of Lake Okeechobee. A literature review and draft work plan for the sensitivity and uncertainty analyses were also developed, as well as a work plan for the expansion of the WAM to include the three southern sub-watersheds. In late 2015, the contract was amended to allow SWET to complete model validation and a final sensitivity analysis and uncertainty analysis. The model will then be recalibrated for the six northern sub-watersheds. In addition to the work in the northern sub-watersheds, DEP and FDACS are funding the expansion of the WAM to include the East, South, and West Lake Okeechobee Sub-Watersheds. The WAM revisions are expected to be completed in 2017. DEP will use the revisions to refine the LET and to incorporate the East, South, and West Lake Okeechobee Sub-Watersheds into the tool.</td>
</tr>
<tr>
<td><strong>Water Quality Monitoring</strong></td>
<td>As DEP develops a monitoring plan for the BMAP, consideration is being given to areas with on-the-ground projects/BMPs to evaluate water quality improvements.</td>
<td>In progress</td>
<td>BMAP monitoring plan stations have been verified, with data providers and locations confirmed, and appropriate updates made to the revised monitoring network in Appendix B. DEP is working with additional potential data providers to evaluate the possible inclusion of new monitoring sites. Based on the mapped locations of projects and BMPs, the Coordinating Agencies are working to optimize monitoring efforts.</td>
</tr>
<tr>
<td><strong>Alternative BMP Nutrient Reduction Projects</strong></td>
<td>North of Lake Okeechobee</td>
<td>Winter 2014/2015</td>
<td>The Coordinating Agencies have set up a team to identify possible new strategies. Quarterly meetings began in summer 2016, and will continue to ensure that information on potential new strategies is shared between the agencies.</td>
</tr>
</tbody>
</table>
Table 2 lists projects under development with the Coordinating Agencies. The projects are in various stages of planning, but the Coordinating Agencies will continue to work to gather details and implement these projects during the first BMAP phase.

Table 2. Projects under development by the Coordinating Agencies

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Sub-watershed</th>
<th>Status</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Istokpoga Marsh Watershed Improvement District (IMWID) – Phase II</td>
<td>Indian Prairie</td>
<td>An agreement between the SFWMD, IMWID/Highlands County and FDACS has been executed for the implementation of the project (Phase I and Phase II). The acquisition of 401 acres for the project footprint and geotechnical activities, environmental site assessments, and the remediation of agrochemicals on those lands have been performed. The design is 90% complete, a cultural resources survey is under way, and the acquisitions of additional easements for a flow path between Phase I and Phase II are pending.</td>
<td>Construction activities are tentatively planned to begin in 2018 and are expected to last 12 months. Operations are anticipated to begin by 2020.</td>
</tr>
<tr>
<td>Lakeside Ranch Stormwater Treatment Area (STA) Phase II</td>
<td>Taylor Creek/Nubbin Slough</td>
<td>This phase includes a southern STA and a second pump station (S-191A) to manage rim canal levels during periods of high water flow and potentially to recirculate lake water back to the STA for additional TP removal. The construction of the southern STA is under way. However, the construction of the S-191A pump station is contingent on future legislative funding.</td>
<td>The southern STA is anticipated to be completed by 2018. Once funded, the pump station is estimated to be completed in three years.</td>
</tr>
<tr>
<td>Project Name</td>
<td>Sub-watershed</td>
<td>Status</td>
<td>Schedule</td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>-------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Brighton Valley – Lykes</td>
<td>Indian Prairie</td>
<td>The SFWMD issued an Environmental Resource Permit (ERP) as well as a right-of-way permit for the project. A USACE 404 permit has been applied for, and the application is currently under review.</td>
<td>Upon receipt of permits, construction will begin, with completion expected in late 2018/early 2019.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Under FDACS cost-share funding, this new Northern Everglades Public Private Partnership (NE-PPP) project is under design/permitting. The project will store 34,000 acre-feet (ac-ft) of water via a pass-through system.</td>
<td></td>
</tr>
<tr>
<td>Latt Maxcy Dispersed Water Management (DWM)</td>
<td>Lower Kissimme</td>
<td>Under FDACS cost-share funding, this NE-PPP project is under design/permitting. The project will store an estimated 27,068 ac-ft of water via a pass-through system.</td>
<td>Construction is anticipated to begin in 2018, with completion expected in 2019.</td>
</tr>
<tr>
<td>Rolling Meadows Wetland Restoration – Phase II</td>
<td>Upper Kissimme</td>
<td>Land has been acquired and planning started. Phase II of this project, which involves the further restoration of 580 acres of wetlands, is contingent on future legislative funding.</td>
<td>Once funded, project work is estimated to be completed in two to three years.</td>
</tr>
</tbody>
</table>
| Inactive Dairies – Lagoon Remediation            | Taylor Creek/ Nubbin Slough and Indian Prairie | FDACS worked with a dairy in the LOW to partially remediate its lagoon. The soil was spread on the field for crops to use the nutrients from the excavated soil. The stormwater is routed back to the remediated pond to minimize discharges, and it is reused to reduce groundwater withdrawals. In the future, the dairy will finish the excavation and remediation of the entire site. For now, this project is complete. | 1. Identify areas that need remediation activities/talk to landowners. (Winter 2014/2015–Summer 2015)  
3. Analyze data. (as necessary) |
### PL-566 Funded/ Fisheating Creek Structure

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Sub-watershed</th>
<th>Status</th>
<th>Schedule</th>
</tr>
</thead>
</table>
| The USACE was working with the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) to develop various alternatives. After some staffing and priority changes at the USACE, the NRCS took the lead on this effort. Currently, a scope of work has been developed to contract with the original contractor on this effort. Once the scope of work is approved and the necessary contractual paperwork is in place, the contractor can begin this effort again. The start date is to be determined. | Indian Prairie | 1. The NRCS plans to reapply for different funding. (Fall 2014)  
2. If funding is obtained, work will be conducted. (To be determined)  
3. Water quality benefit calculations will be done. (To be determined) |

### SR 710 Regional Project

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Sub-watershed</th>
<th>Status</th>
<th>Schedule</th>
</tr>
</thead>
</table>
| The feasibility study was completed. The Florida Department of Transportation (FDOT) is reviewing several conceptual designs. The Coordinating Agencies are also reviewing to determine whether multiple program initiatives can be aligned for a greater project impact. | Taylor Creek/ Nubbin Slough and Indian Prairie | 1. The final feasibility study was completed on October 22, 2014.  
2. If funding is obtained, work will be conducted. (To be determined) |

### Legislative Cost-Share Appropriation Program ($10 million annually for seven years)

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Sub-watershed</th>
<th>Status</th>
<th>Schedule</th>
</tr>
</thead>
</table>
| FDACS conducted three rounds of solicitations for dairy project proposals. The first solicitation occurred in fall 2014. Seven projects have been funded, of which one is still under construction. The second solicitation for dairy projects occurred in fall 2015. Four projects were selected. FDACS sent out a third solicitation for dairy project proposals with a submission deadline in fall 2016. A total of 10 project proposals were received from 6 different dairy producers. FDACS formed a committee with internal staff and staff from DEP to review and formally rank the submitted proposals. Eight projects were approved, with funding requests totaling $4,002,527.35. FDACS has signed cost-share agreements for all 8 projects approved for funding. The amount allocated for the third round of projects to date is $3,766,997.80. | All | 1. Develop plan and present to DEP annually.  
2. Implement projects once funds are available.  
3. Conduct the same exercise annually. |
2.2 SFWMD Activities

During the reporting period, the SFWMD was involved in numerous restoration activities in the LOW. The following sections describe highlights and advancements made in key SFWMD-led projects in the LOW during the reporting period. Further information on progress in the LOW is also reported in the 2017 South Florida Environmental Report (SFER) – Volume I, Chapters 8A and 8B, and Volume III, Appendix 4-1.

Taylor Creek/Nubbin Slough Sub-watershed Projects

Lakeside Ranch STA (LR-STA). Expedited under the Northern Everglades and Estuaries Protection Program (NEEPP), this project is a 2,700-acre STA in western Martin County on lands adjacent to Lake Okeechobee. The LR-STA Project was designed in two phases. Phase I (SFWMD-03) included a northern STA and an inflow pump station, which began operating in 2012. Phase II included a southern STA and a second pump station (S-191A) to manage rim canal levels during high water flow periods and potentially to recirculate lake water back to the STA for additional TP removal. Under Phase II, the construction of the southern STA is currently under way. However, the construction of the S-191A pump station is contingent on future legislative funding. During Calendar Year (CY) 2016, LR-STA Phase I removed 10.2 metric tons (mt) of TP, or 50% of the total load received, exceeding its designed average removal rate of 9 mt/yr.

Taylor Creek STA (TC-STA). This STA (SFWMD-01) is located on the SFWMD-owned Grassy Island Ranch along the banks of Taylor Creek. As part of the Lake Okeechobee Critical Restoration Projects, the purpose of the TC-STA is to remove TP loads from the Taylor Creek drainage basin. The TC-STA facility was constructed in 2006, and flow-through operation began in 2008. In CY 2016, the STA retained 1.8 mt/yr of TP, or 51% of the load received.

Nubbin Slough STA (NS-STA). This STA (SFWMD-02) is located on SFWMD-owned lands at the New Palm Dairy site along the banks of Nubbin Slough. As part of the Lake Okeechobee Critical Restoration Projects, the purpose of the NS-STA is to remove TP loads from the Nubbin Slough drainage basin. Construction was completed in 2006, but the STA remained inoperable until needed construction modifications and repairs were completed. In March 2015, the USACE transferred the STA to the SFWMD. After approximately nine months of consistent sampling, the start-up monitoring requirement for TP reduction was achieved in June 2016, however levee seepage was observed. Flow-through activities commenced in September 2016 at reduced rates as additional repairs need to be made for the STA to operate at full capacity. SFWMD is working with the USACE to determine next steps.

Upper and Lower Kissimmee Sub-watershed Projects

Kissimmee River Restoration and Kissimmee River Headwaters Revitalization. The main goal of the Kissimmee River Restoration Project (KRRP) (SFWMD-05) is to restore ecological integrity to one-third of the river and its floodplain that existed before the Kissimmee River was channelized in the 1960s. The project involves acquiring more than 102,000 acres of land in the
river's floodplain and headwaters, backfilling 22 miles of the C-38 Canal, reconnecting remnant sections of the original river channel, removing 2 water control structures, modifying portions of the river's headwaters, and implementing the Headwaters Regulation Schedule to meet the project hydrologic criteria needed to meet the KRRP ecological goals. The first 3 construction phases of restoration were completed between 2001 and 2009, and 3 major construction phases remain: Phase II and III backfilling and the S-69 Weir. Reach II and III were awarded in Fiscal Year (FY) 2015 and FY 2016, respectively. All construction is currently scheduled to be completed by 2020.

During 2016, real estate acquisition for the Kissimmee River Headwaters Revitalization Project (SFWMD-22) also progressed. This project, a major component of the overall KRRP restoration effort, will increase regulatory stages and change the operating schedule on three major waterbodies in the Kissimmee Chain of Lakes. It is designed to increase storage in the headwater lakes to provide appropriate flow patterns to the restored Kissimmee River floodplain upon the completion of restoration construction and land acquisition (expected date 2020). The increased storage is also expected to improve the quantity and quality of littoral habitat in the headwater lakes. Further details on Kissimmee River Restoration efforts are available in the 2017 SFER – Volume I, Chapter 9.

Rolling Meadows – Phases I and II. The purpose of this project is to restore the historical Lake Hatchineha floodplain wetlands and habitat in the Rolling Meadows property, which was purchased jointly by the SFWMD and DEP as part of the Kissimmee Headwaters Revitalization Project. The project will also provide ancillary water quality, timing, and distribution benefits. In 2015, Phase I (SFWMD-06) design and permitting were finalized. Construction began in November 2015 and was completed in December 2016. It included the installation of water control structures throughout the Rolling Meadows property. These will facilitate the hydration and restoration of 1,900 acres of previously impacted floodplain on Lake Hatchineha. Phase II of the project, which involves the further restoration of 580 acres of wetlands, is contingent on future legislative funding.

DWM Program

During the reporting period, efforts continued to expand opportunities for DWM in the northern Everglades watersheds. There is 1 DWM project in construction and 12 operational DWM projects in the Lake Okeechobee BMAP (includes the Dixie Ranch project which consists of Projects SFWMD-14 [Lower Kissimmee] and SFWMD-15 [Taylor Creek/Nubbin Slough], as shown in Appendix A). Additionally, 2 large NE-PPP projects (Brighton Valley-Lykes and Latt Maxey Ranch DWM) were added and are both in the design/permitting phase (see Table 2). Together, these NE-PPP projects will add another 61,000 ac-ft per year of surface storage to the existing suite of DWM projects. Further information on individual Lake Okeechobee BMAP DWM projects is available in Appendix A (under construction or in operation) and in the 2017 SFER – Volume I, Chapter 8A (available on the SFWMD website).
Other Restoration Strategies

CERP LOW Project. CERP provides a framework and guide to restore, protect, and preserve the water resources of central and southern Florida, including the Everglades. The USACE is the federal partner, and the SFWMD is the local sponsor. The LOW Project, a component of CERP, will identify regional-scale features north of Lake Okeechobee to improve the quantity, timing, and distribution of flows to better manage lake water levels and reduce undesirable discharges to downstream estuaries.

Since the Lake Okeechobee BMAP was adopted, the LOW Project Implementation Report was identified as one of the next CERP feasibility studies to be conducted as identified in the USACE IDS. Work by the USACE and SFWMD on this planning effort commenced in June 2016. The initial stage of the planning effort included developing the identification of the initial array of alternatives, which are being developed into the overall scope for the plan. The planning process will take three years to complete. After the planning process, future work is contingent on future congressional authorization and appropriations. The LOWCP-P2TP relies heavily on the LOW Project to help achieve the plan goals of maintaining the lake within an ecologically desirable range and minimizing undesirable discharges to the northern estuaries.

2.3 FDOT Activities

District 1

FDOT District 1 continued work on the State Road (SR) 70 roadway improvement projects (FDOT1-01 and FDOT1-02) to construct a total of nine wet detention ponds and three dry retention ponds. Construction is expected to be completed in 2017. FDOT District 1 continues to implement its street sweeping program on sections of curb and gutter roadways located in the LOW. Appendix A includes updated street sweeping calculations for 2016.

District 5

During the reporting period, FDOT District 5 began construction on Projects FDOT5-8, FDOT5-9, FDOT5-10, and FDOT5-11, which will create 4 wet detention ponds along U.S. Highway 17-92 in 2019. FDOT District 5 continued construction on Projects FDOT5-1, FDOT5-2, FDOT5-3, FDOT5-4, FDOT5-12, FDOT5-28, FDOT5-29, and FDOT5-30, which include the construction of 4 wet detention ponds along SR 15 (Hoffner Rd./Ave.), 1 wet detention pond along SR 600 (U.S. Highway 17-92), and 4 wet detention ponds along SR 482. In addition, the construction of 2 wet detention ponds associated with the widening of SR 500 from Eastern Ave. to Nova Road (Projects FDOT5-26 and FDOT5-27) continued and are projected to be completed in fall 2017. FDOT calculates that these ponds will reduce TP by a total of 0.024 mt/yr (23.91 kilograms per year [kg/yr]). FDOT District 5 continues to implement its street sweeping program on sections of curb and gutter roadways located in the LOW. Appendix A includes updated street sweeping calculations for 2016.
2.4 Agricultural Activities

In early 2016, the FDACS Office of Agricultural Water Policy (OAWP) adopted a dairy manual targeting dairies without DEP-issued National Pollutant Discharge Elimination System (NPDES) permits. In summer 2016, the OAWP adopted a manual for poultry operations. To date, FDACS has BMP manuals for cow/calf, citrus, vegetable and agronomic crops, nurseries, equine, sod, dairy, poultry, and specialty fruit and nut operations. The FDACS BMP manuals are located here. Currently, the OAWP is revising the sod and cow/calf manuals and developing a small farms manual. The adoption of these three manuals is expected in 2017.

FDACS field staff work with producers in the LOW on activities such as initial BMP notice of intent (NOI) enrollment, follow-up technical assistance, BMP cost-share, BMP implementation assurance visits, the management of water quality and water supply projects and contracts, and coordination with the SFWMD on agriculture-related permitting questions.

Agricultural BMPs and Enrollment Efforts

Landowners who sign NOIs are agreeing to implement applicable BMPs on their enrolled properties. In the LOW, FDACS has a total of 1,892,521 acres enrolled in the FDACS BMP Program for citrus, cow/calf, dairy, equine, fruit/nut, nursery, row/field crop, and sod, based on the entire parcel acreage. Of this area, 1,262,657 acres are located in the 6 northern sub-watersheds. Of this acreage in the northern sub-watersheds, 876,629 acres are enrolled on lands classified as agriculture in the Lake Okeechobee BMAP LET. Table 3 through Table 8 summarize the agricultural acres in the northern sub-watersheds. Appendix C provides further detail on how agricultural enrollments and reduction calculations are considered in the Lake Okeechobee BMAP. Figure C-1 shows the parcels enrolled in BMP programs as of September 30, 2016, for the LOW, and Figure C-2 shows the acres enrolled on lands classified as agriculture in the Lake Okeechobee BMAP LET as of September 30, 2016.

In spring 2015, DEP asked FDACS to commence an effort in the LOW to ensure that agricultural landowners know their statutory responsibility to implement BMPs in the BMAP area. FDACS began this effort in the Taylor Creek/Nubbin Slough Sub-watershed. The Florida Department of Revenue parcel data and 2008–09 SFWMD land use were used to generate a list of unenrolled properties. FDACS sent a letter to 118 property owners in May 2015. FDACS sent a second letter in January 2016 to 24 landowners who did not respond to the first letter. These letters resulted in 66 new enrollments covering 34,237 acres. Of the 24 landowners who received the second letter from FDACS, 12 landowners failed to respond and were sent letters by DEP. FDACS has enrolled 5 of these 12 landowners and determined that 1 landowner is not eligible to enroll in the FDACS BMP Program. DEP sent a second letter to the remaining 6 landowners, and 2 have since enrolled.

In August 2015, FDACS commenced a compliance assistance effort in the Indian Prairie Sub-watershed. Letters were sent to 94 property owners. Of these property owners, 35 responses (a 37 % response rate) were received and resulted in an additional 14 new NOIs covering 14,900 acres. A second letter was then sent to the nonresponders. Of the landowners who received the second
letter from FDACS, 5 failed to respond and were sent letters by DEP in fall 2016. One landowner is no longer in production, and DEP sent the other 4 a second letter in January 2017. All 4 have responded to DEP, and landowner contact information has been provided to FDACS to complete enrollments.

In July 2016, FDACS sent 85 letters to landowners in the Fisheating Creek Sub-watershed. This letter resulted in 9 new enrollments covering 2,497 acres. A second letter was sent to the nonresponders in October 2016.

FDACS is currently working on concentrated efforts to identify property owners and producers operating on unenrolled acres in these sub-watersheds. FDACS will continue enrolling producers in the Lake Okeechobee BMAP area in the FDACS BMP Program, and will provide documentation of unenrolled acres to DEP on a case-by-case basis for a determination as to issuance of a notice of violation regarding the provisions of Paragraph 403.067(7)(b)2g, F.S.

Project Updates

In addition to enrollment activities, BMP cost-share, and coordination with the SFWMD on agriculture-related permitting questions, FDACS is involved in the management of water quality and water supply projects and contracts in the LOW. Table 1 and Table 2 contain information on the status of many of these projects.

**Hybrid Wetland Treatment Technology (HWTT).** HWTT is a water treatment technology that comprises both biological and chemical processes to remove nutrients such as TP and TN, as well as other chemical constituents, from the water. Currently, there are 5 existing HWTT facilities in the LOW. For the 2016 reporting period, the TP load reductions at the 5 HWTT facilities in the LOW ranged from 78 % to 92 %.

**Floating Aquatic Vegetation Tilling (FAVT).** FAVT is a water treatment technology that uses biological processes to remove nutrients. Shallow wetland systems are created and are stocked with native floating aquatic vegetation. Nutrients are removed as the plants grow, and further nutrient reduction takes place in submerged aquatic vegetation cells. During the 2016 reporting period, construction was completed on the 100-cubic-feet-per-second (cfs) Fisheating Creek FAVT facility, which is expected to provide removal rates of 80 % for TP.

WAM Updates

In early 2015, FDACS contracted with SWET to revise the WAM, which was used as the basis for the BMAP LET. This effort was jointly funded by the SFWMD and DEP. Under this contract, SWET updated the model datasets and extended the WAM simulation period through 2013 for all six sub-watersheds north of Lake Okeechobee. A literature review and draft work plan for the sensitivity and uncertainty analyses were also developed, as well as a work plan for the expansion of the WAM to include the three southern sub-watersheds.

In late 2015, the contract was amended to allow SWET to complete model validation and a final sensitivity analysis and uncertainty analysis. The model was then recalibrated for the six northern
sub-watersheds. In addition to the work in the northern sub-watersheds, DEP and FDACS are funding the expansion of the WAM to include the East, South, and West Lake Okeechobee Sub-watersheds.

The WAM revisions are expected to be completed in summer 2017. DEP will use the revisions to refine the LET and to incorporate the East, South, and West Lake Okeechobee Sub-watersheds into the tool.

Table 3. BMP enrollment and future enrollment requirements for the Fisheating Creek Sub-watershed

<table>
<thead>
<tr>
<th>Category</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage Enrolled as of December 31, 2008</td>
<td>37,918</td>
</tr>
<tr>
<td>Acreage Enrolled January 1, 2009–September 30, 2016</td>
<td>270,823</td>
</tr>
<tr>
<td>Total Acreage Enrolled (as of September 30, 2016)</td>
<td>308,741</td>
</tr>
<tr>
<td>LET Agricultural Acres</td>
<td>174,561</td>
</tr>
<tr>
<td>LET Enrolled Agricultural Acres</td>
<td>145,940</td>
</tr>
<tr>
<td>LET Remaining Agricultural Acres To Enroll</td>
<td>28,621</td>
</tr>
</tbody>
</table>

Table 4. BMP enrollment and future enrollment requirements for the Indian Prairie Sub-watershed

<table>
<thead>
<tr>
<th>Category</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage Enrolled as of December 31, 2008</td>
<td>8,604</td>
</tr>
<tr>
<td>Acreage Enrolled January 1, 2009–September 30, 2016</td>
<td>198,667</td>
</tr>
<tr>
<td>Total Acreage Enrolled (as of September 30, 2016)</td>
<td>207,271</td>
</tr>
<tr>
<td>LET Agricultural Acres</td>
<td>218,216</td>
</tr>
<tr>
<td>LET Agricultural Acres within Enrolled Acres</td>
<td>166,194</td>
</tr>
<tr>
<td>LET Remaining Agricultural Acres To Enroll</td>
<td>52,022</td>
</tr>
</tbody>
</table>

Table 5. BMP enrollment and future enrollment requirements for the Lake Istokpoga Sub-watershed

<table>
<thead>
<tr>
<th>Category</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage Enrolled as of December 31, 2008</td>
<td>73,501</td>
</tr>
<tr>
<td>Acreage Enrolled January 1, 2009–September 30, 2016</td>
<td>133,207</td>
</tr>
<tr>
<td>Total Acreage Enrolled (as of September 30, 2016)</td>
<td>206,708</td>
</tr>
<tr>
<td>LET Agricultural Acres</td>
<td>130,523</td>
</tr>
<tr>
<td>LET Agricultural Acres within Enrolled Acres</td>
<td>92,077</td>
</tr>
<tr>
<td>LET Remaining Agricultural Acres To Enroll</td>
<td>38,446</td>
</tr>
</tbody>
</table>
Table 6. BMP enrollment and future enrollment requirements for the Lower Kissimmee Sub-watershed

<table>
<thead>
<tr>
<th>Category</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage Enrolled as of December 31, 2008</td>
<td>155,862</td>
</tr>
<tr>
<td>Acreage Enrolled January 1, 2009–September 30, 2016</td>
<td>193,338</td>
</tr>
<tr>
<td>Total Acreage Enrolled (as of September 30, 2016)</td>
<td>349,200</td>
</tr>
<tr>
<td>LET Agricultural Acres</td>
<td>216,284</td>
</tr>
<tr>
<td>LET Agricultural Acres within Enrolled Acres</td>
<td>159,084</td>
</tr>
<tr>
<td>LET Remaining Agricultural Acres To Enroll</td>
<td>57,200</td>
</tr>
</tbody>
</table>

Table 7. BMP enrollment and future enrollment requirements for the Taylor Creek/Nubbin Slough Sub-watershed

<table>
<thead>
<tr>
<th>Category</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage Enrolled as of December 31, 2008</td>
<td>51,903</td>
</tr>
<tr>
<td>Acreage Enrolled January 1, 2009–September 30, 2016</td>
<td>107,084</td>
</tr>
<tr>
<td>Total Acreage Enrolled (as of September 30, 2016)</td>
<td>158,987</td>
</tr>
<tr>
<td>LET Agricultural Acres</td>
<td>140,921</td>
</tr>
<tr>
<td>LET Agricultural Acres within Enrolled Acres</td>
<td>113,446</td>
</tr>
<tr>
<td>LET Remaining Agricultural Acres To Enroll</td>
<td>27,475</td>
</tr>
</tbody>
</table>

Table 8. BMP enrollment and future enrollment requirements for the Upper Kissimmee Sub-watershed

<table>
<thead>
<tr>
<th>Category</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage Enrolled as of December 31, 2008</td>
<td>22,037</td>
</tr>
<tr>
<td>Acreage Enrolled January 1, 2009–September 30, 2016</td>
<td>176,503</td>
</tr>
<tr>
<td>Total Acreage Enrolled (as of September 30, 2016)</td>
<td>198,540</td>
</tr>
<tr>
<td>LET Agricultural Acres</td>
<td>275,034</td>
</tr>
<tr>
<td>LET Agricultural Acres within Enrolled Acres</td>
<td>124,240</td>
</tr>
<tr>
<td>LET Remaining Agricultural Acres To Enroll</td>
<td>150,794</td>
</tr>
</tbody>
</table>

2.5 City, County, and Special District Activities

City of Avon Park
No information was provided by the city for this progress report.

City of Edgewood
The city continued its quarterly newsletter, which contains articles on water quality to heighten awareness of the topic.
City of Kissimmee

During the reporting period, the city started construction on the Emory Ave. Stormwater Management Pond (KS-07), an offline stormwater pond that will provide extra storage to help alleviate flooding. The pond is also designed to catch the first flush during rain events and help provide water quality treatment to the West City Ditch. DEP funding was provided under Contract S0725 for this project. The city continued its street sweeping and community education and outreach programs.

City of Orlando

The city continued to perform public education, street sweeping, and routine removal of debris from numerous inlet baskets. City staff continued to inspect private stormwater systems to ensure the facilities are operating at design standards for optimal pollutant removal.

City of Sebring

Through its street sweeping program, the city collected 273,489 kg/yr of material for an estimated TP reduction of 50.90 kg/yr (.05 mt/yr). The city continued its public education program during the reporting period.

Glades County

No information was provided by the county for this progress report.

Highlands County

Construction bids for the Lake June-in-Winter stormwater BMPs project (HC-05) were opened in early 2017. In the project agreement between Highlands County, the Southwest Florida Water Management District (SWFWMD), and FDOT, construction is scheduled to be complete by March 2018.

Okeechobee County

The county completed 2 projects during the reporting period. The Oak Park Project (OK-2) resulted in the construction of roadside swales and raised inlets with 2 hydrodynamic separators to achieve an estimated TP reduction of 2.2 kg/yr (.002 mt/yr). The Lock 7 Bypass Culvert System Project (OK-7) resulted in the installation of a parallel culvert system along the Rim Canal to improve conveyance. In addition, the county began Phase III of the Southwest Drainage Area Improvements Project (OK-6), which will result in Whidden Ditch improvements and culvert upgrades to improve stormwater conveyance to the Rim Canal.

Orange County

The county completed the Lake Down Alum Treatment Facility Project (OC-28) in 2016, in which an offline alum injection facility was installed on the upstream portion of the Butler Chain of Lakes to address phosphorus loading to the chain and downstream. The county also completed a study of Lake Glen Mary (OC-38) that identified impairment sources and BMP
recommendations. The county continued to perform public education, street sweeping, and the routine removal of debris from its expansive number of inlet baskets.

**Osceola County**

The Lake Toho Regional Water Storage Facility (Judge Farms) Project (OSC-20) is under way with an estimated completion date of 2018. This project will result in stormwater retention and treatment through the construction of three regional stormwater ponds. The county continued its public education and street sweeping programs.

**Polk County**

The county continued its public education program and does not have new projects planned in the basin, since most of the land is agricultural.

**Spring Lake Improvement District (SLID)**

SLID completed the construction of an STA (SLID-1) that will treat 3,016 acres for an estimated TN reduction of 88.8 kg/yr and a TP reduction of 69.83 kg/yr. SLID is planning to add a bypass weir (SLID-2) to direct more water to the STA.

**Istokpoga Marsh Watershed Improvement District (IMWID)**

IMWID is in the process of completing a DWM project (IMWID-01) on 308 acres that will result in the construction of an above-ground impoundment with a storage capacity of 1,200 ac-ft/yr. The anticipated estimated TP reduction associated with this project is 850 kg/yr.

### 2.6 Summary of Accomplishments

During the reporting period, SFWMD-led BMAP projects and other restoration initiatives progressed, including DWM projects (see Section 2.2). Okeechobee County completed 2 projects during the reporting period: the Oak Park Project (OK-2) and the Lock 7 Bypass Culvert System Project (OK-7). Orange County completed the Lake Down Alum Treatment Facility Project (OC-28) and Lake Glen Mary study (OC-38), and SLID completed the construction of an STA (SLID-1). In addition, the reduction potential for agricultural BMP program enrollment of 100 % of eligible acres was updated based on the September 2016 enrollment information provided by FDACS.
Table 9 lists the projects completed during the reporting period.

Table A-1 through Table A-6 include the status of the Lake Okeechobee BMAP projects that have been completed, or are under way or planned. Efforts on the projects and initiatives in Table A-7 and Table A-8 will continue to follow the schedules set out in the BMAP, and project details will be updated as information becomes available.

Figure 1 shows the progress towards the TP TMDL load reductions. The first bar shows the starting load for urban and agricultural stormwater runoff. The starting load is the long-term average calculated with the WAM LET. This is calculated using information only for the six northern sub-watersheds, although the TMDL applies to all nine sub-watersheds. The starting load will be updated to include all sub-watersheds once the WAM updates are complete. The second bar shows the current estimated loading based on those projects shown as completed in the BMAP, those completed as part of the 2015 Progress Report, and those listed above. Further details on these projects and their estimated load reductions are listed in Appendix A. The third bar shows the total allocation for stormwater runoff to meet the TMDL. The 105 MT/yr applies to all the sub-watersheds and is not an allocation to any collection of sub-watersheds.

![Figure 1. Progress towards the TMDL through December 31, 2016](image.png)
Table 9. Projects completed during the reporting period

<table>
<thead>
<tr>
<th>Lead Entity</th>
<th>Project Number</th>
<th>Project Name</th>
<th>Project Description</th>
<th>TP Reduction (kg/yr)</th>
<th>TN Reduction (kg/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okeechobee County</td>
<td>OK-02</td>
<td>Oak Park</td>
<td>Roadside swales with raised inlets and two hydrodynamic separators.</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Okeechobee County</td>
<td>OK-07</td>
<td>Lock 7 Bypass Culvert System</td>
<td>Installation of parallel culvert system along the Rim Canal to improve conveyance.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-28</td>
<td>Lake Down Alum Treatment Facility</td>
<td>Installation of offline alum injection facility on the upstream portion of the Butler Chain of Lakes to address phosphorus loading to the chain and downstream.</td>
<td>21</td>
<td>555</td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-06</td>
<td>Phase I Rolling Meadows</td>
<td>Restoration of historical Lake Hatchineha floodplain wetlands and habitat in the Rolling Meadows property.</td>
<td>65</td>
<td>TBD</td>
</tr>
<tr>
<td>SLID</td>
<td>SLID-01</td>
<td>SLID Phases 1-3</td>
<td>Treatment of runoff through an STA</td>
<td>70</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Total</strong></td>
<td><strong>158</strong></td>
<td><strong>657</strong></td>
</tr>
</tbody>
</table>
Section 3: Water Quality Monitoring

The Lake Okeechobee BMAP monitoring plan was designed to enhance the understanding of basin loads, identify areas with high nutrient concentrations, and track water quality trends. The information gathered through the monitoring plan will measure progress towards achieving the TMDL and provide a better understanding of watershed loading. The BMAP monitoring plan is designed to be flexible enough to account for new information as it becomes available, and efforts are under way to improve the monitoring plan according to the following schedule:

- Identify areas with regional projects already in place. (Complete)
- Evaluate areas where additional water quality data are needed. (Once WAM complete)
- Identify lead entity for monitoring efforts. (Spring 2017–Summer 2017)
- Finalize monitoring plan. (During BMAP Phase I, Fall 2018)

Efforts are also under way to incorporate additional stations not already included in the monitoring network, and to update existing monitoring network station names and locations where necessary. Appendix D provides an updated BMAP monitoring plan.

3.1  Water Quality Monitoring

Monitoring Objectives

The primary objective of the monitoring strategy for the LOW is to continue to track trends in TP loads and concentrations by sub-watershed. Secondary objectives are tracking trends in TN loads and concentrations by sub-watershed, identifying areas in the watershed with elevated TP loading to better focus management efforts, and measuring the effectiveness of individual or collective projects in reaching TMDL target-pollutant loadings. The stations included in the BMAP monitoring network are not specifically BMAP stations, i.e., the data they generate are also used for other purposes, but the data collected at these sites will be used to monitor the effectiveness of the BMAP.

Data Management and Assessment

The Florida STOrage and RETrieval (STORET) Database serves as the primary repository of ambient water quality data for the state. DEP impaired waters evaluations are based on water quality data from STORET. Ambient water quality data collected as part of the BMAP will be uploaded into STORET for long-term storage and availability. All BMAP data providers have agreed to upload ambient water quality data to STORET at least once every six months, upon completion of the appropriate quality assurance/quality control (QA/QC) checks. The SFWMD uploads its data into STORET at least once a year. In 2017, the primary repository of ambient water quality data for DEP is switching from STORET to the Watershed Information Network.
Data providers have begun working to transition to WIN, and after 2017 all data will be uploaded to WIN rather than STORET.

As required by NEEPP, the SFWMD monitors water quality and flow (inflows to and outflows from Lake Okeechobee) at SFWMD-operated control structures and maintains a long-term water quality monitoring network in the LOW. The SFWMD continued its water quality sampling program throughout the watershed during the 2016 reporting period. Local entities (Osceola County, Orange County, City of Orlando, and City of Kissimmee) also continued water quality monitoring consistent with the BMAP. Table D-1 shows the latest sample date within the reporting period with available phosphorus data in STORET. U.S. Geological Survey (USGS) stations are included in the monitoring network for available flow data, and the most recent flow data available in the reporting period are listed for USGS stations.

**Water Quality Analyses**

After each year of BMAP implementation, DEP will analyze the water quality data to complement other analyses already under way in the LOW. The selection of an appropriate data analysis method depends on the frequency, spatial distribution, and period of record (POR) available from existing data. Specific statistical analyses were not identified during BMAP development, and thus commonly accepted methods of data analysis will be used that are consistent with the TMDL model.

For this progress report, trend analyses were conducted on available data from stations in the Lake Okeechobee BMAP network using a variation of temporal and spatial attributes from an overall POR of January 1, 2009, to December 31, 2016. TP and TN concentration data available in STORET were retrieved and processed for all stations monitored by local entities. TP loading data for SFWMD individual stations were obtained from SFWMD staff and draft trend analysis were completed. Analyses for SFWMD stations in the BMAP monitoring network will be included in future reports.

Table 10 lists the stations used for trend analyses, including their respective sampling entity and available POR (within the overall POR). Appendix E provides further details on the analyses.
Table 10. Local entity stations used in trend analyses

AGM = Annual geometric mean.
N/A = Data were insufficient to perform test.

<table>
<thead>
<tr>
<th>Sampling Entity</th>
<th>Station ID</th>
<th>POR Start</th>
<th>POR End</th>
<th>Number of Quarters for Seasonal Analyses</th>
<th>Number of Years (AGMs) for Trend</th>
<th>Number of Total Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange County</td>
<td>BCA</td>
<td>2/4/2009</td>
<td>2/1/2016</td>
<td>19</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>Osceola County</td>
<td>ETO5253114</td>
<td>9/15/2011</td>
<td>5/11/2016</td>
<td>26</td>
<td>N/A</td>
<td>70</td>
</tr>
<tr>
<td>Osceola County</td>
<td>JUDGES_DCH</td>
<td>9/13/2011</td>
<td>3/30/2016</td>
<td>16</td>
<td>N/A</td>
<td>21</td>
</tr>
<tr>
<td>Osceola County</td>
<td>PARTIN_CNL</td>
<td>9/13/2011</td>
<td>5/11/2016</td>
<td>20</td>
<td>N/A</td>
<td>38</td>
</tr>
<tr>
<td>Osceola County</td>
<td>RUNNYMEADE</td>
<td>9/19/2011</td>
<td>12/1/2015</td>
<td>17</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>Orlando/Orange County</td>
<td>SCC</td>
<td>3/11/2009</td>
<td>3/10/2016</td>
<td>23</td>
<td>8</td>
<td>28</td>
</tr>
<tr>
<td>Orange County</td>
<td>XLKEHS62</td>
<td>2/2/2012</td>
<td>2/11/2016</td>
<td>15</td>
<td>5</td>
<td>73</td>
</tr>
</tbody>
</table>
In addition to the BMAP, further information on the SFWMD monitoring and data results from the Lake Okeechobee Watershed Protection Program are reported in the 2017 SFER – Volume I, Chapter 8B. The 2017 SFER includes some water quality analyses and long-term water quality trend analyses at the sub-watershed level in the Lake Okeechobee BMAP area. These analyses are based on water year (WY) (WY2016 is May 1, 2015, through April 30, 2016) rather than the BMAP reporting period (January 1, 2016, through December 31, 2016). Some of these analyses relate to the primary and secondary objectives of the LOW monitoring strategy, and some analyses are consistent with the method for calculating the attainment of the TMDL (i.e., a five-year rolling average).

**Individual Station Seasonal Kendall and Mann-Kendall (AGM) Trend Results**

Individual stations were first analyzed for trends using Seasonal Kendall trend analysis, and data were mostly distributed quarterly. If sufficient quarterly data were not available, then the data were analyzed using Mann-Kendall test without season as a factor. All stations were also analyzed for Mann-Kendall using AGMs.

*Table 11* and *Table 12* summarize the trend analysis results for TP and TN concentrations, respectively. For TP concentration, none of the Mann-Kendall trend analyses (AGMs) showed significant trends. Based on the Seasonal Kendall analyses, only one of the seven stations showed a statistically significant increasing trend for TP, and two stations showed decreasing trends. One of the seven stations showed decreasing trends in TN concentrations based on both the Mann-Kendall (AGM) and Seasonal Kendall trend analyses. *Appendix E* provides further detail on these analyses and figures showing trend analysis results for each station.
Table 11. Summary of trend analysis results for TP concentrations (mg/L)

Note: Bolded P-values indicate statistical significance (p<0.05).

<table>
<thead>
<tr>
<th>Trend Test</th>
<th>Data Type</th>
<th>Period</th>
<th>Station</th>
<th>Tau</th>
<th>P-value</th>
<th>Slope</th>
<th>Trend Test Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonal Kendall</td>
<td>Quarterly</td>
<td>CY</td>
<td>BCA</td>
<td>-0.149</td>
<td>0.474</td>
<td>-0.00006</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>BCA</td>
<td>-1.113</td>
<td>0.266</td>
<td>-0.000003</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Seasonal Kendall</td>
<td>Quarterly</td>
<td>CY</td>
<td>ETO5253114</td>
<td>-0.212</td>
<td>0.018</td>
<td>-0.000003</td>
<td>Decreasing trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>ETO5253114</td>
<td>-0.389</td>
<td>0.175</td>
<td>-0.000003</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Seasonal Kendall</td>
<td>Quarterly</td>
<td>CY</td>
<td>JUDGES_DCH</td>
<td>0.021</td>
<td>1.000</td>
<td>0.000032</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>JUDGES_DCH</td>
<td>0.000</td>
<td>1.000</td>
<td>0.002740</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Seasonal Kendall</td>
<td>Quarterly</td>
<td>CY</td>
<td>PARTIN_CNL</td>
<td>-0.047</td>
<td>0.755</td>
<td>-0.000003</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>PARTIN_CNL</td>
<td>-0.200</td>
<td>0.707</td>
<td>-0.001650</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Seasonal Kendall</td>
<td>Quarterly</td>
<td>CY</td>
<td>RUNNYMEADE</td>
<td>-0.538</td>
<td>0.001</td>
<td>-0.000019</td>
<td>Decreasing trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>RUNNYMEADE</td>
<td>-0.400</td>
<td>0.462</td>
<td>-0.005151</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Seasonal Kendall</td>
<td>Quarterly</td>
<td>CY</td>
<td>SCC</td>
<td>0.418</td>
<td>0.011</td>
<td>0.000014</td>
<td>Increasing trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>SCC</td>
<td>0.500</td>
<td>0.108</td>
<td>0.000012</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Seasonal Kendall</td>
<td>Quarterly</td>
<td>CY</td>
<td>XLKEHS62</td>
<td>0.092</td>
<td>0.300</td>
<td>0.000004</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>XLKEHS62</td>
<td>0.800</td>
<td>0.086</td>
<td>0.000006</td>
<td>No significant trend overall</td>
</tr>
</tbody>
</table>
Table 12. Summary of trend analysis results for TN concentrations (mg/L)

Note: Bolded P-values indicate statistical significance (p<0.05).

<table>
<thead>
<tr>
<th>Trend Test</th>
<th>Data Type</th>
<th>Period</th>
<th>Station</th>
<th>Tau</th>
<th>P-value</th>
<th>Slope</th>
<th>Trend Test Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonal Kendall</td>
<td>Quarterly</td>
<td>CY</td>
<td>BCA</td>
<td>-0.642</td>
<td>0.001</td>
<td>-0.00044</td>
<td>Decreasing trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>BCA</td>
<td>-0.643</td>
<td>0.035</td>
<td>-0.00024</td>
<td>Decreasing trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>ETO5253114</td>
<td>-0.667</td>
<td>0.308</td>
<td>-0.00018</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>JUDGES_DCH</td>
<td>0.333</td>
<td>1.000</td>
<td>0.25384</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>PARTIN_CNL</td>
<td>0.333</td>
<td>0.734</td>
<td>0.05254</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Seasonal Kendall</td>
<td>Quarterly</td>
<td>CY</td>
<td>RUNNYMEADE</td>
<td>-0.139</td>
<td>0.455</td>
<td>-0.00005</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>RUNNYMEADE</td>
<td>-0.200</td>
<td>0.806</td>
<td>-0.00559</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Seasonal Kendall</td>
<td>Quarterly</td>
<td>CY</td>
<td>SCC</td>
<td>-0.129</td>
<td>0.452</td>
<td>-0.00001</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>SCC</td>
<td>-0.429</td>
<td>0.174</td>
<td>-0.00011</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Seasonal Kendall</td>
<td>Quarterly</td>
<td>CY</td>
<td>XLKEHS62</td>
<td>-0.233</td>
<td>0.088</td>
<td>-0.00020</td>
<td>No significant trend overall</td>
</tr>
<tr>
<td>Mann-Kendall</td>
<td>Geometric Mean</td>
<td>WY</td>
<td>XLKEHS62</td>
<td>-0.400</td>
<td>0.462</td>
<td>-0.00020</td>
<td>No significant trend overall</td>
</tr>
</tbody>
</table>
Section 4: Other Efforts

In addition to the activities described in Section 2 and Section 3, other efforts towards water quality improvement were carried out in the LOW during the reporting period.

4.1 Lake Tohopekaliga Nutrient Reduction Plan (NRP)

Within the Lake Okeechobee BMAP boundary, restoration efforts have been ongoing under the Lake Tohopekaliga NRP. This plan, accepted by DEP in December 2011, includes many efforts that parallel those in the Lake Okeechobee BMAP, and some that benefit Lake Okeechobee in addition to benefiting Lake Tohopekaliga. Details on the Lake Tohopekaliga NRP can be obtained by contacting the DEP Division of Environmental Assessment and Restoration, Watershed Assessment Section.

4.2 Management Strategies for the Southern Sub-watersheds

Although this phase of the BMAP focuses on the northern sub-watersheds, the three southern sub-watersheds are included in the BMAP. The latter contribute a comparatively smaller percentage of overall loadings to Lake Okeechobee, and flow from these sub-watersheds is largely diverted in directions other than towards the lake. The three southern sub-watersheds have implemented BMPs in the BMAP area, and other management strategies have been implemented and will continue under this BMAP. Once the WAM is refined to incorporate the three southern sub-watersheds, the BMAP will take into account the specific benefits of pollutant load reductions achieved by these BMPs and management strategies.

Urban Stormwater

Entities in the three southern sub-watersheds are implementing various urban BMPs. The Cities of Clewiston, Belle Glade, South Bay, and Pahokee, as well as Hendry and Palm Beach Counties (and other entities such as FDOT and the Northern Palm Beach County Improvement District) are in compliance with the NPDES Municipal Separate Storm Sewer System (MS4) Stormwater Program.

Agricultural BMPs

In the first phase of the BMAP, enrollment in agricultural BMPs is documented through participation in the SFWMD Everglades Program per Chapter 40E-63, Florida Administrative Code (F.A.C.), or the FDACS BMP Program. Figure C-1 identifies the lands enrolled.

Public Education and Outreach

The Everglades Agricultural Area Environmental Protection District (EAAEPD), in coordination with the University of Florida Institute of Food and Agricultural Sciences (UF–IFAS), special districts, and the SFWMD, continued to provide regularly scheduled producer-specific educational programs in the southern sub-watersheds for the implementation of agricultural BMPs. During the BMAP reporting period, the EAAEPD hosted Everglades Agricultural Area
(EAA) phosphorus BMP training on April 14, 2016; Spanish language EAA phosphorus BMP training on September 22, 2016; and EAA phosphorus BMP training on September 29, 2016. More information on these programs can be found on the Everglades Research and Education Center website.

**Sediment Removal/Canal Cleaning**

The cost-share pilot project with the SFWMD has been completed. The original project scope envisioned the cleaning of 11 miles of canals within the East Beach Water Control District. At the end of the 3-year period, sediments were removed from 14.1 miles of canals and floating aquatic vegetation was removed from 3.7 miles of canals for a total of 17.8 miles of operations, exceeding the scope by 58%.

**Bolles Cross Canal Improvements**

In August 2015, the SFWMD approved the construction of canal upgrades to enhance flexibility for moving stormwater from the EAA into the STAs to improve the quality of water before it reaches the Everglades. The SFWMD completed Segment 1 (1.2 miles) in September 2016. Construction on Segment 2 (1 mile) was started in July 2016, and completion is expected by April 2017. The design for Segment 3 (3.2 miles) is ongoing (as of November 2016), and construction is expected to start by June 2017. The Duda Rd. bridge replacement was also completed in 2016. This project will allow water managers to optimize the use of the new A-1 Flow Equalization Basin, reducing the potential need for the emergency pumping of stormwater into the lake.
Section 5: Compliance

DEP annually reviews each entity's progress towards completing projects in the BMAP. Table 13 lists the number of projects that local entities have committed to in the BMAP and annual reports, along with the status of those projects as of December 31, 2016. Table 14 lists the status and number of state agency-led projects in the BMAP as of December 31, 2016.

### Table 13. Local entity projects to achieve the TMDL

<table>
<thead>
<tr>
<th>Lead Entity</th>
<th>Completed</th>
<th>Under Way</th>
<th>Planned</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Avon Park</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>City of Edgewood</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>5</td>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>15</td>
<td>1</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>City of Sebring</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Glades County</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Highlands County</td>
<td>5</td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>IMWID</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Okeechobee County</td>
<td>6</td>
<td>1</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Orange County</td>
<td>40</td>
<td>5</td>
<td>2</td>
<td>47</td>
</tr>
<tr>
<td>Osceola County</td>
<td>31</td>
<td>1</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Polk County</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>SLID</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Town of Windermere</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>113</strong></td>
<td><strong>14</strong></td>
<td><strong>4</strong></td>
<td><strong>131</strong></td>
</tr>
</tbody>
</table>

### Table 14. State agency projects to achieve the TMDL

<table>
<thead>
<tr>
<th>Lead Entity</th>
<th>Completed</th>
<th>Under Way</th>
<th>Planned</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDACS</td>
<td>11</td>
<td>1</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>FDOT District 1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>16</td>
<td>14</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>SFWMD</td>
<td>20</td>
<td>3</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Coordinating Agencies</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>50</strong></td>
<td><strong>30</strong></td>
<td><strong>4</strong></td>
<td><strong>84</strong></td>
</tr>
</tbody>
</table>
Appendices

Appendix A: Projects To Achieve the TMDL

The tables below set forth the required projects and time frames for implementation in this BMAP. Additional reductions will be necessary in future BMAP updates to meet the TMDL. The tables provide information on the attenuated nutrient reductions attributed to each individual project, listed in mt/yr and kg/yr. These projects and activities were submitted to DEP with the understanding that they would be included in the BMAP, thus setting the expectation for each entity to implement the proposed projects and activities to achieve the assigned load reductions in the specified time frames. Any change in listed projects and activities, or the deadline to complete these actions, must first be approved by DEP. Substituted projects must result in equivalent or greater nutrient reductions than expected from the original projects.
### Table A-1. Projects in the Fisheating Creek Sub-watershed

**Notes:** These attenuated project reductions are calculated specifically to estimate the reductions at the inflow to Lake Okeechobee. See Table 12 of the 2014 BMAP for basin-specific attenuation factors. 

TBD = To be determined; O&M = Operations and maintenance; FYN = Florida Yards and Neighborhoods; PSA = Public service announcement. 

For DWM projects, the start date reflects the year construction began. The completion date is the construction completion date, at which time the project is considered complete and operational.

<table>
<thead>
<tr>
<th>Lead Entity</th>
<th>Project Number</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Project Type</th>
<th>Start Date</th>
<th>Completion Date</th>
<th>Project Status</th>
<th>Acres Treated</th>
<th>Cost</th>
<th>Cost Annual O&amp;M</th>
<th>Funding Source</th>
<th>TP Reduction (kg/yr)</th>
<th>TP Reduction (mt/yr)</th>
<th>TN Reduction (kg/yr)</th>
<th>TN Reduction (mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDACS</td>
<td>Agricultural BMPs</td>
<td>Fisheating Creek</td>
<td>Landowner implementation of BMPs</td>
<td>Agricultural BMPs</td>
<td>2009</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>6,980.00</td>
<td>6.98</td>
<td>67,754.00</td>
<td>67.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDACS</td>
<td>FDACS-04</td>
<td>Fisheating Creek</td>
<td>Floating aquatic vegetation treatment.</td>
<td>Floating Islands/Managed Aquatic Plant Systems (MAPS)</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>8,594.90</td>
<td>8.59</td>
<td>29,174.30</td>
<td>29.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glades County</td>
<td>GC-01</td>
<td>Education and Outreach</td>
<td>FYN; landscaping, irrigation, and fertilizer ordinances; PSAs, pamphlets, website, and illicit discharge program.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>13.70</td>
<td>0.01</td>
<td>79.10</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highlands County</td>
<td>HC-01</td>
<td>Education and Outreach</td>
<td>FYN, landscaping and irrigation ordinances, PSAs, and pamphlets.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>29.50</td>
<td>0.03</td>
<td>362.30</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-18</td>
<td>XL Ranch (Lightsey)</td>
<td>Storage of 887 ac-ft of water through above ground impoundment and pasture.</td>
<td>DWM</td>
<td>2011</td>
<td>2012</td>
<td>Completed</td>
<td>TBD</td>
<td>$61,396.00</td>
<td>$137,000.00</td>
<td>SFWMD</td>
<td>70.90</td>
<td>0.07</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-20</td>
<td>Blue Head Ranch</td>
<td>Storage of 3,462 ac-ft of water through pasture.</td>
<td>DWM</td>
<td>2013</td>
<td>2017</td>
<td>Under way</td>
<td>TBD</td>
<td>$193,750.00</td>
<td>$361,200.00</td>
<td>SFWMD</td>
<td>724.20</td>
<td>0.72</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-21</td>
<td>Nicodemus Slough</td>
<td>Storage of 33,860 ac-ft of water through above ground impoundment and pasture.</td>
<td>DWM</td>
<td>2011</td>
<td>2015</td>
<td>Completed</td>
<td>TBD</td>
<td>$4,900,000.00</td>
<td>$2,500,000.00</td>
<td>SFWMD</td>
<td>3,248.50</td>
<td>3.25</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>Legislative Cost-Share Appropriation Program (Dairy Projects)</td>
<td>See Table A-7 in BMAP Annual Report.</td>
<td>Dairy Remediation</td>
<td>2014</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>67,754.00</td>
<td>79.10</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

*Page 43 of 104*
Table A-2. Projects in the Indian Prairie Sub-watershed

Notes: These attenuated project reductions are calculated specifically to estimate the reductions at the inflow to Lake Okeechobee. See Table 12 of the 2014 BMAP for basin-specific attenuation factors. TBD = To be determined

For DWM projects, the start date reflects the year construction began. The completion date is the construction completion date, at which time the project is considered complete and operational.

<table>
<thead>
<tr>
<th>Lead Entity</th>
<th>Project Number</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Project Type</th>
<th>Start Date</th>
<th>Completion Date</th>
<th>Project Status</th>
<th>Acres Treated</th>
<th>Cost</th>
<th>Cost Annual O&amp;M</th>
<th>Funding Source</th>
<th>TP Reduction (kg/yr)</th>
<th>TP Reduction (mt/yr)</th>
<th>TN Reduction (kg/yr)</th>
<th>TN Reduction (mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDACS</td>
<td>Agriculture BMPs</td>
<td>Indian Prairie</td>
<td>Landowner implementation of BMPs</td>
<td>Agricultural BMPs</td>
<td>2009</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Glades County</td>
<td>6,724.00</td>
<td>6.72</td>
<td>121,328.00</td>
<td>121.33</td>
</tr>
<tr>
<td>Glades County</td>
<td>GC-02</td>
<td>Education and Outreach</td>
<td>FYN; landscaping, irrigation, and fertilizer ordinances; PSAs, pamphlets, website, and illicit discharge program.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Glades County</td>
<td>29.60</td>
<td>0.03</td>
<td>415.20</td>
<td>0.42</td>
</tr>
<tr>
<td>Highlands County</td>
<td>HC-02</td>
<td>Education and Outreach</td>
<td>FYN, landscaping and irrigation ordinances, PSAs, and pamphlets.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Highlands County</td>
<td>29.60</td>
<td>0.03</td>
<td>415.20</td>
<td>0.42</td>
</tr>
<tr>
<td>Istokpoga Marsh Watershed Improvement District</td>
<td>BMWID-01*</td>
<td>IMWID Phase I (DWM Project in Two Phases)</td>
<td>Construct above-ground impoundment with storage capacity of 1,200 acre-feet/year (ac-ft/yr).</td>
<td>DWM</td>
<td>2015</td>
<td>Under way</td>
<td>390.0</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>DEP/SFWMD/ FDACS</td>
<td>850.00</td>
<td>0.85</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-10</td>
<td>West Waterhole Marsh</td>
<td>Storage of 4,848 ac-ft of water through above ground impoundment.</td>
<td>DWM</td>
<td>2006</td>
<td>2006 Completed</td>
<td>TBD</td>
<td>$50,000.00</td>
<td>$470,238.00</td>
<td>Tampa River Environmental Services Project (PRESP)</td>
<td>4,166.40</td>
<td>4.17</td>
<td>20,619.50</td>
<td>20.62</td>
<td></td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-12</td>
<td>Buck Island Ranch (NEPES-1)</td>
<td>Storage of 1,573 ac-ft of water through pasture.</td>
<td>DWM</td>
<td>2011</td>
<td>2012 Completed</td>
<td>TBD</td>
<td>$1,725.00</td>
<td>$173,600.00</td>
<td>SFWMD</td>
<td>1,087.20</td>
<td>TBD</td>
<td>1.09</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-23</td>
<td>Buck Island Ranch WMA (NEPES-2)</td>
<td>Storage of 620 ac-ft of water through pasture.</td>
<td>DWM</td>
<td>2014</td>
<td>2015 Completed</td>
<td>TBD</td>
<td>$624,600.00</td>
<td>$163,500.00</td>
<td>SFWMD</td>
<td>710.00</td>
<td>TBD</td>
<td>0.71</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>BMWID Phase II (STA)</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>STA</td>
<td>2014</td>
<td>Under way</td>
<td>411.0</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDACS</td>
<td>1,150.00</td>
<td>1.15</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>Brightton Valley DWM</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>DWM</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDACS</td>
<td>7,720.00</td>
<td>7.72</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>Inactive Dairies - Lagoon Remediation</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>Dairy Remediation</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDACS</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>PL-566 Funded/ Fisheating Creek Structure</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>Control Structure</td>
<td>TBD</td>
<td>Planned</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDOT</td>
<td>883.00</td>
<td>0.88</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>SR 710 Regional Project</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>TBD</td>
<td>TBD</td>
<td>Planned</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDOT</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>Legislative Cost-Share Appropriation Program (Dairy Projects)</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>Dairy Remediation</td>
<td>2014</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDACS</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Table A-3. Projects in the Lake Istokpoga Sub-watershed

**Notes:** These attenuated project reductions are calculated specifically to estimate the reductions at the inflow to Lake Okeechobee. See Table 12 of the 2014 BMAP for basin-specific attenuation factors. TBD = To be determined.

For DWM projects, the start date reflects the year construction began. The completion date is the construction completion date, at which time the project is considered complete and operational.

<table>
<thead>
<tr>
<th>Lead Entity</th>
<th>Project Number</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Project Type</th>
<th>Start Date</th>
<th>Completion Date</th>
<th>Project Status</th>
<th>Acres Treated</th>
<th>Cost</th>
<th>Cost Annual O&amp;M</th>
<th>Funding Source</th>
<th>TP Reduction (kg/yr)</th>
<th>TP Reduction (mt/yr)</th>
<th>TN Reduction (kg/yr)</th>
<th>TN Reduction (mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Avon Park</td>
<td>AP-01</td>
<td>Avon Park Street Sweeping</td>
<td>Street sweeping</td>
<td>Street Sweeping</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
<td></td>
<td>City of Avon Park</td>
<td>4.50</td>
<td>0.00</td>
<td>11.20</td>
<td>0.01</td>
</tr>
<tr>
<td>City of Avon Park</td>
<td>AP-02</td>
<td>Lake Tulane Stormwater Improvement Project</td>
<td>Runoff will be captured in a series of swales that will allow the runoff to percolate into the sandy soils, preventing further degradation of Lake Tulane.</td>
<td>Grass Swales without Swale Blocks or Raised Culverts</td>
<td>TBD</td>
<td>Under way</td>
<td>32.1</td>
<td>TBD</td>
<td></td>
<td></td>
<td>City of Avon Park/ SWFWMD</td>
<td>1.70</td>
<td>0.00</td>
<td>16.20</td>
<td>0.02</td>
</tr>
<tr>
<td>City of Avon Park</td>
<td>AP-03</td>
<td>Lake Isis Stormwater Improvement Project</td>
<td>Runoff will be captured in a lakeside swale and a redesigned pond that will allow the runoff to percolate into the sandy soils, preventing further degradation of Lake Isis.</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>Under way</td>
<td>37.1</td>
<td>TBD</td>
<td></td>
<td></td>
<td>City of Avon Park/ SWFWMD</td>
<td>0.50</td>
<td>0.00</td>
<td>4.90</td>
<td>0.00</td>
</tr>
<tr>
<td>FDACS</td>
<td></td>
<td>Lake Istokpoga</td>
<td>Landowner implementation of BMPs</td>
<td>Agricultural BMPs</td>
<td>2009</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td>1,716.00</td>
<td>1.72</td>
<td>120,385.00</td>
<td>120.39</td>
</tr>
<tr>
<td>Highlands County</td>
<td>HC-03</td>
<td>Education and Outreach</td>
<td>FYN, landscaping and irrigation ordinances, PSAs, and pamphlets.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
<td></td>
<td>Highlands County</td>
<td>155.20</td>
<td>0.16</td>
<td>6,580.70</td>
<td>6.58</td>
</tr>
<tr>
<td>Highlands County</td>
<td>HC-05</td>
<td>Lake June Stormwater Project</td>
<td>Installation of 450 feet of 24-inch French drain in 4 contributing basins.</td>
<td>Online Retention BMPs</td>
<td>2014-2018</td>
<td>Under way</td>
<td>43.3</td>
<td>$440,000.00</td>
<td></td>
<td></td>
<td>SWFWMD and Highlands County</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Highlands County</td>
<td>HC-06</td>
<td>Lake Clay Stormwater Project</td>
<td>600 feet of 24-inch online French drain for parking lot subbasin; 300 feet of 24-inch online French drain will treat the street subbasin.</td>
<td>Online Retention BMPs</td>
<td>TBD-2013</td>
<td>Completed</td>
<td>26.6</td>
<td>$330,000.00</td>
<td>$1,973.00</td>
<td></td>
<td>SWFWMD and Highlands County</td>
<td>1.30</td>
<td>0.00</td>
<td>24.10</td>
<td>0.02</td>
</tr>
<tr>
<td>Polk County</td>
<td>PC-01</td>
<td>Education and Outreach</td>
<td>FYN, fertilizer ordinance, PSAs, pamphlets, website, and illicit discharge inspection program.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
<td></td>
<td>Polk County</td>
<td>38.80</td>
<td>0.04</td>
<td>1,086.90</td>
<td>1.09</td>
</tr>
<tr>
<td>City of Sebring</td>
<td>SEB-01</td>
<td>Little Lake Jackson Off-line Alum Injection Stormwater Treatment</td>
<td>Stormwater diverted through underground culvert, alum injected and the water settles for seven days in a detention pond. Treated water is released to Little Lake Jackson.</td>
<td>Alum Injection System</td>
<td>TBD-2011</td>
<td>Completed</td>
<td>TBD</td>
<td>$231,494.00</td>
<td>$18,500.00</td>
<td></td>
<td>DEP/ SWFWMD/ City of Sebring/ Highlands County</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>City of Sebring</td>
<td>SEB-02</td>
<td>Street Sweeping</td>
<td>Street sweeping to collect 602,940 lbs/yr of material.</td>
<td>Street Sweeping</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>$35,000.00</td>
<td></td>
<td></td>
<td>City of Sebring</td>
<td>50.90</td>
<td>0.05</td>
<td>118.40</td>
<td>0.12</td>
</tr>
<tr>
<td>Lead Entity</td>
<td>Project Number</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Project Type</td>
<td>Start Date</td>
<td>Completion Date</td>
<td>Project Status</td>
<td>Acres Treated</td>
<td>Cost</td>
<td>Cost Annual O&amp;M</td>
<td>Funding Source</td>
<td>TP Reduction (kg/yr)</td>
<td>TP Reduction (mt/yr)</td>
<td>TN Reduction (kg/yr)</td>
<td>TN Reduction (mt/yr)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-------------------------------------------------------------------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-11</td>
<td>Raftet T Ranch</td>
<td>Storage of 1,298 ac-ft of water through above-ground impoundment and pasture.</td>
<td>DWM</td>
<td>2014</td>
<td>2014</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>$162,736.00</td>
<td>SFWMD</td>
<td>89.80</td>
<td>0.09</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>SLID</td>
<td>SLID-01</td>
<td>SLID Improvements Phases 1-3</td>
<td>Treatment of runoff through an STA.</td>
<td>STA</td>
<td>2015</td>
<td>2016</td>
<td>Completed</td>
<td>3,016.0</td>
<td>$3,308,079.22</td>
<td>$60,000.00</td>
<td>SLID/DEP</td>
<td>69.83</td>
<td>0.03</td>
<td>88.80</td>
<td>0.04</td>
</tr>
<tr>
<td>SLID</td>
<td>SLID-02</td>
<td>SLID Improvements Phase 4</td>
<td>Modification of the existing STA (SLID-1) to include a bypass weir to direct more water to the STA.</td>
<td>STA</td>
<td>TBD</td>
<td>Planned</td>
<td>TBD</td>
<td>2,308.0</td>
<td>TBD</td>
<td>TBD</td>
<td>SFWMD Local Cooperative Funding Program and SRF</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>Legislative Cost-Share Appropriation Program (Dairy Projects)</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>Dairy Remediation</td>
<td>2014</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDACS</td>
<td>64.00</td>
<td>0.06</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Table A-4. Projects in the Lower Kissimmee Sub-watershed

Notes: These attenuated project reductions are calculated specifically to estimate the reductions at the inflow to Lake Okeechobee. See Table 12 of the 2014 BMAP for basin-specific attenuation factors. TBD = To be determined. For DWM projects, the start date reflects the year construction began. The completion date is the construction completion date, at which time the project is considered complete and operational. Dixie Ranch is listed in SFWMD-14 (Lower Kissimmee Sub-watershed) and SFWMD-15 (Taylor Creek/Nubbin Slough Sub-watershed) since it extends over both sub-watersheds. Combined costs and TP reduction are shown in SFWMD-14 for both projects.

<table>
<thead>
<tr>
<th>Lead Entity</th>
<th>Project Number</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Project Type</th>
<th>Start Date</th>
<th>Completion Date</th>
<th>Project Status</th>
<th>Acres Treated</th>
<th>Cost</th>
<th>Annual O&amp;M</th>
<th>Funding Source</th>
<th>TP Reduction (kg/yr)</th>
<th>TP Reduction (mt/yr)</th>
<th>TN Reduction (kg/yr)</th>
<th>TN Reduction (mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDACS</td>
<td>Agriculture BMPs</td>
<td>Lower Kissimmee</td>
<td>Landowner implementation of BMPs</td>
<td>Agricultural BMPs</td>
<td>2009</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>6,590.00</td>
<td>6.59</td>
<td>TBD</td>
<td>94,395.00</td>
<td>94.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highlands County</td>
<td>HC-04</td>
<td>Education and Outreach</td>
<td>FYN, landscaping and irrigation ordinances, PSAs, and pamphlets.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>136.00</td>
<td>0.14</td>
<td>Highlands County</td>
<td>538.60</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-11</td>
<td>Education and Outreach</td>
<td>FYN; landscaping, irrigation, fertilizer, and pet waste management ordinances; PSAs; pamphlets; website; and illicit discharge program.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>2.50</td>
<td>0.00</td>
<td>Polk County</td>
<td>24.40</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polk County</td>
<td>PC-02</td>
<td>Education and Outreach</td>
<td>FYN; fertilizer ordinance, PSAs, pamphlets, website, and illicit discharge inspection program.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>22.70</td>
<td>0.02</td>
<td>Polk County</td>
<td>408.90</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-04</td>
<td>Otter Slough Restoration</td>
<td>This project included 5 ditch plugs and removal of 2 berms. It helps attenuate regional stormwater runoff, as well as providing nutrient reductions because of plant uptake from overland flows. In 2011 LOPP, it created 71 ac-ft of storage.</td>
<td>Hydrologic Restoration</td>
<td>2008</td>
<td>2009</td>
<td>Completed</td>
<td>500.0</td>
<td>TBD</td>
<td>TBD</td>
<td>SFWMD</td>
<td>5.60</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-05</td>
<td>Kissimmee River Restoration</td>
<td>Restore ecological integrity by restoring 40 miles of meandering river and more than 12,000 miles of wetlands through the design and construction of physical project features coupled with application of optimized hydrologic conditions.</td>
<td>Hydrologic Restoration</td>
<td>1999</td>
<td>2020</td>
<td>Under way</td>
<td>25,000.0</td>
<td>$780,000,000.00</td>
<td>SFWMD/USACE</td>
<td>17,748.00</td>
<td>17.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-13</td>
<td>Dixie West</td>
<td>Storage of 315 ac-ft of water through pasture.</td>
<td>DWM</td>
<td>2011</td>
<td>2012</td>
<td>Completed</td>
<td>TBD</td>
<td>$33,000.00</td>
<td>$51,500.00</td>
<td>SFWMD</td>
<td>220.50</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-14</td>
<td>Dixie Ranch</td>
<td>Storage of 856 ac-ft of water through pasture.</td>
<td>DWM</td>
<td>2011</td>
<td>2012</td>
<td>Completed</td>
<td>TBD</td>
<td>$42,500.00</td>
<td>$146,500.00</td>
<td>SFWMD</td>
<td>205.90</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-17</td>
<td>Willaway Cattle and Sod</td>
<td>Storage of 229 ac-ft of water through above ground impoundment.</td>
<td>DWM</td>
<td>2011</td>
<td>2013</td>
<td>Completed</td>
<td>TBD</td>
<td>$302,479.00</td>
<td>$1,878.00</td>
<td>SFWMD</td>
<td>114.40</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Entity</td>
<td>Project Number</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Project Type</td>
<td>Start Date</td>
<td>Completion Date</td>
<td>Project Status</td>
<td>Acres Treated</td>
<td>Cost</td>
<td>Cost Annual O&amp;M</td>
<td>Funding Source</td>
<td>TP Reduction (kg/yr)</td>
<td>TP Reduction (mt/yr)</td>
<td>TN Reduction (kg/yr)</td>
<td>TN Reduction (mt/yr)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-19</td>
<td>Triple A Ranch</td>
<td>Storage of 397 ac-ft of water through above-ground impoundment.</td>
<td>DWM</td>
<td>2011</td>
<td>2015</td>
<td>Completed</td>
<td>TBD</td>
<td>$322,186.00</td>
<td>$30,000.00</td>
<td>SFWMD</td>
<td>78.60</td>
<td>0.08</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>Latt Maxcy DWM</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>DWM</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDACS</td>
<td>2,820.00</td>
<td>2.82</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>Legislative Cost-Share Appropriation Program (Dairy Projects)</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>Dairy Remediation</td>
<td>2014</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDACS</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
### Table A-5. Projects in the Taylor Creek/Nubbin Slough Sub-watershed

Notes: These attenuated project reductions are calculated specifically to estimate the reductions at the inflow to Lake Okeechobee. See Table 12 of the 2014 BMAP for basin-specific attenuation factors.

For DWM projects, the start date reflects the year construction began. The completion date is the construction completion date, at which time the project is considered complete and operational.

<table>
<thead>
<tr>
<th>Lead Entity</th>
<th>Project Number</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Project Type</th>
<th>Start Date</th>
<th>Completion Date</th>
<th>Project Status</th>
<th>Acres Treated</th>
<th>Cost</th>
<th>Cost Annual O&amp;M</th>
<th>Funding Source</th>
<th>TP Reduction (kg/yr)</th>
<th>TP Reduction (mt/yr)</th>
<th>TN Reduction (kg/yr)</th>
<th>TN Reduction (mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Okeechobee</td>
<td>CO-01</td>
<td>Centennial Park Stormwater Drainage Construction</td>
<td>Adding baffle box to provide additional treatment prior to discharge into Taylor Creek. Will also stabilize 500 feet of bank in Taylor Creek.</td>
<td>Baffle Box</td>
<td>TBD</td>
<td>Planned</td>
<td>15.0</td>
<td>$250,000</td>
<td></td>
<td>City of Okeechobee/ SFWMD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>FDACS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDACS</td>
<td>151.60</td>
<td>0.15</td>
<td>652.10</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>FDACS</td>
<td>FDACS-01</td>
<td>Lemkin Creek</td>
<td>HWTT is a combination of wetland and chemical treatment technologies designed mainly to remove phosphorus at the sub-basin and parcel scales.</td>
<td>HWTT</td>
<td>TBD</td>
<td>2009</td>
<td>Completed</td>
<td>1,522.0</td>
<td>TBD</td>
<td>FDACS</td>
<td>845.50</td>
<td>0.85</td>
<td>1,722.00</td>
<td>1.72</td>
<td></td>
</tr>
<tr>
<td>FDACS</td>
<td>FDACS-02</td>
<td>Wolff Ditch</td>
<td>HWTT is a combination of wetland and chemical treatment technologies designed mainly to remove phosphorus at the sub-basin and parcel scales.</td>
<td>HWTT</td>
<td>TBD</td>
<td>2009</td>
<td>Completed</td>
<td>1,930.0</td>
<td>TBD</td>
<td>FDACS</td>
<td>5,547.30</td>
<td>5.55</td>
<td>8,373.10</td>
<td>8.37</td>
<td></td>
</tr>
<tr>
<td>FDACS</td>
<td>FDACS-03</td>
<td>Grassy Island</td>
<td>HWTT is a combination of wetland and chemical treatment technologies designed mainly to remove phosphorus at the sub-basin and parcel scales.</td>
<td>HWTT</td>
<td>TBD</td>
<td>2010</td>
<td>Completed</td>
<td>37,802.0</td>
<td>TBD</td>
<td>FDACS</td>
<td>475.60</td>
<td>0.48</td>
<td>602.10</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>FDACS</td>
<td>FDACS-05</td>
<td>Nubbin Slough</td>
<td>HWTT is a combination of wetland and chemical treatment technologies designed mainly to remove phosphorus at the sub-basin and parcel scales.</td>
<td>HWTT</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
<td>FDACS</td>
<td>22.60</td>
<td>0.02</td>
<td>42.60</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>FDOT District 1</td>
<td>FDOT1-01</td>
<td>SR 70 from 34th Ave. to 80th Ave.</td>
<td>Six wet detention ponds.</td>
<td>Wet Detention Pond</td>
<td>2014</td>
<td>Under way</td>
<td>57.4</td>
<td>TBD</td>
<td>FDOT</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 49 of 104
<table>
<thead>
<tr>
<th>Lead Entity</th>
<th>Project Number</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Project Type</th>
<th>Start Date</th>
<th>Completion Date</th>
<th>Acres Treated</th>
<th>Cost</th>
<th>Cost Annual O&amp;M</th>
<th>Funding Source</th>
<th>TP Reduction (kg/yr)</th>
<th>TP Reduction (mt/yr)</th>
<th>TN Reduction (kg/yr)</th>
<th>TN Reduction (mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDOT District 1</td>
<td>FDOT1-02</td>
<td>SR 70 from 100th Ave. to St. Lucie County Line</td>
<td>Three wet detention ponds and three dry retention swales.</td>
<td>Wet Detention Pond</td>
<td>2014</td>
<td>Under way</td>
<td>31.4</td>
<td>TBD</td>
<td>TBD</td>
<td>FDOT</td>
<td>17.50</td>
<td>0.02</td>
<td>39.40</td>
<td>0.04</td>
</tr>
<tr>
<td>FDOT District 1</td>
<td>FDOT1-03</td>
<td>Street Sweeping</td>
<td>Street sweeping</td>
<td>Street Sweeping</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDOT</td>
<td>108.90</td>
<td>0.11</td>
<td>69.00</td>
<td>0.07</td>
</tr>
<tr>
<td>Okeechobee County</td>
<td>OK-01B</td>
<td>Douglas Park South</td>
<td>Addition of dry detention area to serve 73.5 acres of original 150-acre drainage area.</td>
<td>Dry Detention Pond</td>
<td>2008</td>
<td>2009</td>
<td>Completed</td>
<td>73.5</td>
<td>$643,593.00</td>
<td>Community Development Block Grant</td>
<td>2.20</td>
<td>0.00</td>
<td>13.80</td>
<td>0.01</td>
</tr>
<tr>
<td>Okeechobee County</td>
<td>OK-02</td>
<td>Oak Park</td>
<td>Roadside swales with raised inlets and two hydrodynamic separators.</td>
<td>Grass Swales with Swale Blocks or Raised Culverts</td>
<td>2015</td>
<td>2016</td>
<td>Completed</td>
<td>56.4</td>
<td>$1,112,005.00</td>
<td>FEMA and Community Development Block Grant</td>
<td>2.20</td>
<td>0.00</td>
<td>14.40</td>
<td>0.01</td>
</tr>
<tr>
<td>Okeechobee County</td>
<td>OK-03</td>
<td>Southwest 21st St.</td>
<td>Dry detention roadside swales with raised inlets and one hydrodynamic separator.</td>
<td>Grass Swales with Swale Blocks or Raised Culverts</td>
<td>2012</td>
<td>2013</td>
<td>Completed</td>
<td>2.1</td>
<td>$483,892.58</td>
<td>FEMA, County, and City</td>
<td>0.10</td>
<td>0.00</td>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>Okeechobee County</td>
<td>OK-04</td>
<td>Southwest Drainage Area Improvements</td>
<td>Dry detention roadside swales with raised inlets and two hydrodynamic separators.</td>
<td>Grass Swales with Swale Blocks or Raised Culverts</td>
<td>2010</td>
<td>2011</td>
<td>Completed</td>
<td>32.2</td>
<td>$1,485,916.70</td>
<td>FEMA</td>
<td>0.40</td>
<td>0.00</td>
<td>0.30</td>
<td>0.00</td>
</tr>
<tr>
<td>Okeechobee County</td>
<td>OK-05</td>
<td>Okeechobee County 2008 Disaster Recovery Community Development Block Grant</td>
<td>Culvert upgrades and dry detention area to improve water quality and alleviate funding.</td>
<td>Stormwater System Rehabilitation</td>
<td>2013</td>
<td>2014</td>
<td>Completed</td>
<td>17.2</td>
<td>$786,665.49</td>
<td>Community Development Block Grant</td>
<td>0.20</td>
<td>0.00</td>
<td>4.20</td>
<td>0.00</td>
</tr>
<tr>
<td>Okeechobee County</td>
<td>OK-06</td>
<td>Southwest Drainage Area Improvements Whidden Ditch (Phase III)</td>
<td>Ditch and culvert upgrades to improve stormwater conveyance to Rim Canal.</td>
<td>Stormwater System Rehabilitation</td>
<td>2016</td>
<td>Under way</td>
<td>TBD</td>
<td>$749,410.00</td>
<td>Florida Legislature</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Okeechobee County</td>
<td>OK-07</td>
<td>Lock 7 Bypass Culvert System</td>
<td>Installation of parallel culvert system along the Rim Canal to improve conveyance.</td>
<td>Stormwater System Rehabilitation</td>
<td>2016</td>
<td>2016</td>
<td>Completed</td>
<td>0.00</td>
<td>$157,142.59</td>
<td>Florida Legislature</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>SFWM</td>
<td>SFWM-01</td>
<td>Taylor Creek</td>
<td>The Taylor Creek STA is a two-celled STA.</td>
<td>STA</td>
<td>2004</td>
<td>2008</td>
<td>Completed</td>
<td>118.0</td>
<td>$26,900,000.00</td>
<td>$50,000.00</td>
<td>SFWM/USACE</td>
<td>1,537.00</td>
<td>1.54</td>
<td>TBD</td>
</tr>
<tr>
<td>SFWM</td>
<td>SFWM-02</td>
<td>Nubbin Slough</td>
<td>The Nubbin Slough STA is the larger of the two pilot STAs constructed north of the lake. It is a two-celled enclosure.</td>
<td>STA</td>
<td>2004</td>
<td>2015</td>
<td>Completed</td>
<td>773.0</td>
<td>Included in SFWM-1</td>
<td>SFWM/USACE</td>
<td>4,027.00</td>
<td>4.03</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>SFWM</td>
<td>SFWM-03</td>
<td>Lakeside Ranch Phase I</td>
<td>Phase I included the construction of a 1,200-acre STA, canal improvements, and the installation of the S-650 pump station.</td>
<td>STA</td>
<td>2009</td>
<td>2012</td>
<td>Completed</td>
<td>TBD</td>
<td>$22,800,000.00</td>
<td>$341,000.00</td>
<td>SFWM</td>
<td>6,840.00</td>
<td>6.84</td>
<td>TBD</td>
</tr>
<tr>
<td>Lead Entity</td>
<td>Project Number</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Project Type</td>
<td>Start Date</td>
<td>Completion Date</td>
<td>Project Status</td>
<td>Acres Treated</td>
<td>Cost</td>
<td>Cost Annual O&amp;M</td>
<td>Funding Source</td>
<td>TP Reduction (kg/yr)</td>
<td>TP Reduction (mt/yr)</td>
<td>TN Reduction (kg/yr)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>------------------------------</td>
<td>-------------------------------------------------------------------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-15</td>
<td>Dixie Ranch</td>
<td>Storage of 856 ac-ft of water through pasture.</td>
<td>DWM</td>
<td>2011</td>
<td>2012</td>
<td>Completed</td>
<td>TBD</td>
<td></td>
<td>Included in SFWMD-14</td>
<td>SFWMD</td>
<td>See SFWMD-14</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>Lakeside Ranch Phase II</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>STA</td>
<td>TBD</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>SFWMD</td>
<td>7,600.00</td>
<td>7.60</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>Inactive Dairies – Lagoon Remediation</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>Dairy Remediation</td>
<td>TBD</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDACS</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>SR 710 Regional Project</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Planned</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDOT</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>Legislative Cost-Share Appropriation Program (Dairy Projects)</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>Dairy Remediation</td>
<td>2014</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDACS</td>
<td>1,669.00</td>
<td>1.67</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Table A-6. Projects in the Upper Kissimmee Sub-watershed

Notes: These attenuated project reductions are calculated specifically to estimate the reductions at the inflow to Lake Okeechobee. See Table 12 of the 2014 BMAP for basin-specific attenuation factors. TBD = To be determined.

For DWM projects, the start date reflects the year construction began. The completion date is the construction completion date, at which time the project is considered complete and operational. Combined cost is shown for both the Kissimmee River Restoration Project (SFWMD-05) and Kissimmee River Headwaters Revitalization Project (SFWMD-22). For SFWMD-22, the implementation of the new headwaters regulation schedule is contingent on completion of all restoration construction and land acquisition.

<table>
<thead>
<tr>
<th>Lead Entity</th>
<th>Project Number</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Project Type</th>
<th>Start Date</th>
<th>Completion Date</th>
<th>Acres Treated</th>
<th>Cost</th>
<th>Cost Annual O&amp;M</th>
<th>Funding Source</th>
<th>TP Reduction (kg/yr)</th>
<th>TP Reduction (mt/yr)</th>
<th>TN Reduction (kg/yr)</th>
<th>TN Reduction (mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Edgewood</td>
<td>EW-01</td>
<td>Water Quality Awareness Program</td>
<td>Water quality education and awareness articles in the city's quarterly newsletter. Various water quality-related informational brochures, flyers, and other publications displayed at city hall for the public.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>$1,000</td>
<td>City of Edgewood</td>
<td>0.60</td>
<td>0.00</td>
<td>17.30</td>
<td>0.02</td>
</tr>
<tr>
<td>FDACS</td>
<td>Agriculture BMPs</td>
<td>Upper Kissimmee</td>
<td>Landowner implementation of BMPs</td>
<td>Agricultural BMPs</td>
<td>2009</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
<td></td>
<td>3,561.00</td>
<td>3.56</td>
<td>168,204.0</td>
<td>168.20</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT5-01</td>
<td>239266-B SR 15 (Hoffner Rd.) from north of Lee Vista Blvd. to west of SR 436 (Pond 2)</td>
<td>Add lanes and reconstruct.</td>
<td>Wet Detention Pond</td>
<td>2015</td>
<td>2019</td>
<td>Under way</td>
<td>4.8</td>
<td>TBD</td>
<td></td>
<td>Florida Legislature</td>
<td>0.10</td>
<td>0.00</td>
<td>0.30</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT5-02</td>
<td>239266-A SR 15 Hoffner Ave from east of SR 436 to Conway Rd. (Pond 1)</td>
<td>Add lanes and reconstruct.</td>
<td>Wet Detention Pond</td>
<td>2015</td>
<td>2019</td>
<td>Under way</td>
<td>3.6</td>
<td>TBD</td>
<td></td>
<td>Florida Legislature</td>
<td>0.10</td>
<td>0.00</td>
<td>0.90</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT5-03</td>
<td>239266-C SR 15 Hoffner Ave. from west of SR 436 to Conway Rd. (Pond 3)</td>
<td>Add lanes and reconstruct.</td>
<td>Wet Detention Pond</td>
<td>2015</td>
<td>2019</td>
<td>Under way</td>
<td>11.9</td>
<td>TBD</td>
<td></td>
<td>Florida Legislature</td>
<td>0.50</td>
<td>0.00</td>
<td>6.70</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT5-04</td>
<td>239266-D SR 15 Hoffner Ave. from west of SR 436 to Conway Rd. (Pond 4)</td>
<td>Add lanes and reconstruct.</td>
<td>Wet Detention Pond</td>
<td>2015</td>
<td>2019</td>
<td>Under way</td>
<td>11.4</td>
<td>TBD</td>
<td></td>
<td>Florida Legislature</td>
<td>0.40</td>
<td>0.00</td>
<td>10.40</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT5-05</td>
<td>239535-F SR 50 from Good Homes Rd. to Pine Hills Rd. (Pond 4)</td>
<td>Add lanes and reconstruct.</td>
<td>Dry Detention Pond</td>
<td>TBD</td>
<td>Completed</td>
<td>16.4</td>
<td>TBD</td>
<td></td>
<td>Florida Legislature</td>
<td>0.70</td>
<td>0.00</td>
<td>3.90</td>
<td>0.00</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT5-06</td>
<td>416518-A Interstate-4 Braided Ramp from U.S. 192 Interchange to Osceola Parkway Interchange (Pond SE-1)</td>
<td>New road construction.</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>Completed</td>
<td>13.8</td>
<td>TBD</td>
<td></td>
<td>Florida Legislature</td>
<td>0.50</td>
<td>0.00</td>
<td>2.30</td>
<td>0.00</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT5-07</td>
<td>416518-B Interstate-4</td>
<td>New road construction.</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>Completed</td>
<td>6.1</td>
<td>TBD</td>
<td></td>
<td>Florida Legislature</td>
<td>0.20</td>
<td>0.00</td>
<td>0.70</td>
<td>0.00</td>
</tr>
<tr>
<td>Lead Entity</td>
<td>Project Number</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Project Type</td>
<td>Start Date</td>
<td>Completion Date</td>
<td>Project Status</td>
<td>Acres Treated</td>
<td>Cost O&amp;M</td>
<td>Cost Annual</td>
<td>Funding Source</td>
<td>TP Reduction (kg/yr)</td>
<td>TP Reduction (mt/yr)</td>
<td>TN Reduction (kg/yr)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------</td>
<td>------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT-08</td>
<td>239682-A SR 500 (U.S. 17-92) from Aeronautial Dr. to Budinger Ave. (Pond SE-2)</td>
<td>Add lanes and rehabilitate pavement.</td>
<td>Wet Detention Pond</td>
<td>2016</td>
<td>2019</td>
<td>Under way</td>
<td>26.5</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.90</td>
<td>0.00</td>
<td>6.10</td>
<td>0.01</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT-09</td>
<td>239682-B SR 500 (U.S. 17-92) from Aeronautial Dr. to Budinger Ave. (Pond 2)</td>
<td>Add lanes and rehabilitate pavement.</td>
<td>Wet Detention Pond</td>
<td>2016</td>
<td>2019</td>
<td>Under way</td>
<td>13.4</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.50</td>
<td>0.00</td>
<td>3.50</td>
<td>0.00</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT-10</td>
<td>239682-C SR 500 (U.S. 17-92) from Aeronautial Dr. to Budinger Ave. (Pond 3)</td>
<td>Add lanes and rehabilitate pavement.</td>
<td>Wet Detention Pond</td>
<td>2016</td>
<td>2019</td>
<td>Under way</td>
<td>15.8</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.60</td>
<td>0.00</td>
<td>3.40</td>
<td>0.00</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT-11</td>
<td>239682-D SR 500 (U.S. 17-92) from Aeronautial Dr. to Budinger Ave. (Pond 4)</td>
<td>Add lanes and rehabilitate pavement.</td>
<td>Wet Detention Pond</td>
<td>2016</td>
<td>2019</td>
<td>Under way</td>
<td>33.7</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>1.10</td>
<td>0.00</td>
<td>6.70</td>
<td>0.01</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT-12</td>
<td>418403-A, B SR 600 (U.S. 17/92) JYP from south of Portage St. to north of Vine St. (U.S. 192) (Ponds East and West)</td>
<td>Add lanes and reconstruct.</td>
<td>Wet Detention Pond</td>
<td>2015</td>
<td>2018</td>
<td>Under way</td>
<td>14.2</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.50</td>
<td>0.00</td>
<td>3.40</td>
<td>0.00</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT-13</td>
<td>239454-A widening of SR 436 from SR 528 to SR 552 (Pond A)</td>
<td>Add lanes and reconstruct.</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2010</td>
<td>Completed</td>
<td>38.8</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.30</td>
<td>0.00</td>
<td>0.90</td>
<td>0.00</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT-14</td>
<td>239635-A New Bridge SR 500 at Reedy Creek (Pond 1)</td>
<td>New bridge</td>
<td>Dry Detention Pond</td>
<td>TBD</td>
<td>2010</td>
<td>Completed</td>
<td>4.1</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.00</td>
<td>0.00</td>
<td>0.60</td>
<td>0.00</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT-15</td>
<td>239635-B New Bridge SR 500 at Reedy Creek (Pond 2)</td>
<td>New bridge</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2010</td>
<td>Completed</td>
<td>7.6</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.20</td>
<td>0.00</td>
<td>3.40</td>
<td>0.00</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT-16</td>
<td>239663-A Widening of SR 530 from SR 555 to Hoagland Blvd. (Pond 1)</td>
<td>Add lanes and reconstruct.</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2010</td>
<td>Completed</td>
<td>14.6</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.60</td>
<td>0.00</td>
<td>2.10</td>
<td>0.00</td>
</tr>
<tr>
<td>Lead Entity</td>
<td>Project Number</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Project Type</td>
<td>Start Date</td>
<td>Completion Date</td>
<td>Acres Treated</td>
<td>Cost</td>
<td>Cost Annual O&amp;M</td>
<td>Funding Source</td>
<td>TP Reduction (kg/yr)</td>
<td>TP Reduction (mt/yr)</td>
<td>TN Reduction (kg/yr)</td>
<td>TN Reduction (mt/yr)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT5-17</td>
<td>239663-B</td>
<td>Widening of SR 530</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2010 Completed</td>
<td>17.9</td>
<td>TBD</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.70</td>
<td>0.00</td>
<td>2.60</td>
<td>TBD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 530 from</td>
<td>to Hoagland Blvd.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pond 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDOT5-18</td>
<td>Widening of SR 530</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2010 Completed</td>
<td>16.9</td>
<td>TBD</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.70</td>
<td>0.00</td>
<td>2.30</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 530 from</td>
<td>to Hoagland Blvd.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pond 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDOT5-19</td>
<td>Widening of SR 530</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2010 Completed</td>
<td>12.6</td>
<td>TBD</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.50</td>
<td>0.00</td>
<td>2.20</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 530 from</td>
<td>to Hoagland Blvd.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pond 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDOT5-20</td>
<td>242436-A</td>
<td>Dry Detention Pond</td>
<td>TBD</td>
<td>2011 Completed</td>
<td>9.8</td>
<td>TBD</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.20</td>
<td>0.00</td>
<td>2.60</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 500 Ramps</td>
<td>at Gore Ave. Retention Pits (Ponds 1 and 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDOT5-21</td>
<td>Widening of SR 400</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2011 Completed</td>
<td>21.8</td>
<td>TBD</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.60</td>
<td>0.00</td>
<td>3.10</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 400 from</td>
<td>Universal Blvd. to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>South St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pond 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDOT5-22</td>
<td>405515-A and B</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2011 Completed</td>
<td>14.8</td>
<td>TBD</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.20</td>
<td>0.00</td>
<td>1.20</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 400 Wet</td>
<td>Detention Pond</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ponds 1 and 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDOT5-23</td>
<td>410732-B</td>
<td>Grass Swales without Swale Blocks or Raised Culverts</td>
<td>TBD</td>
<td>2010 Completed</td>
<td>32.2</td>
<td>TBD</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.20</td>
<td>0.00</td>
<td>1.30</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 400</td>
<td>Swales</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDOT5-24</td>
<td>Street Sweeping</td>
<td>Street Sweeping to collect 1,507,453 lbs/yr of material.</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>66.70</td>
<td>0.07</td>
<td>104.00</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDOT5-25</td>
<td>Education and Outreach</td>
<td>Funding for Orange County Water Atlas website, and illicit discharge inspection and training program.</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>1.70</td>
<td>0.00</td>
<td>19.80</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDOT5-26</td>
<td>2396831 Pond 6</td>
<td>Wet Detention Pond</td>
<td>2015</td>
<td>2017 Under way</td>
<td>19.1</td>
<td>TBD</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>9.98</td>
<td>0.01</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 500 widening from Eastern Ave. to Nova Rd.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDOT5-27</td>
<td>2396831 Pond 7</td>
<td>Wet Detention Pond</td>
<td>2015</td>
<td>2017 Under way</td>
<td>23.2</td>
<td>TBD</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>5.93</td>
<td>0.01</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 500 widening from Eastern Ave. to Nova Rd.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDOT5-28</td>
<td>407143-4 Ponds</td>
<td>Wet Detention Pond</td>
<td>2015</td>
<td>2019 Under way</td>
<td>23.0</td>
<td>TBD</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>1.30</td>
<td>0.00</td>
<td>58.00</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WDA 2A and 2B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 482</td>
<td></td>
</tr>
<tr>
<td>Lead Entity</td>
<td>Project Number</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Project Type</td>
<td>Start Date</td>
<td>Completion Date</td>
<td>Project Status</td>
<td>Acres Treated</td>
<td>Cost Annual O&amp;M</td>
<td>Funding Source</td>
<td>TP Reduction (kg/yr)</td>
<td>TP Reduction (mt/yr)</td>
<td>TN Reduction (kg/yr)</td>
<td>TN Reduction (mt/yr)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT-29</td>
<td>407143.4 Pond WDA 3 (SR 482 widening from west of Turkey Lake Rd. to east of Universal Blvd.)</td>
<td>Add lanes and reconstruct.</td>
<td>Wet Detention Pond</td>
<td>2015</td>
<td>2019</td>
<td>Under way</td>
<td>23.0</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>0.40</td>
<td>0.00</td>
<td>16.00</td>
<td>0.02</td>
</tr>
<tr>
<td>FDOT District 5</td>
<td>FDOT-30</td>
<td>407143.4 Pond WDA 4 (SR 482 widening from west of Turkey Lake Rd. to east of Universal Blvd.)</td>
<td>Add lanes and reconstruct.</td>
<td>Wet Detention Pond</td>
<td>2015</td>
<td>2019</td>
<td>Under way</td>
<td>23.0</td>
<td>TBD</td>
<td>Florida Legislature</td>
<td>1.60</td>
<td>0.00</td>
<td>72.00</td>
<td>0.07</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>KS-01</td>
<td>Education and Outreach</td>
<td>PSAs, pamphlets, website, and illicit discharge inspection program.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>City of Kissimmee Stormwater Utility Fund</td>
<td>8.30</td>
<td>0.01</td>
<td>199.90</td>
<td>0.20</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>KS-02</td>
<td>Street Sweeping</td>
<td>Sweeping over 8,500 miles per year. Material is not currently weighed, but the city is currently developing a program to weigh material.</td>
<td>Street Sweeping</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>City of Kissimmee Stormwater Utility Fund</td>
<td>100.40</td>
<td>0.10</td>
<td>277.60</td>
<td>0.28</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>KS-03</td>
<td>Lake Tivoli</td>
<td>Treatment for older existing development as well as future online development; treatment provides 2.5 times the proposed percent impervious area.</td>
<td>Online Retention BMPs</td>
<td>TBD</td>
<td>Under way</td>
<td>132.8</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>KS-04</td>
<td>Lakefront Park Redevelopment – Swales/Rain Gardens</td>
<td>Swale/rain garden system with 2.07 acres of dry detention.</td>
<td>Grass Swales without Swale Blocks or Raised Culverts</td>
<td>TBD</td>
<td>2015</td>
<td>Completed</td>
<td>14.2</td>
<td>$500,000</td>
<td>City of Kissimmee General Fund</td>
<td>0.20</td>
<td>0.00</td>
<td>5.70</td>
<td>0.01</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>KS-05</td>
<td>Lakefront Park Redevelopment Baffle Boxes</td>
<td>Three nutrient separating baffle boxes (NSBBs) and three filter boxes in the lakefront park area. Intend to install up to and additional two baffle boxes in the next five years.</td>
<td>Baffle Box, 2nd Generation</td>
<td>TBD</td>
<td>2015</td>
<td>Completed</td>
<td>14.2</td>
<td>$394,267</td>
<td>City of Kissimmee General Fund</td>
<td>0.20</td>
<td>0.00</td>
<td>9.80</td>
<td>0.01</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>KS-06</td>
<td>Martin Luther King Blvd. Phase III from Thacker Ave. to Dyer Blvd.</td>
<td>Construction of dry detention with particular standards (side slopes, littoral zones) per the Federal Aviation Administration for reduction of bird strikes.</td>
<td>Grass Swales without Swale Blocks or Raised Culverts</td>
<td>TBD</td>
<td>2015</td>
<td>Completed</td>
<td>5.5</td>
<td>$1,500,000</td>
<td>City of Kissimmee General Fund</td>
<td>0.10</td>
<td>0.00</td>
<td>1.20</td>
<td>0.00</td>
</tr>
<tr>
<td>Lead Entity</td>
<td>Project Number</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Project Type</td>
<td>Start Date</td>
<td>Completion Date</td>
<td>Project Status</td>
<td>Acres Treated</td>
<td>Cost</td>
<td>Cost Annual O&amp;M</td>
<td>Funding Source</td>
<td>TP Reduction (kg/yr)</td>
<td>TP Reduction (mt/yr)</td>
<td>TN Reduction (kg/yr)</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>---------------------------------------</td>
<td>-------------------------------------------------------------------------------------</td>
<td>---------------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>------</td>
<td>-----------------</td>
<td>----------------------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>KS-07</td>
<td>Emory Ave. Stormwater Management Pond</td>
<td>An offline stormwater pond to provide extra storage to alleviate flooding. The pond will also catch the first flush during rain events to help provide water quality treatment to the West City Ditch.</td>
<td>Wet Detention Pond</td>
<td>2016</td>
<td>2017</td>
<td>Under way</td>
<td>TBD</td>
<td>$500,000</td>
<td></td>
<td>City of Kissimmee Stormwater Utility Fund</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-01</td>
<td>Education and Outreach</td>
<td>FYI; landscaping, irrigation, fertilizer, and pot waste management ordinances, PSAs; pamphlets; Water Atlas website; and illicit discharge program.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Orange County</td>
<td>586.10</td>
<td>0.59</td>
<td>13,247.40</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-02</td>
<td>Lake Conway Street Sweeping</td>
<td>Street sweeping of 6,055 curb miles annually.</td>
<td>Street Sweeping</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>1,096.0</td>
<td>TBD</td>
<td>$145,320</td>
<td>Lake Conway Taxing District (MSTU)</td>
<td>9.30</td>
<td>0.01</td>
<td>26.70</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-03</td>
<td>Lake Holden Street Sweeping</td>
<td>Street sweeping of 829 curb miles annually.</td>
<td>Street Sweeping</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>157.0</td>
<td>TBD</td>
<td>$19,896</td>
<td>Lake Holden Taxing District (MSTU)</td>
<td>2.30</td>
<td>0.00</td>
<td>6.60</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-04</td>
<td>Lake Jessamine Street Sweeping</td>
<td>Street sweeping of 734 curb miles annually.</td>
<td>Street Sweeping</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>138.0</td>
<td>TBD</td>
<td>$17,616</td>
<td>Lake Jessamine Taxing District (MSTU)</td>
<td>1.70</td>
<td>0.00</td>
<td>4.80</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-05</td>
<td>Shingle/Boggy/Hart Basin Street Sweeping</td>
<td>Countywide street sweeping.</td>
<td>Street Sweeping</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Orange County</td>
<td>0.70</td>
<td>0.00</td>
<td>2.10</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-07</td>
<td>Lake Conway Curb Inlet Basket (CIB) Existing</td>
<td>Curb or grate inlet filter baskets to collect 16,169 lbs/yr of material.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>TBD</td>
<td>Completed</td>
<td>71.0</td>
<td>$112,000</td>
<td>$13,269</td>
<td></td>
<td>Lake Conway Taxing District (MSTU)</td>
<td>0.40</td>
<td>0.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-09</td>
<td>Lake Pineloch CIB</td>
<td>Curb or grate inlet filter baskets to collect 4,158 lbs/yr of material.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>TBD</td>
<td>Completed</td>
<td>14.0</td>
<td>$18,000</td>
<td>$2,677</td>
<td></td>
<td>Orange County General Fund</td>
<td>0.10</td>
<td>0.00</td>
<td>0.50</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-10</td>
<td>Lake Anderson CIB</td>
<td>Curb or grate inlet filter baskets to collect 3,364 lbs/yr of material.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>TBD</td>
<td>Completed</td>
<td>7.0</td>
<td>$10,000</td>
<td>$1,280</td>
<td></td>
<td>Lake Anderson MSTU</td>
<td>0.10</td>
<td>0.00</td>
<td>0.40</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-11</td>
<td>Lake Holden CIB</td>
<td>Curb or grate inlet filter baskets to collect 27,602 lbs/yr of material.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>TBD</td>
<td>Completed</td>
<td>72.0</td>
<td>$41,000</td>
<td>$13,386</td>
<td></td>
<td>Lake Holden Taxing District (MSTU)</td>
<td>0.70</td>
<td>0.00</td>
<td>3.30</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-12</td>
<td>Lake Jessamine CIB</td>
<td>Curb or grate inlet filter baskets to collect 13,025 lbs/yr of material.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>TBD</td>
<td>Completed</td>
<td>63.0</td>
<td>$110,000</td>
<td>$10,708</td>
<td></td>
<td>Lake Jessamine Taxing District (MSTU)</td>
<td>0.30</td>
<td>0.00</td>
<td>1.60</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-13</td>
<td>Lake Floy CIB</td>
<td>Curb or grate inlet filter baskets to collect 4,835 lbs/yr of material.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>TBD</td>
<td>Completed</td>
<td>6.0</td>
<td>$10,000</td>
<td>$1,164</td>
<td></td>
<td>Lake Floy MSTU</td>
<td>0.10</td>
<td>0.00</td>
<td>0.60</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-14</td>
<td>Lake Cane CIB</td>
<td>Curb or grate inlet filter baskets to collect 3,845 lbs/yr of material.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>TBD</td>
<td>Completed</td>
<td>11.0</td>
<td>$14,000</td>
<td>$1,629</td>
<td></td>
<td>Orange County General Fund</td>
<td>0.10</td>
<td>0.00</td>
<td>0.50</td>
</tr>
<tr>
<td>Lead Entity</td>
<td>Project Number</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Project Type</td>
<td>Start Date</td>
<td>Completion Date</td>
<td>Project Status</td>
<td>Acres Treated</td>
<td>Cost</td>
<td>Cost Annual O&amp;M</td>
<td>Funding Source</td>
<td>TP Reduction (kg/yr)</td>
<td>TP Reduction (mt/yr)</td>
<td>TN Reduction (kg/yr)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------------</td>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-15</td>
<td>Lake Odell CIB</td>
<td>Curb or grate inlet filter baskets to collect 904 lbs/yr of material.</td>
<td>Filter Cleanout</td>
<td>TBD</td>
<td>Completed</td>
<td>2.0</td>
<td>$3,000</td>
<td>$349</td>
<td>Orange County General Fund</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-16</td>
<td>Lake Tyler CIB</td>
<td>Curb or grate inlet filter baskets.</td>
<td>Filter Cleanout</td>
<td>TBD</td>
<td>Completed</td>
<td>7.0</td>
<td>$11,000</td>
<td>$1,164</td>
<td>Windermere Water and Navigation Control District (MSTU)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-17</td>
<td>Lake Down/ Windermere CIB</td>
<td>Curb or grate inlet filter baskets to collect 16,934 lbs/yr of material.</td>
<td>Filter Cleanout</td>
<td>2013</td>
<td>Completed</td>
<td>34.0</td>
<td>$56,000</td>
<td>$16,063</td>
<td>Windermere Water and Navigation Control District (MSTU)</td>
<td>0.50</td>
<td>0.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-18</td>
<td>Lake Tibet CIB</td>
<td>Curb or grate inlet filter baskets to collect 13,494 lbs/yr of material.</td>
<td>Filter Cleanout</td>
<td>2013</td>
<td>Completed</td>
<td>58.0</td>
<td>$31,000</td>
<td>Orange County General Fund</td>
<td>0.40</td>
<td>0.00</td>
<td>1.60</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-19</td>
<td>Lisa Waterway Continuous Deflective Separation (CDS)</td>
<td>Treats runoff from Orange Ave.</td>
<td>CDS Unit</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>$225,000</td>
<td>$6,987</td>
<td>Lake Conway Taxing District (MSTU)</td>
<td>0.30</td>
<td>0.00</td>
<td>1.50</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-20</td>
<td>Randolph Ave. CDS Unit</td>
<td>Treats runoff from Randolph Ave.</td>
<td>CDS Unit</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>Orange County General Fund</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-21</td>
<td>Randolph Ave. Stormceptor</td>
<td>Stormceptor</td>
<td>Stormceptor Unit</td>
<td>TBD</td>
<td>Prior to 2014</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>Orange County General Fund</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-22</td>
<td>Randolph Ave. Pond</td>
<td>Dry detention pond.</td>
<td>Dry Detention Pond</td>
<td>TBD</td>
<td>Prior to 2014</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>Orange County General Fund</td>
<td>0.00</td>
<td>0.00</td>
<td>0.40</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-23</td>
<td>Lake Mary Jess Pond</td>
<td>Wet retention pond created from canal.</td>
<td>Wet Retention Pond</td>
<td>TBD</td>
<td>2013</td>
<td>Completed</td>
<td>31.2</td>
<td>$534,795</td>
<td>$6,000</td>
<td>FDOT District 5/ City of Edgewood</td>
<td>2.90</td>
<td>0.00</td>
<td>13.10</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-24</td>
<td>Lake Odell Sediment Sump</td>
<td>Small sump that collects sediment from roadway, with an estimate of 12,000 lbs/yr of material.</td>
<td>Control Structure</td>
<td>2013</td>
<td>Completed</td>
<td>TBD</td>
<td>$33,300</td>
<td>$1,500</td>
<td>Orange County General Fund</td>
<td>0.40</td>
<td>0.00</td>
<td>1.20</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-25</td>
<td>Lake Jennie Jewell NSBB</td>
<td>Construct NSBB containing media.</td>
<td>Baffle Box with Media Filtration</td>
<td>2015</td>
<td>2017</td>
<td>Under way</td>
<td>9.1</td>
<td>$300,000</td>
<td>$2,500</td>
<td>Orange County BCC</td>
<td>33.70</td>
<td>0.03</td>
<td>39.90</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-26</td>
<td>Lake Anderson Mobile Alum Injection</td>
<td>Storm pond enhancement with alum.</td>
<td>Alum Injection System</td>
<td>2014</td>
<td>2017</td>
<td>Under way</td>
<td>173.0</td>
<td>$344,271</td>
<td>$30,000</td>
<td>Orange County General Fund</td>
<td>12.20</td>
<td>0.01</td>
<td>257.60</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-27</td>
<td>Lake Jessamine Surface Alum</td>
<td>Whole-lake alum treatment.</td>
<td>Alum Injection System</td>
<td>TBD</td>
<td>2013</td>
<td>Completed</td>
<td>TBD</td>
<td>$246,000</td>
<td>Lake Jessamine Taxing District (MSTU)</td>
<td>4.50</td>
<td>0.00</td>
<td>71.70</td>
<td>0.07</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-28</td>
<td>Lake Down Alum Treatment Facility</td>
<td>Installation of offline alum injection facility on the upstream portion of the Butler Chain of Lakes to address phosphorus loading to</td>
<td>Alum Injection System</td>
<td>2014</td>
<td>2016</td>
<td>Completed</td>
<td>378.8</td>
<td>$2,000,000</td>
<td>$15,000</td>
<td>Windermere Water and Navigation Control District (MSTU)/ DEP Grant</td>
<td>21.30</td>
<td>0.02</td>
<td>555.10</td>
</tr>
<tr>
<td>Lead Entity</td>
<td>Project Number</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Project Type</td>
<td>Start Date</td>
<td>Completion Date</td>
<td>Acres Treated</td>
<td>Cost</td>
<td>Cost Annual O&amp;M</td>
<td>Funding Source</td>
<td>TP Reduction (kg/yr)</td>
<td>TP Reduction (mt/yr)</td>
<td>TN Reduction (kg/yr)</td>
<td>TN Reduction (mt/yr)</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>-------------------------------------</td>
<td>---------------------------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------------------------------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-29</td>
<td>Lake Conway Hydrologic and Nutrient Study</td>
<td>Identify nutrient sources.</td>
<td>Studies</td>
<td>2015</td>
<td>Under way</td>
<td>TBD</td>
<td>$188,536</td>
<td></td>
<td>Orange County – MSTU</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-30</td>
<td>Lake Jennie Jewel CIB Installation</td>
<td>Install baskets in stormwater inlets.</td>
<td>Catch Basin Insert/Inlet Filter Cleanout</td>
<td>TBD</td>
<td>2015</td>
<td>Completed</td>
<td>6.0</td>
<td>$9,360</td>
<td>Orange County Board of County Commissioners (BCC)</td>
<td>0.20</td>
<td>0.00</td>
<td>0.33</td>
<td>TBD</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-31</td>
<td>Jewell-Gatlin NSBB</td>
<td>Construct NSBB containing media.</td>
<td>Baffle Box with Media Filtration</td>
<td>TBD</td>
<td>Under way</td>
<td>70.4</td>
<td>$165,000</td>
<td>$2,500</td>
<td>Orange County BCC</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-32</td>
<td>Lake Gem Mary</td>
<td>Identify impairment sources and provide BMP recommendations.</td>
<td>Studies</td>
<td>TBD</td>
<td>2016</td>
<td>Completed</td>
<td>TBD</td>
<td>$162,517</td>
<td>Orange County BCC</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-33</td>
<td>Lake Conway Old Dominion Rd. NSBB</td>
<td>Treat stormwater from Lake Conway Woods</td>
<td>Baffle Box with Media Filtration</td>
<td>2016</td>
<td>Completed</td>
<td>39.5</td>
<td>$173,513</td>
<td>$4,258</td>
<td>Lake Conway Taxing District (MSTU) and DEP</td>
<td>1.70</td>
<td>0.00</td>
<td>13.40</td>
<td>0.01</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-34</td>
<td>Lake Conway Pershing CDS</td>
<td>Treat stormwater from Pershing Ave.</td>
<td>CDS Unit</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Lake Conway Taxing District (MSTU)</td>
<td>0.07</td>
<td>0.00</td>
<td>0.12</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-35</td>
<td>Lake Conway Cullen Lakeshore CDS</td>
<td>Treat stormwater from Cullen Lakeshore</td>
<td>CDS Unit</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Lake Conway Taxing District (MSTU)</td>
<td>0.07</td>
<td>0.00</td>
<td>0.11</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-36</td>
<td>Lake Jessamine 608 Viscaya NSB1</td>
<td>Treat stormwater from Viscaya Ave.</td>
<td>Baffle Box with Media Filtration</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Lake Jessamine Taxing District (MSTU)</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-37</td>
<td>Lake Jessamine 616 Viscaya NSB1</td>
<td>Treat stormwater from Viscaya Ave.</td>
<td>Baffle Box with Media Filtration</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Lake Jessamine Taxing District (MSTU)</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-38</td>
<td>Lake Jessamine Silvera Ave. NSB1</td>
<td>Treat stormwater from Silvera Ave.</td>
<td>Baffle Box with Media Filtration</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Lake Jessamine Taxing District (MSTU)</td>
<td>0.02</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-39</td>
<td>Lake Tyler Apts 8 CDS</td>
<td>Treat stormwater from Lake Tyler Apartments</td>
<td>CDS Unit</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Orange County General Fund</td>
<td>0.03</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-40</td>
<td>Lake Tyler Apts 9 CDS</td>
<td>Treat stormwater from Lake Tyler Apartments</td>
<td>CDS Unit</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Orange County General Fund</td>
<td>0.02</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-41</td>
<td>Hidden Cove Apts 7 CDS</td>
<td>Treat stormwater from Hidden Cove Apartments</td>
<td>CDS Unit</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Orange County General Fund</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-42</td>
<td>Lake Tibet Houston PI NSBB</td>
<td>Treat stormwater from Houston Place</td>
<td>Baffle Box with Media Filtration</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Butler MSTU</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-43</td>
<td>Lake Down Sub-Basin 9 NSBB</td>
<td>Treat stormwater from Sub-Basin 9 in Lake Down</td>
<td>Baffle Box with Media Filtration</td>
<td>TBD</td>
<td>2017</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>Orange County General Fund</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-44</td>
<td>Lake Jessamine Hydrologic Nutrient Budget Study</td>
<td>Hydrologic and nutrient budget study</td>
<td>Studies</td>
<td>TBD</td>
<td>2012</td>
<td>Completed</td>
<td>1,315.0</td>
<td>$105,886</td>
<td>Lake Jessamine Taxing District (MSTU)</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-45</td>
<td>Anderson St. Sweeping</td>
<td>Sweeping of 31.8 curb miles annually</td>
<td>Street Sweeping</td>
<td>TBD</td>
<td>Under way</td>
<td>38.0</td>
<td>TBD</td>
<td>$770</td>
<td>Lake Anderson Taxing District (MSTU)</td>
<td>0.10</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
</tr>
<tr>
<td>Lead Entity</td>
<td>Project Number</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Project Type</td>
<td>Start Date</td>
<td>Completion Date</td>
<td>Project Status</td>
<td>Acres Treated</td>
<td>Cost</td>
<td>Cost Annual O&amp;M</td>
<td>Funding Source</td>
<td>TP Reduction (kg/yr)</td>
<td>TP Reduction (mt/yr)</td>
<td>TN Reduction (kg/yr)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------------------------------------------------------------------------</td>
<td>-------------------------------------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------</td>
<td>-----------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-46</td>
<td>Bass Lake CIB</td>
<td>Collect 1,572 lbs/yr of material</td>
<td>Catch Basin Inserts/ Inlet Filter Cleanout</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>4.0</td>
<td>TBD</td>
<td>$470</td>
<td>Bass Lake Taxing District (MSTU)</td>
<td>0.50</td>
<td>0.00</td>
<td>0.30</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-47</td>
<td>Jennie Jewel Alum</td>
<td>In-lake application of alum and buffer</td>
<td>Alum Injection System</td>
<td>TBD</td>
<td>Planned</td>
<td>66.4</td>
<td>66.4</td>
<td>$150,000</td>
<td></td>
<td>Jennie Jewel Taxing District (MSTU)</td>
<td>1,694.00</td>
<td>1.69</td>
<td>TBD</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-48</td>
<td>LaGrange CIB</td>
<td>Collect 2,290 lbs/yr of material</td>
<td>Catch Basin Inserts/ Inlet Filter Cleanout</td>
<td>TBD</td>
<td>Completed</td>
<td>TBD</td>
<td>5.0</td>
<td>TBD</td>
<td>$940</td>
<td>LaGrange Taxing District (MSTU)</td>
<td>0.70</td>
<td>0.00</td>
<td>0.40</td>
</tr>
<tr>
<td>Orange County</td>
<td>OC-49</td>
<td>Lake Christie NSBB</td>
<td>Install NSBB fitted with bioactivated media</td>
<td>Baffle Box with Media Filtration</td>
<td>TBD</td>
<td>Planned</td>
<td>81.5</td>
<td>81.5</td>
<td>$1,500</td>
<td></td>
<td>Orange County General Fund</td>
<td>7.00</td>
<td>1.50</td>
<td>12.00</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-01</td>
<td>18th St./Parramore Ave. Baffle Box</td>
<td>Baffle box installed to remove gross pollutants, including organic debris, sediment, and litter.</td>
<td>Baffle Box, 2nd Generation</td>
<td>TBD</td>
<td>2009 Completed</td>
<td>4.6</td>
<td>4.6</td>
<td>$578,138</td>
<td></td>
<td>City of Orlando Stormwater Utility + 50 % cost funded from SFWMDB Grant</td>
<td>0.00</td>
<td>0.00</td>
<td>3.30</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-02</td>
<td>19th St./Parramore Ave. Baffle Box</td>
<td>Baffle box installed to remove gross pollutants, including organic debris, sediment, and litter.</td>
<td>Baffle Box, 2nd Generation</td>
<td>TBD</td>
<td>2009 Completed</td>
<td>9.9</td>
<td>9.9</td>
<td>Part of project ORL-1</td>
<td>City of Orlando Stormwater Utility + 50 % cost funded from SFWMDB Grant</td>
<td>0.10</td>
<td>0.00</td>
<td>7.10</td>
<td>0.01</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-03</td>
<td>Pine St./Orange Blossom Trail Corridor Stormwater Improvements</td>
<td>Installation of 1,800 feet of stormwater pipe from Pine St. to Lake Lorna Doone, including a baffle box.</td>
<td>Baffle Box, 2nd Generation</td>
<td>TBD</td>
<td>2010 Completed</td>
<td>11.5</td>
<td>11.5</td>
<td>$577,822</td>
<td></td>
<td>City of Orlando Stormwater Utility + 50 % cost funded by CBIR Grant</td>
<td>0.30</td>
<td>0.00</td>
<td>2.80</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-04</td>
<td>Lake Holden Terrace/Albert Shores Sanitary Components</td>
<td>Sanitary infrastructure installed for septic tank conversions – 11 of 77 homes converted.</td>
<td>Wastewater Service Area Expansion</td>
<td>TBD</td>
<td>2012 Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>$3,522,911</td>
<td></td>
<td>City of Orlando Wastewater Division, City of Orlando Stormwater Utility, Orlando Utility Commission</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-05</td>
<td>Lake Holden Terrace/Albert Shores Stormwater Components</td>
<td>Two baffle boxes and one Storm Flo unit installed in stormwater infrastructure for capturing organic debris, sediment and litter, stormwater infrastructure added to alleviate flooding.</td>
<td>Baffle Box, 2nd Generation</td>
<td>TBD</td>
<td>2012 Completed</td>
<td>76.4</td>
<td>76.4</td>
<td>Part of ORL-4</td>
<td>City of Orlando Wastewater Division, City of Orlando Stormwater Utility, Orlando Utility Commission</td>
<td>1.00</td>
<td>0.00</td>
<td>39.30</td>
<td>0.04</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-06</td>
<td>Lake Angel Drainage Improvements</td>
<td>Expand the permanent pool volume of Lake Angel and install three baffle boxes in the main inflow pipes.</td>
<td>Wet Detention Pond</td>
<td>2014</td>
<td>2015 Completed</td>
<td>87.0</td>
<td>87.0</td>
<td>$2,000,000</td>
<td></td>
<td>City of Orlando Stormwater Utility + EPA Grant</td>
<td>0.50</td>
<td>0.00</td>
<td>16.60</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-07</td>
<td>CEMEX-South Division Ave. Roadway and Drainage Improvements</td>
<td>Pave unimproved access road to industrial park and install baffle box to capture sediment; install curbing along additional</td>
<td>Baffle Box, 2nd Generation</td>
<td>TBD</td>
<td>Planned</td>
<td>52.6</td>
<td>52.6</td>
<td>$1,500,000</td>
<td></td>
<td>City of Orlando Stormwater Utility</td>
<td>1.30</td>
<td>0.00</td>
<td>12.70</td>
</tr>
<tr>
<td>Lead Entity</td>
<td>Project Number</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Project Type</td>
<td>Start Date</td>
<td>Completion Date</td>
<td>Acres Treated</td>
<td>Cost</td>
<td>Cost Annual O&amp;M</td>
<td>Funding Source</td>
<td>TP Reduction (kg/yr)</td>
<td>TP Reduction (mt/yr)</td>
<td>TN Reduction (kg/yr)</td>
<td>TN Reduction (mt/yr)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-08</td>
<td>Lake Pineloch Basin Inlet Baskets</td>
<td>32 inlet baskets installed to remove gross pollutants, including organic debris, sediment and litter – 36 cubic yds/yr of material collected.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>2009</td>
<td>Completed</td>
<td>TBD</td>
<td>$40,480</td>
<td></td>
<td>City of Orlando Stormwater Utility</td>
<td>14.00</td>
<td>0.01</td>
<td>34.00</td>
<td>0.03</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-09</td>
<td>Clear Lake Basin Inlet Baskets</td>
<td>29 inlet baskets installed to remove gross pollutants, including organic debris, sediment and litter – 23.85 cubic yds/yr of material collected.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>2007</td>
<td>Completed</td>
<td>TBD</td>
<td>$8,550</td>
<td></td>
<td>City of Orlando</td>
<td>9.00</td>
<td>0.01</td>
<td>22.00</td>
<td>0.02</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-10</td>
<td>Lake Lorna Doone Basin Inlet Baskets</td>
<td>16 inlet baskets installed to remove gross pollutants, including organic debris, sediment and litter – 33.25 cubic yds/yr of material collected.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>2007</td>
<td>Completed</td>
<td>TBD</td>
<td>$17,755</td>
<td></td>
<td>City of Orlando</td>
<td>13.00</td>
<td>0.01</td>
<td>31.00</td>
<td>0.03</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-11</td>
<td>Lake Mann Basin Inlet Baskets</td>
<td>44 inlet baskets installed to remove gross pollutants, including organic debris, sediment and litter – 36.25 cubic yards/yr of material collected.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>2007</td>
<td>Completed</td>
<td>TBD</td>
<td>$48,826</td>
<td></td>
<td>City of Orlando</td>
<td>14.00</td>
<td>0.01</td>
<td>34.00</td>
<td>0.03</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-13</td>
<td>Rock Lake Basin Inlet Baskets</td>
<td>10 inlet baskets installed to remove gross pollutants, including organic debris, sediment and litter – 26.25 cubic yds/yr of material collected.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>2007</td>
<td>Completed</td>
<td>TBD</td>
<td>$8,550</td>
<td></td>
<td>City of Orlando</td>
<td>10.00</td>
<td>0.01</td>
<td>25.00</td>
<td>0.03</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-14</td>
<td>Lake Sunset Basin Inlet Baskets</td>
<td>Eight inlet baskets installed to remove gross pollutants, including organic debris, sediment and litter – 12.0 cubic yds/yr of material collected.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>2007</td>
<td>Completed</td>
<td>TBD</td>
<td>$8,550</td>
<td></td>
<td>City of Orlando</td>
<td>5.00</td>
<td>0.01</td>
<td>11.00</td>
<td>0.01</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-15</td>
<td>Walker Lagoon Basin Inlet Baskets</td>
<td>16 inlet baskets installed to remove gross pollutants, including organic debris, sediment and litter – 19.1 cubic yds/yr of material collected.</td>
<td>Catch Basin Inserts/Inlet Filter Cleanout</td>
<td>2007</td>
<td>Completed</td>
<td>TBD</td>
<td>$17,755</td>
<td></td>
<td>City of Orlando</td>
<td>7.00</td>
<td>0.01</td>
<td>18.00</td>
<td>0.02</td>
</tr>
<tr>
<td>Lead Entity</td>
<td>Project Number</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Project Type</td>
<td>Start Date</td>
<td>Completion Date</td>
<td>Project Status</td>
<td>Acres Treated</td>
<td>Cost</td>
<td>Cost Annual O&amp;M</td>
<td>Funding Source</td>
<td>TP Reduction (kg/yr)</td>
<td>TP Reduction (mt/yr)</td>
<td>TN Reduction (kg/yr)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-16</td>
<td>Street Sweeping</td>
<td>Street sweeping within all public roads within city limits – 3,645 cubic yards/yr of material collected.</td>
<td>Street Sweeping</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>City of Orlando Stormwater Utility</td>
<td>1,368.00</td>
<td>1.37</td>
<td>2,134.00</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>City of Orlando</td>
<td>ORL-17</td>
<td>Education and Outreach</td>
<td>FYN; landscaping, irrigation, fertilizer, and pet waste management ordinances; PSAs; pamphlets; website; and illicit discharge program.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>City of Orlando Stormwater Utility</td>
<td>206.70</td>
<td>0.21</td>
<td>3,440.00</td>
<td>3.44</td>
<td></td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-01</td>
<td>Narcoossee Rd. III Ponds 2 and 3</td>
<td>Roadway widening.</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2011</td>
<td>Completed</td>
<td>29.3</td>
<td>TBD</td>
<td>City of Orlando Stormwater Utility</td>
<td>0.20</td>
<td>0.00</td>
<td>5.70</td>
<td>0.01</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-02</td>
<td>Narcoossee Rd. III Ponds C3A and C3B</td>
<td>Roadway widening.</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2012</td>
<td>Completed</td>
<td>20.5</td>
<td>TBD</td>
<td>City of Orlando Stormwater Utility</td>
<td>0.10</td>
<td>0.00</td>
<td>3.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-03</td>
<td>Narcoossee Rd. III Pond D3</td>
<td>Roadway widening.</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2012</td>
<td>Completed</td>
<td>24.3</td>
<td>TBD</td>
<td>City of Orlando Stormwater Utility</td>
<td>0.20</td>
<td>0.00</td>
<td>3.70</td>
<td>0.00</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-04</td>
<td>Narcoossee Rd. III Pond E1</td>
<td>Roadway widening.</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2012</td>
<td>Completed</td>
<td>22.4</td>
<td>TBD</td>
<td>City of Orlando Stormwater Utility</td>
<td>0.10</td>
<td>0.00</td>
<td>2.40</td>
<td>0.00</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-05</td>
<td>Neptune Rd. I – Ponds 100, 200, and 300</td>
<td>Road improvement.</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2010</td>
<td>Completed</td>
<td>226.8</td>
<td>TBD</td>
<td>Osceola County Stormwater Utility</td>
<td>8.30</td>
<td>0.01</td>
<td>219.30</td>
<td>0.22</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-06</td>
<td>Old Wilson Rd. Pond D002-P</td>
<td>Road improvement.</td>
<td>Online Retention BMPs</td>
<td>TBD</td>
<td>2012</td>
<td>Completed</td>
<td>55.8</td>
<td>TBD</td>
<td>City of Orlando Stormwater Utility</td>
<td>0.60</td>
<td>0.00</td>
<td>18.90</td>
<td>0.02</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-07</td>
<td>Old Wilson Rd. Pond D004-P</td>
<td>Road improvement.</td>
<td>Online Retention BMPs</td>
<td>TBD</td>
<td>2012</td>
<td>Completed</td>
<td>18.7</td>
<td>TBD</td>
<td>City of Orlando Stormwater Utility</td>
<td>0.30</td>
<td>0.00</td>
<td>19.80</td>
<td>0.02</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-08</td>
<td>Old Wilson Rd. Pond E002-P</td>
<td>Road improvement.</td>
<td>Online Retention BMPs</td>
<td>TBD</td>
<td>2012</td>
<td>Completed</td>
<td>12.5</td>
<td>TBD</td>
<td>City of Orlando Stormwater Utility</td>
<td>0.70</td>
<td>0.00</td>
<td>21.30</td>
<td>0.02</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-09</td>
<td>Stewart St. Regional Pond Retrofit</td>
<td>Regional pond retrofit.</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>2009</td>
<td>Completed</td>
<td>2,249.2</td>
<td>TBD</td>
<td>Osceola County Stormwater Utility</td>
<td>70.40</td>
<td>0.07</td>
<td>1,747.00</td>
<td>1.75</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-10</td>
<td>Education and Outreach</td>
<td>FYN; landscaping, irrigation, fertilizer, and pet waste management ordinances; PSAs; pamphlets; website; and illicit discharge program.</td>
<td>Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>Osceola County Stormwater Utility</td>
<td>321.60</td>
<td>0.32</td>
<td>10,612.30</td>
<td>10.61</td>
<td></td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-12</td>
<td>East Lake Reserve Stormwater Reuse</td>
<td>Stormwater reuse for landscape irrigation from Pond A1 (9.1A).</td>
<td>Stormwater Reuse</td>
<td>TBD</td>
<td>Completed</td>
<td>130.8</td>
<td>TBD</td>
<td>Homeowners Association</td>
<td>5.50</td>
<td>0.01</td>
<td>365.40</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-13</td>
<td>Neptune Rd. Stormwater Reuse</td>
<td>Stormwater reuse for landscape irrigation from Ponds 100,101 and 300.</td>
<td>Stormwater Reuse</td>
<td>TBD</td>
<td>Completed</td>
<td>35.7</td>
<td>$640,690</td>
<td>Osceola County</td>
<td>1.10</td>
<td>0.00</td>
<td>24.90</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-14</td>
<td>Bellalago and Isles of Bellalago Stormwater Reuse</td>
<td>Stormwater reuse for landscape irrigation (197A).</td>
<td>Stormwater Reuse</td>
<td>TBD</td>
<td>Completed</td>
<td>1,386.8</td>
<td>TBD</td>
<td>Homeowners Association</td>
<td>63.80</td>
<td>0.06</td>
<td>3,071.70</td>
<td>3.07</td>
<td></td>
</tr>
</tbody>
</table>
## Final 2016 Progress Report for the Lake Okeechobee Basin Management Action Plan, June 2017

<table>
<thead>
<tr>
<th>Lead Entity</th>
<th>Project Number</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Project Type</th>
<th>Start Date</th>
<th>Completion Date</th>
<th>Acres Treated</th>
<th>Cost</th>
<th>Cost Annual O&amp;M</th>
<th>Funding Source</th>
<th>TP Reduction (kg/yr)</th>
<th>TP Reduction (mt/yr)</th>
<th>TN Reduction (kg/yr)</th>
<th>TN Reduction (mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osceola County</td>
<td>OSC-15</td>
<td>Poinciana Commerce Center Reuse</td>
<td>Stormwater reuse for landscape irrigation from Pond 1.</td>
<td>Stormwater Reuse</td>
<td>2008</td>
<td>Completed</td>
<td>10.2</td>
<td>TBD</td>
<td>TBD</td>
<td>Private</td>
<td>0.50</td>
<td>0.00</td>
<td>13.80</td>
<td>0.01</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-16</td>
<td>Kissimmee Bay Reuse</td>
<td>Stormwater reuse 20-year duration for 84.5 acres of golf course and 5-year duration for 45.5 acres of landscape irrigation.</td>
<td>Stormwater Reuse</td>
<td>TBD</td>
<td>Completed</td>
<td>271.0</td>
<td>TBD</td>
<td>TBD</td>
<td>Private</td>
<td>19.60</td>
<td>0.02</td>
<td>910.10</td>
<td>0.91</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-17</td>
<td>Remington Reuse</td>
<td>Stormwater reuse for golf course irrigation from Ponds 12, 13, 14A, and 14B.</td>
<td>Stormwater Reuse</td>
<td>2015</td>
<td>Completed</td>
<td>149.4</td>
<td>TBD</td>
<td>TBD</td>
<td>Private</td>
<td>12.10</td>
<td>0.01</td>
<td>523.40</td>
<td>0.52</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-18</td>
<td>Eagle Lake Reuse</td>
<td>Stormwater reuse for turf irrigation.</td>
<td>Stormwater Reuse</td>
<td>TBD</td>
<td>Completed</td>
<td>435.1</td>
<td>TBD</td>
<td>TBD</td>
<td>Private</td>
<td>19.20</td>
<td>0.02</td>
<td>873.90</td>
<td>0.87</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-19</td>
<td>La Quinta Inn Reuse</td>
<td>Stormwater reuse for turf irrigation.</td>
<td>Stormwater Reuse</td>
<td>TBD</td>
<td>Completed</td>
<td>12.5</td>
<td>TBD</td>
<td>TBD</td>
<td>Private</td>
<td>1.70</td>
<td>0.00</td>
<td>14.20</td>
<td>0.01</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-20</td>
<td>Lake Toho Regional Water Storage Facility (Judge Farms)</td>
<td>Construction of three large regional stormwater retention ponds or water storage facilities.</td>
<td>STA</td>
<td>2015-2018</td>
<td>Under way</td>
<td>5,883.0</td>
<td>TBD</td>
<td>TBD</td>
<td>Multiple</td>
<td>412.10</td>
<td>0.41</td>
<td>8,775.30</td>
<td>8.78</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-21</td>
<td>Street Sweeping</td>
<td>Monthly street sweeping.</td>
<td>Street Sweeping</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Osceola County</td>
<td>16.10</td>
<td>0.02</td>
<td>46.20</td>
<td>0.05</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-22</td>
<td>Buenaventura Lakes Golf Course Ponds</td>
<td>Two new lakes at golf course.</td>
<td>Wet Detention Pond</td>
<td>TBD</td>
<td>Completed</td>
<td>517.7</td>
<td>TBD</td>
<td>TBD</td>
<td>Osceola County</td>
<td>2.00</td>
<td>0.00</td>
<td>6.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-23</td>
<td>Slaman</td>
<td>Conservation areas.</td>
<td>Land Preservation</td>
<td>TBD</td>
<td>Prior to 2014</td>
<td>32.2</td>
<td>TBD</td>
<td>TBD</td>
<td>Osceola County</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0.00</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-24</td>
<td>Jim Yates</td>
<td>Conservation areas.</td>
<td>Land Preservation</td>
<td>TBD</td>
<td>Prior to 2014</td>
<td>5.3</td>
<td>TBD</td>
<td>TBD</td>
<td>Osceola County</td>
<td>0.50</td>
<td>0.00</td>
<td>3.20</td>
<td>0.00</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-25</td>
<td>Udstad</td>
<td>Conservation areas.</td>
<td>Land Preservation</td>
<td>TBD</td>
<td>Prior to 2014</td>
<td>5.9</td>
<td>TBD</td>
<td>TBD</td>
<td>Osceola County</td>
<td>0.50</td>
<td>0.00</td>
<td>7.70</td>
<td>0.01</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-26</td>
<td>Proctor</td>
<td>Conservation areas.</td>
<td>Land Preservation</td>
<td>TBD</td>
<td>Prior to 2014</td>
<td>0.7</td>
<td>TBD</td>
<td>TBD</td>
<td>Osceola County</td>
<td>0.10</td>
<td>0.00</td>
<td>0.30</td>
<td>0.00</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-27</td>
<td>Twin Oaks</td>
<td>Conservation areas.</td>
<td>Land Preservation</td>
<td>TBD</td>
<td>Prior to 2014</td>
<td>399.6</td>
<td>TBD</td>
<td>TBD</td>
<td>Osceola County</td>
<td>47.00</td>
<td>0.05</td>
<td>264.90</td>
<td>0.26</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-28</td>
<td>Cherokee Point</td>
<td>Conservation areas.</td>
<td>Land Preservation</td>
<td>TBD</td>
<td>Prior to 2014</td>
<td>178.6</td>
<td>TBD</td>
<td>TBD</td>
<td>Osceola County</td>
<td>1.20</td>
<td>0.00</td>
<td>6.70</td>
<td>0.01</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-29</td>
<td>Encatada Resort</td>
<td>Stormwater reuse for landscape irrigation from pond.</td>
<td>Stormwater Reuse</td>
<td>TBD</td>
<td>Completed</td>
<td>57.6</td>
<td>TBD</td>
<td>TBD</td>
<td>Homeowners Association</td>
<td>3.10</td>
<td>0.00</td>
<td>33.20</td>
<td>0.03</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-30</td>
<td>Cypress Palms Condos</td>
<td>Stormwater reuse for landscape irrigation from pond.</td>
<td>Stormwater Reuse</td>
<td>2012</td>
<td>Completed</td>
<td>12.4</td>
<td>TBD</td>
<td>TBD</td>
<td>Homeowners Association</td>
<td>1.00</td>
<td>0.00</td>
<td>10.40</td>
<td>0.01</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-31</td>
<td>Lake Pointe</td>
<td>Stormwater reuse for landscape irrigation from pond.</td>
<td>Stormwater Reuse</td>
<td>2012</td>
<td>Completed</td>
<td>150.2</td>
<td>TBD</td>
<td>TBD</td>
<td>Homeowners Association</td>
<td>5.90</td>
<td>0.01</td>
<td>322.30</td>
<td>0.32</td>
</tr>
<tr>
<td>Osceola County</td>
<td>OSC-32</td>
<td>Traditions at Westside</td>
<td>Stormwater reuse for landscape irrigation from pond.</td>
<td>Stormwater Reuse</td>
<td>2011</td>
<td>Completed</td>
<td>21.7</td>
<td>TBD</td>
<td>TBD</td>
<td>Homeowners Association</td>
<td>2.30</td>
<td>0.00</td>
<td>19.70</td>
<td>0.02</td>
</tr>
<tr>
<td>Polk County</td>
<td>PC-03</td>
<td>Education and Outreach</td>
<td>FYI, fertilizer ordinance, PSAs, pamphlets, website, and Public Education</td>
<td>TBD</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>Polk County</td>
<td>118.80</td>
<td>0.12</td>
<td>4,438.10</td>
<td>4.44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 62 of 104
<table>
<thead>
<tr>
<th>Lead Entity</th>
<th>Project Number</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Project Type</th>
<th>Start Date</th>
<th>Completion Date</th>
<th>Project Status</th>
<th>Acres Treated</th>
<th>Cost</th>
<th>Cost Annual O&amp;M</th>
<th>Funding Source</th>
<th>TP Reduction (kg/yr)</th>
<th>TP Reduction (mt/yr)</th>
<th>TN Reduction (kg/yr)</th>
<th>TN Reduction (mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polk County</td>
<td>PC-04</td>
<td>Sumica Preserve Water Storage/ Hydrologic Restoration</td>
<td>Construction of a gravel berm to store water onsite for wetland restoration</td>
<td>Wetland Restoration</td>
<td>TBD</td>
<td>2010</td>
<td>Completed</td>
<td>4,077.4</td>
<td>$42,850</td>
<td>$13,000</td>
<td>SFWMD</td>
<td>7.50</td>
<td>0.01</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-06</td>
<td>Phase I Rolling Meadows</td>
<td>The goal of this project is to restore historical Lake Hatchineha floodplain wetlands and habitat within the Rolling Meadows property which was purchased jointly with DEP.</td>
<td>Wetland Restoration</td>
<td>2015</td>
<td>2016</td>
<td>Completed</td>
<td>1,900.0</td>
<td>$43,200</td>
<td>SFWMD /DEP</td>
<td>65.10</td>
<td>0.07</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-07</td>
<td>Gardner-Cobb Marsh</td>
<td>Located south of Cypress Lake. Project included activities such as 23 ditch plugs, berm removal, exotic treatment, and culvert replacement. It helps attenuate regional stormwater runoff and provide incidental nutrient reductions because of plant uptake from overland flows in the marsh.</td>
<td>Hydrologic Restoration</td>
<td>2009</td>
<td>2010</td>
<td>Completed</td>
<td>2,000.0</td>
<td>TBD</td>
<td>SFWMD</td>
<td>5.20</td>
<td>0.01</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-08</td>
<td>Rough Island</td>
<td>Located southwest of Cypress Lake and west of the C-36 Canal. This project included activities such as ditch plugs, ditch filling, and exotic removal. It helps attenuate regional stormwater runoff and provides incidental nutrient reductions because of plant uptake from overland flows. Estimated to create 215 ac-ft of storage.</td>
<td>Hydrologic Restoration</td>
<td>2009</td>
<td>2009</td>
<td>Completed</td>
<td>1,000.0</td>
<td>TBD</td>
<td>SFWMD</td>
<td>60.80</td>
<td>0.06</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-09</td>
<td>Oasis Marsh Restoration</td>
<td>The Oasis wetlands are located in the floodplain of the southwestern corner of Lake Kissimmee. The site is a mosaic of dewatered wetlands and uplands. To restore the floodplain function, 4 ditches totaling 2.4 acres in size were filled with 3,144 cubic yards of sediment material from a levee adjacent to the site.</td>
<td>Wetland Restoration</td>
<td>2009</td>
<td>2010</td>
<td>Completed</td>
<td>77.0</td>
<td>TBD</td>
<td>SFWMD</td>
<td>195.30</td>
<td>0.20</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Lead Entity</td>
<td>Project Number</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Project Type</td>
<td>Start Date</td>
<td>Completion Date</td>
<td>Project Status</td>
<td>Acres Treated</td>
<td>Cost</td>
<td>Cost Annual O&amp;M</td>
<td>Funding Source</td>
<td>TP Reduction (kg/yr)</td>
<td>TP Reduction (mt/yr)</td>
<td>TN Reduction (kg/yr)</td>
<td>TN Reduction (mt/yr)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-16</td>
<td>Lost Oak Ranch</td>
<td>Storage of 374 ac of water through pasture.</td>
<td>DWM</td>
<td>2011</td>
<td>2013</td>
<td>Completed</td>
<td>TBD</td>
<td>TBD</td>
<td>$79,073</td>
<td>SFWMD</td>
<td>28.00</td>
<td>0.03</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>SFWMD</td>
<td>SFWMD-22</td>
<td>Kissimmee River Headwaters Revitalization</td>
<td>Land use change to wetlands in the project area.</td>
<td>Hydrologic Restoration</td>
<td>2000</td>
<td>2020</td>
<td>Under way</td>
<td>7,200.0</td>
<td>Included in SFWMD-05</td>
<td>SFWMD</td>
<td>566.40</td>
<td>0.57</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Town of Windermere</td>
<td>TW-01</td>
<td>First Ave. and Forest St. Drainage Improvements</td>
<td>Construction of vegetated swales, exfiltration trench systems, and oil/grit separation units to treat stormwater runoff into Wauseon Bay which is directly connected to Lake Butler, and OFW.</td>
<td>Drainage Improvement</td>
<td>2017</td>
<td>2018</td>
<td>Under way</td>
<td>22.5</td>
<td>$394,130</td>
<td>Town/ SFWMD</td>
<td>21.22</td>
<td>0.02</td>
<td>20.22</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>Rolling Meadows Wetland Restoration Phase II</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>Wetland Restoration</td>
<td>TBD</td>
<td>Planned</td>
<td>TBD</td>
<td>TBD</td>
<td>9.00</td>
<td>0.01</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>Project under Development</td>
<td>Legislative Cost-Share Appropriation Program (Dairy Projects)</td>
<td>See Table A-7 in BMAP Annual Report</td>
<td>Dairy Remediation</td>
<td>2014</td>
<td>Under way</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>FDACS</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
</tbody>
</table>

Final 2016 Progress Report for the Lake Okeechobee Basin Management Action Plan, June 2017

Page 64 of 104
### Table A-7. Projects under development with the Coordinating Agencies

**Note:** These attenuated project reductions are calculated specifically to estimate the reductions at the inflow to Lake Okeechobee. TBD = To be determined

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Sub-watershed</th>
<th>Status</th>
<th>Estimated TP Reduction (mt/yr)</th>
<th>Estimated TP Reduction (kg/yr)</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMWID – Phase II</td>
<td>Indian Prairie</td>
<td>An agreement between SFWMD, IMWID/Highlands County, and FDACS has been executed for the implementation of the project (Phase I and Phase II). Acquisition of 401 acres for the project footprint and geotechnical activities, environmental site assessments, and remediation of agrochemicals on those lands have been performed. The design is 90% complete, a cultural resources survey is under way, and acquisitions of additional easements for a flow path between Phase I and Phase II are pending. A Memorandum of Understanding (MOU) exists between FDACS, SFWMD, IMWID, and Highlands County. FDACS identified funds to assist in constructing the Phase I project and to cover Phase II of the project. Construction has begun on the Phase I project, and the Phase II project is in the design stage.</td>
<td>1.15</td>
<td>1,150</td>
<td>Construction activities are tentatively planned to begin in 2018 and are expected to last 12 months. Operations are anticipated to begin by 2020.</td>
</tr>
<tr>
<td>Lakeside Ranch STA</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>This phase includes a southern STA and a second pump station (S-191A) to manage rim canal levels during periods of high water flow and potentially to recirculate lake water back to the STA for additional TP removal. Construction of the southern STA is under way. However, the construction of the S-191A pump station is contingent on future legislative funding.</td>
<td>7.6</td>
<td>7,600</td>
<td>The southern STA is anticipated to be completed by 2018. Once funded, the pump station is estimated to be completed in three years.</td>
</tr>
<tr>
<td>Brighton Valley - Lykes</td>
<td>Indian Prairie</td>
<td>SFWMD issued an ERP as well as a right-of-way permit for the project. A USACE 404 permit has been applied for, and the application is currently under review. Under FDACS cost-share funding, this NE-PPP project is under design/permitting. The project will result in storage of 34,000 ac-ft of water via a pass-through system.</td>
<td>7.72</td>
<td>7,720</td>
<td>Upon receipt of permits, construction will begin, with completion expected in late 2018/early 2019.</td>
</tr>
<tr>
<td>Latt Maxcy DWM</td>
<td>Lower Kissimmee</td>
<td>Under FDACS cost-share funding, this NE-PPP project is under design/permitting. The project will result in storage of an estimated 27,068 ac-ft of water via a pass-through system.</td>
<td>2.82</td>
<td>2,820</td>
<td>Construction is anticipated to begin in 2018, with completion expected in 2019.</td>
</tr>
<tr>
<td>Project Name</td>
<td>Sub-watershed</td>
<td>Status</td>
<td>Estimated TP Reduction (mt/yr)</td>
<td>Estimated TP Reduction (kg/yr)</td>
<td>Schedule</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>--------------------------------------------</td>
<td>------------------------------------------------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Rolling Meadows Wetland Restoration – Phase II</td>
<td>Upper Kissimmee</td>
<td>Land has been acquired and planning started. Phase II of this project, which involves the further restoration of 580 acres of wetlands, is contingent on future legislative funding.</td>
<td>0.009</td>
<td>9</td>
<td>Once funded, project work is estimated to be completed in two to three years.</td>
</tr>
<tr>
<td>Inactive Dairies – Lagoon Remediation</td>
<td>Taylor Creek/ Nubbin Slough and Indian Prairie</td>
<td>FDACS worked with a dairy in the LOW to partially remediate its lagoon. The soil was spread on the field for the crops to use the nutrients from the excavated soil. The stormwater is routed back to the remediated pond to minimize discharges and it is reused to reduce groundwater withdrawals. In the future, the dairy will finish excavation and remediation of the entire site. For now, this project is complete.</td>
<td>TBD</td>
<td>TBD</td>
<td>1. Identify areas that need remediation activities/talk to landowners. (Winter 2014/2015–Summer 2015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Analyze data. (as necessary)</td>
</tr>
<tr>
<td>PL-566 Funded/ Fisheating Creek Structure</td>
<td>Indian Prairie</td>
<td>The USACE was working with the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) to develop various alternatives. After some staffing and priority changes at the USACE, the NRCS took the lead on this effort. Currently, a scope of work has been developed to contract with the original contractor on this effort. Once the scope of work is approved and the necessary contractual paperwork is in place, the contractor can begin this effort again. The start date is to be determined.</td>
<td>0.88−2.65</td>
<td>883−2,648</td>
<td>1. NRCS plans to reapply for different funding. (Fall 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. If funding is obtained, work will be conducted. (To be determined)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Water quality benefit calculations will be done. (To be determined)</td>
</tr>
<tr>
<td>SR 710 Regional Project</td>
<td>Taylor Creek/ Nubbin Slough and Indian Prairie</td>
<td>The feasibility study was completed. FDOT is reviewing several conceptual designs. The Coordinating Agencies are also reviewing to determine whether multiple program initiatives can be aligned for a greater project impact.</td>
<td>TBD</td>
<td>TBD</td>
<td>1. The final feasibility study was completed on October 22, 2014.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. If funding is obtained, work will be conducted. (To be determined)</td>
</tr>
<tr>
<td>Project Name</td>
<td>Sub-watershed</td>
<td>Status</td>
<td>Estimated TP Reduction (mt/yr)</td>
<td>Estimated TP Reduction (kg/yr)</td>
<td>Schedule</td>
</tr>
<tr>
<td>------------------------------------------------------------------------------</td>
<td>---------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Legislative Cost-Share Appropriation Program ($10 million annually for 7 years)</td>
<td>All</td>
<td>FDACS conducted 3 rounds of solicitations for dairy project proposals. The first solicitation occurred in fall 2014. Seven projects have been funded, of which 1 is still under construction. The second solicitation for dairy projects occurred in fall 2015. Four projects were selected. FDACS sent out a third solicitation for dairy project proposals with a submission deadline in fall 2016. A total of 10 project proposals were received from 6 different dairy producers. FDACS formed a committee with internal staff and staff from DEP to review and formally rank the submitted proposals. Eight of the projects were approved, with funding requests totaling $4,002,527.35. FDACS has signed cost-share agreements for 6 of the 8 projects that were approved for funding. The amount allocated for the third round of projects to date is $3,766,997.80.</td>
<td>28.29</td>
<td>28,293</td>
<td>1. Develop plan and present to DEP annually. 2. Implement projects once funds are available. 3. Conduct the same exercise annually.</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>49.32–51.12</td>
<td>49,325–51,123</td>
<td></td>
</tr>
</tbody>
</table>
Table A-8. Other initiatives

* Contingent on the USACE 3x3x3 compliance approval.
TBD = To be determined.

<table>
<thead>
<tr>
<th>Initiative</th>
<th>Explanation</th>
<th>Schedule</th>
<th>Start Date</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERP Planning</td>
<td>The SFWMD is reinitiating the formulation of storage components of the LOW Project with the USACE (federal partner).</td>
<td>The initial stage of the planning effort will include developing the overall scope for the plan. The planning process is anticipated to take three years to complete.</td>
<td>Summer 2016</td>
<td>2019*</td>
</tr>
</tbody>
</table>
| Owner- Implemented BMP Verification| FDACS and DEP are developing a plan for BMP verification.                    | 1. Identify key BMPs for each commodity type in the basin. (Spring 2015)  
2. Identify the locations of BMPs in basin. (Fall 2015)  
3. Develop a monitoring plan/strategy. (Winter 2015/2016)  
4. Identify willing owners. (Spring 2016)  
5. Begin data collection. (Summer 2016)  
6. Form a committee to review findings. (Winter 2016/2017)  
| Cost-Share BMP Effectiveness Verification | FDACS and DEP are developing an approach to evaluate the effectiveness of various types of cost-share projects. | 1. Identify key cost-share projects. (Fall 2015)  
2. Identify locations for effectiveness evaluation. (Winter 2015/2016)  
3. Develop the evaluation approach (monitoring/modeling/calculation). (Winter 2015/2016)  
4. Implement cost-share projects. (Spring 2016)  
5. Evaluate data. (Annually) | Fall 2015  | Spring 2016     |
<table>
<thead>
<tr>
<th>Initiative</th>
<th>Explanation</th>
<th>Schedule</th>
<th>Start Date</th>
<th>Completion Date</th>
</tr>
</thead>
</table>
| WAM Revisions                                  | In November 2016, the SFWMD and FDACS executed an amended agreement in support of WAM revisions. The planned completion date is 2017. DEP will work to develop targets based on this information. | 1. Develop scope of work for contract. (Fall 2014)  
2. Execute contract. (Fall 2014)  
3. Complete WAM efforts. (Winter 2015/2016)  
4. Conduct sensitivity/uncertainty analyses. (Spring 2016)  
5. Use WAM results to update sub-watershed existing loads and project nutrient reduction benefits in the northern sub-watersheds and to develop existing loads in the southern sub-watersheds and calculate project nutrient reduction benefits. (Fall 2016)  
6. Conduct predrainage characterization (TBD, following results of model revisions)  
7. Identify elevated TP areas for additional project locations and prioritization. (Winter 2016/2017) | Fall 2014  | 2017            |
| Water Quality Monitoring                       | As DEP develops a monitoring plan for the BMAP, consideration is being given to areas with on-the-ground projects/BMPs to evaluate water quality improvements. | 1. Identify areas with regional projects already in place. (Complete)  
2. Evaluate areas with needs for additional water quality data. (Once WAM complete.)  
3. Identify lead entity for monitoring efforts. (Spring 2017—Summer 2017)  
4. Finalize monitoring plan. (Upon BMAP adoption) | In progress | Fall 2018        |
| Alternative BMP Nutrient Reduction Projects    | North of Lake Okeechobee                                                   | The Coordinating Agencies have set up a team to identify possible new strategies. Quarterly meetings began in summer 2016, and will continue to ensure that information about potential new strategies is shared between the agencies. | Winter 2014/2015 | Ongoing         |
| In-Lake Strategies: Muck Scraping and Tilling  | In Lake Okeechobee                                                         | Potential for inclusion as BMAP project(s) during low lake levels if drought conditions occur and if project logistics (e.g., planning, permitting, contracting) can be implemented in a timely fashion for work to be conducted. The SFWMD Low Water Level Habitat Enhancement Plan drafted for the lake in November 2015 may inform this initiative. The SFWMD draft plan (November 2015) was submitted to DEP in March 2016. | Fall 2014  | TBD             |
Appendix B: Future BMAP Projects

In accordance with Chapter 2016-1, Laws of Florida, every new and revised BMAP will be required to include more detailed project information than is currently included in BMAPs and annual updates. The new and revised BMAPs will include the following:

- A ranked list of projects with a planning-level cost estimate and estimated date of completion for each project.
- The source and amount of financial assistance to be made available by DEP, a water management district, or other entity for each project, if applicable.
- A planning-level estimate of each project's expected load reduction, if applicable.

Additionally, Paragraph 373.4595(3)(b), Florida Statutes (F.S.), requires the Lake Okeechobee BMAP to include milestones for implementation and water quality improvement, and an associated water quality monitoring component sufficient to determine progress. The milestones, which must be adopted into the BMAP upon the first 5-year review, must include 5-, 10-, and 15-year measurable increments and targets to achieve the TMDL no more than 20 years after BMAP adoption. The implementation schedule is characterized as "guidance for planning and funding purposes" and is exempt from Chapter 120, F.S. A specific reference to that effect will be included when the next revision of the BMAP is adopted. If restoration within 20 years is not "practicable," the schedule must explain why and include additional 5-year milestones leading to restoration.

As a first step towards compiling these project lists, DEP requested information from stakeholders on future projects that have the potential for additional load reductions in the basin. Funding has not yet been identified for many of these future projects, which are identified as "planned" in the project tables located in Appendix A. The continual funding of projects is a key part of meeting reductions required to achieve the TMDL. These projects will be updated as project collection and verification efforts are refined.
Appendix C: Agricultural Enrollment and Reductions

All agricultural nonpoint sources in the Lake Okeechobee BMAP area are statutorily required either to implement FDACS-adopted BMPs or to conduct water quality monitoring prescribed by DEP or the applicable water management district that demonstrates compliance with water quality standards (Paragraph 403.067(7)(b), F.S.). Under Paragraph 403.067(7)(c), F.S., the implementation of FDACS-adopted, DEP-verified BMPs in accordance with FDACS rules provides a presumption of compliance with state water quality standards.

The Lake Okeechobee BMAP uses land use data from an LET developed with the results from a WAM application in the northern six sub-watersheds of the LOW. This application of the WAM used land uses from the 2009 SFWMD coverage, and the land uses in Table C-1 were considered agriculture for the purposes of this BMAP. The table also lists the FDACS commodity associated with each land use.

Table C-1. Agricultural land uses in the Lake Okeechobee BMAP

<table>
<thead>
<tr>
<th>Land Use Code</th>
<th>Land Use Code Description</th>
<th>FDACS Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td>Cropland and Pastureland</td>
<td>Pasture and Mixed Rangeland</td>
</tr>
<tr>
<td>2110</td>
<td>Improved Pastures</td>
<td>Pasture and Mixed Rangeland</td>
</tr>
<tr>
<td>2120</td>
<td>Unimproved Pastures</td>
<td>Pasture and Mixed Rangeland</td>
</tr>
<tr>
<td>2130</td>
<td>Woodland Pastures</td>
<td>Pasture and Mixed Rangeland</td>
</tr>
<tr>
<td>2140</td>
<td>Row Crops</td>
<td>Row/Field/Mixed Crops</td>
</tr>
<tr>
<td>2150</td>
<td>Field Crops</td>
<td>Row/Field/Mixed Crops</td>
</tr>
<tr>
<td>2156</td>
<td>Sugar Cane</td>
<td>Row/Field/Mixed Crops</td>
</tr>
<tr>
<td>2200</td>
<td>Tree Crops</td>
<td>Citrus</td>
</tr>
<tr>
<td>2210</td>
<td>Citrus Groves</td>
<td>Citrus</td>
</tr>
<tr>
<td>2230</td>
<td>Other Groves</td>
<td>Fruit Orchards/Other Groves</td>
</tr>
<tr>
<td>2240</td>
<td>Abandoned Groves</td>
<td>Fruit Orchards/Other Groves</td>
</tr>
<tr>
<td>2300</td>
<td>Feeding Operations</td>
<td>Cattle Feeding Operations</td>
</tr>
<tr>
<td>2310</td>
<td>Cattle Feeding Operations</td>
<td>Cattle Feeding Operations</td>
</tr>
<tr>
<td>2320</td>
<td>Poultry Feeding Operations</td>
<td>Poultry Feeding Operations</td>
</tr>
<tr>
<td>2400</td>
<td>Nurseries and Vineyards</td>
<td>Tree Nurseries</td>
</tr>
<tr>
<td>2410</td>
<td>Tree Nurseries</td>
<td>Tree Nurseries</td>
</tr>
<tr>
<td>2420</td>
<td>Sod Farms</td>
<td>Sod Farms</td>
</tr>
<tr>
<td>2430</td>
<td>Ornamentals</td>
<td>Ornamentals</td>
</tr>
<tr>
<td>2500</td>
<td>Specialty Farms</td>
<td>Dairies</td>
</tr>
<tr>
<td>2510</td>
<td>Horse Farms</td>
<td>Horse Farm</td>
</tr>
<tr>
<td>2520</td>
<td>Dairies</td>
<td>Dairies</td>
</tr>
<tr>
<td>2600</td>
<td>Other Open Land</td>
<td>Pasture and Mixed Rangeland</td>
</tr>
</tbody>
</table>
Land use data are helpful as a starting point for estimating agricultural acreage and developing BMP implementation strategies. However, DEP relies on local stakeholder knowledge and coordination with FDACS to verify agricultural activities and achieve BMP implementation.

FDACS BMP enrollments are done according to parcels and based on NOIs signed by landowners. Table C-2 through Table C-7 list the acreages enrolled in each sub-watershed under the FDACS BMP Program. These tables are based on the acreage of the enrolled parcels, rather than the land use data in the LET. Figure C-1 shows the parcels enrolled in BMP Programs as of September 30, 2016, for the LOW.

Table C-2. BMP enrollment for the Fisheating Creek Sub-watershed

1 The acreage enrolled includes all areas that fall within enrolled parcels.
2 The number of NOIs reported is based on enrollment during the period from January 1, 2009, to September 30, 2016.

<table>
<thead>
<tr>
<th>FDACS BMP Program</th>
<th>Acreage Enrolled as of December 31, 2008¹</th>
<th>Acreage Enrolled January 1, 2009–September 30, 2016¹</th>
<th>Related NOIs²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus</td>
<td>10,375</td>
<td>16,947</td>
<td>33</td>
</tr>
<tr>
<td>Conservation Plan</td>
<td>0</td>
<td>26,874</td>
<td>2</td>
</tr>
<tr>
<td>Cow/Calf</td>
<td>27,528</td>
<td>222,326</td>
<td>49</td>
</tr>
<tr>
<td>Dairies</td>
<td>0</td>
<td>1,519</td>
<td>1</td>
</tr>
<tr>
<td>Nurseries</td>
<td>0</td>
<td>849</td>
<td>2</td>
</tr>
<tr>
<td>Sod</td>
<td>0</td>
<td>1,554</td>
<td>1</td>
</tr>
<tr>
<td>Specialty Fruit and Nut</td>
<td>0</td>
<td>753</td>
<td>2</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>37,903</strong></td>
<td><strong>270,823</strong></td>
<td><strong>90</strong></td>
</tr>
</tbody>
</table>

Table C-3. BMP enrollment for the Indian Prairie Sub-watershed

1 The acreage enrolled includes all land uses that fall within enrolled areas.
2 The number of NOIs reported is based on enrollment during the period from January 1, 2009, to September 30, 2016.

<table>
<thead>
<tr>
<th>FDACS BMP Program</th>
<th>Acreage Enrolled as of December 31, 2008¹</th>
<th>Acreage Enrolled January 1, 2009–September 30, 2016¹</th>
<th>Related NOIs²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus</td>
<td>75</td>
<td>37,940</td>
<td>63</td>
</tr>
<tr>
<td>Conservation Plan</td>
<td>406</td>
<td>3,890</td>
<td>2</td>
</tr>
<tr>
<td>Cow/Calf</td>
<td>4,898</td>
<td>143,397</td>
<td>67</td>
</tr>
<tr>
<td>Lake Okeechobee Protection Program</td>
<td>0</td>
<td>1,137</td>
<td>1</td>
</tr>
<tr>
<td>Nurseries</td>
<td>0</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Sod</td>
<td>3,226</td>
<td>5,195</td>
<td>9</td>
</tr>
<tr>
<td>Vegetables and Agronomic Crops</td>
<td>0</td>
<td>7,077</td>
<td>19</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>8,605</strong></td>
<td><strong>198,667</strong></td>
<td><strong>163</strong></td>
</tr>
</tbody>
</table>
Table C-4. BMP enrollment for the Lake Istokpoga Sub-watershed

1 The acreage enrolled includes all land uses that fall within enrolled areas.  
2 The number of NOIs reported is based on enrollment during the period from January 1, 2009, to September 30, 2016.

<table>
<thead>
<tr>
<th>FDACS BMP Program</th>
<th>Acreage Enrolled as of December 31, 2008¹</th>
<th>Acreage Enrolled January 1, 2009–September 30, 2016¹</th>
<th>Related NOIs²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus</td>
<td>1,961</td>
<td>52,424</td>
<td>763</td>
</tr>
<tr>
<td>Conservation Plan</td>
<td>2,213</td>
<td>3,345</td>
<td>2</td>
</tr>
<tr>
<td>Cow/Calf</td>
<td>68,967</td>
<td>72,423</td>
<td>64</td>
</tr>
<tr>
<td>Lake Okeechobee Protection Program</td>
<td>0</td>
<td>1,298</td>
<td>1</td>
</tr>
<tr>
<td>Nurseries</td>
<td>65</td>
<td>180</td>
<td>5</td>
</tr>
<tr>
<td>Sod</td>
<td>0</td>
<td>2,893</td>
<td>3</td>
</tr>
<tr>
<td>Specialty Fruit and Nut</td>
<td>0</td>
<td>139</td>
<td>5</td>
</tr>
<tr>
<td>Vegetables and Agronomic Crops</td>
<td>295</td>
<td>505</td>
<td>5</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>73,501</strong></td>
<td><strong>133,207</strong></td>
<td><strong>848</strong></td>
</tr>
</tbody>
</table>

Table C-5. BMP enrollment for the Lower Kissimmee Sub-watershed

1 The acreage enrolled includes all land uses that fall within enrolled areas.  
2 The number of NOIs reported is based on enrollment during the period from January 1, 2009, to September 30, 2016.

<table>
<thead>
<tr>
<th>FDACS BMP Program</th>
<th>Acreage Enrolled as of December 31, 2008¹</th>
<th>Acreage Enrolled January 1, 2009–September 30, 2016¹</th>
<th>Related NOIs²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus</td>
<td>2,484</td>
<td>18,612</td>
<td>15</td>
</tr>
<tr>
<td>Conservation Plan</td>
<td>7,030</td>
<td>800</td>
<td>2</td>
</tr>
<tr>
<td>Cow/Calf</td>
<td>129,639</td>
<td>162,417</td>
<td>70</td>
</tr>
<tr>
<td>Lake Okeechobee Protection Program</td>
<td>0</td>
<td>6,799</td>
<td>5</td>
</tr>
<tr>
<td>Nurseries</td>
<td>249</td>
<td>203</td>
<td>1</td>
</tr>
<tr>
<td>Sod</td>
<td>12,722</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vegetables and Agronomic Crops</td>
<td>3,739</td>
<td>4,507</td>
<td>10</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>155,862</strong></td>
<td><strong>193,338</strong></td>
<td><strong>103</strong></td>
</tr>
</tbody>
</table>
### Table C-6. BMP enrollment for the Taylor Creek/Nubbin Slough Sub-watershed

1 The acreage enrolled includes all land uses that fall within enrolled areas.
2 The number of NOIs reported is based on enrollment during the period from January 1, 2009, to September 30, 2016.

<table>
<thead>
<tr>
<th>FDACS BMP Program</th>
<th>Acreage Enrolled as of December 31, 2008¹</th>
<th>Acreage Enrolled January 1, 2009–September 30, 2016¹</th>
<th>Related NOIs²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus</td>
<td>2,248</td>
<td>9,986</td>
<td>7</td>
</tr>
<tr>
<td>Conservation Plan</td>
<td>3,520</td>
<td>13,909</td>
<td>6</td>
</tr>
<tr>
<td>Cow/Calf</td>
<td>45,029</td>
<td>72,625</td>
<td>118</td>
</tr>
<tr>
<td>Equine</td>
<td>71</td>
<td>1,617</td>
<td>6</td>
</tr>
<tr>
<td>Lake Okeechobee Protection Program</td>
<td>0</td>
<td>1,971</td>
<td>4</td>
</tr>
<tr>
<td>Nurseries</td>
<td>307</td>
<td>1,986</td>
<td>3</td>
</tr>
<tr>
<td>Sod</td>
<td>0</td>
<td>553</td>
<td>2</td>
</tr>
<tr>
<td>Specialty Fruit and Nut</td>
<td>0</td>
<td>59</td>
<td>1</td>
</tr>
<tr>
<td>Vegetables and Agronomic Crops</td>
<td>728</td>
<td>4,380</td>
<td>9</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>51,903</strong></td>
<td><strong>107,084</strong></td>
<td><strong>156</strong></td>
</tr>
</tbody>
</table>

### Table C-7. BMP enrollment for the Upper Kissimmee Sub-watershed

1 The acreage enrolled includes all land uses that fall within enrolled areas.
2 The number of NOIs reported is based on enrollment during the period from January 1, 2009, to September 30, 2016.

<table>
<thead>
<tr>
<th>FDACS BMP Program</th>
<th>Acreage Enrolled as of December 31, 2008¹</th>
<th>Acreage Enrolled January 1, 2009–September 30, 2016¹</th>
<th>Related NOIs²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus</td>
<td>0</td>
<td>39,045</td>
<td>549</td>
</tr>
<tr>
<td>Cow/Calf</td>
<td>6,84</td>
<td>127,879</td>
<td>62</td>
</tr>
<tr>
<td>Equine</td>
<td>0</td>
<td>439</td>
<td>2</td>
</tr>
<tr>
<td>Nurseries</td>
<td>79</td>
<td>349</td>
<td>23</td>
</tr>
<tr>
<td>Sod</td>
<td>15,117</td>
<td>3,808</td>
<td>1</td>
</tr>
<tr>
<td>Specialty Fruit and Nut</td>
<td>0</td>
<td>974</td>
<td>24</td>
</tr>
<tr>
<td>Vegetables and Agronomic Crops</td>
<td>0</td>
<td>4,009</td>
<td>4</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>22,037</strong></td>
<td><strong>176,503</strong></td>
<td><strong>665</strong></td>
</tr>
</tbody>
</table>
Figure C-1. BMP enrollment in the Lake Okeechobee Watershed as of September 30, 2016
Nutrient reduction efficiencies for agricultural BMPs were developed for the LOW through extensive literature review, modeling projects, and observed data, considering factors such as soil type, land use, rainfall, and commodity-specific management practices (SWET 2008). For the Lake Okeechobee BMAP, agricultural land uses in the LET (Table C-1) are considered when estimating TP reductions related to FDACS BMP Program enrollment.

To be consistent with the methodology used for estimating nutrient reductions from urban BMPs, only acres not enrolled as of January 1, 2009, are considered when calculating the TP reductions associated with agricultural BMPs. Because of the statutory requirements for agricultural nonpoint sources and the high percentage of agricultural lands already enrolled in the FDACS BMP Program, nutrient reductions were calculated assuming 100% enrollment of the acres remaining to enroll on January 1, 2009 (Table C-8).

Table C-8. Agricultural acreage in the LET for the northern sub-watersheds

<table>
<thead>
<tr>
<th>Sub-watershed</th>
<th>LET Agricultural Acres</th>
<th>Acreage Enrolled as of December 31, 2008</th>
<th>Acreage to Enroll as of January 1, 2009</th>
<th>Estimated TP Reductions (mt/yr)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisheating Creek</td>
<td>174,561</td>
<td>3,794</td>
<td>170,767</td>
<td>6.98</td>
</tr>
<tr>
<td>Indian Prairie</td>
<td>218,216</td>
<td>8,019</td>
<td>210,197</td>
<td>6.72</td>
</tr>
<tr>
<td>Lake Istokpoga</td>
<td>130,523</td>
<td>7,660</td>
<td>122,863</td>
<td>1.72</td>
</tr>
<tr>
<td>Lower Kissimmee</td>
<td>216,284</td>
<td>59,378</td>
<td>156,906</td>
<td>6.59</td>
</tr>
<tr>
<td>Taylor Creek/Nubbin Slough</td>
<td>140,921</td>
<td>44,983</td>
<td>95,938</td>
<td>7.73</td>
</tr>
<tr>
<td>Upper Kissimmee</td>
<td>275,034</td>
<td>2,747</td>
<td>272,287</td>
<td>3.56</td>
</tr>
<tr>
<td>Total</td>
<td>1,155,539</td>
<td>126,582</td>
<td>1,028,957</td>
<td>33.3</td>
</tr>
</tbody>
</table>

¹ The estimated TP reductions are based on 100% enrollment of acres left to enroll as of January 1, 2009.

The BMAP and annual progress reports will continue to track enrollment progress in the LOW. Table C-9 through Table C-14 show (for the 6 northern sub-watersheds) the agricultural acres in the LET; the enrolled LET acres as of September 30, 2016; the additional acreages necessary to meet 100% enrollment; and the estimated TP reductions related to FDACS BMP Program enrollment. Figure C-2 shows the acres enrolled in BMP programs as of September 30, 2016, and the additional areas necessary to enroll, according to the LET.
Table C-9. Agricultural acreage in the LET for the Indian Prairie Sub-watershed

1 The estimated TP reductions are based on 100% enrollment of acres not already enrolled as of January 1, 2009.
2 Enrolled acres are the total acres enrolled prior to and after January 1, 2009.

<table>
<thead>
<tr>
<th>LET Land Use</th>
<th>Estimated TP Reductions (mt/yr)¹</th>
<th>LET Acres</th>
<th>Enrolled Acres²</th>
<th>Remaining Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus</td>
<td>1.024</td>
<td>30,236</td>
<td>27,686</td>
<td>2,550</td>
</tr>
<tr>
<td>Dairies</td>
<td>0.002</td>
<td>198</td>
<td>177</td>
<td>22</td>
</tr>
<tr>
<td>Fruit Orchards/Other Groves</td>
<td>0.024</td>
<td>126</td>
<td>56</td>
<td>70</td>
</tr>
<tr>
<td>Horse Farm</td>
<td>0.001</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Ornaments</td>
<td>0.001</td>
<td>55</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>Pasture and Mixed Rangeland</td>
<td>4.835</td>
<td>166,586</td>
<td>121,722</td>
<td>44,864</td>
</tr>
<tr>
<td>Poultry Feeding Operations</td>
<td>0.002</td>
<td>40</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Row/Field/Mixed Crops</td>
<td>0.626</td>
<td>20,771</td>
<td>16,438</td>
<td>4,332</td>
</tr>
<tr>
<td>Tree Nurseries</td>
<td>0.208</td>
<td>178</td>
<td>91</td>
<td>87</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>6.72</strong></td>
<td><strong>218,216</strong></td>
<td><strong>166,194</strong></td>
<td><strong>52,022</strong></td>
</tr>
</tbody>
</table>

Table C-10. Agricultural acreage in the LET for the Lake Istokpoga Sub-watershed

1 The estimated TP reductions are based on 100% enrollment of acres not already enrolled as of January 1, 2009.
2 Enrolled acres are the total acres enrolled prior to and after January 1, 2009.

<table>
<thead>
<tr>
<th>LET Land Use</th>
<th>Estimated TP Reductions (mt/yr)¹</th>
<th>LET Acres</th>
<th>Enrolled Acres²</th>
<th>Remaining Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle Feeding Operations</td>
<td>0.000</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Citrus</td>
<td>0.251</td>
<td>51,540</td>
<td>42,672</td>
<td>8,868</td>
</tr>
<tr>
<td>Dairies</td>
<td>0.033</td>
<td>3,158</td>
<td>3,023</td>
<td>135</td>
</tr>
<tr>
<td>Fruit Orchards/Other Groves</td>
<td>0.039</td>
<td>436</td>
<td>172</td>
<td>264</td>
</tr>
<tr>
<td>Horse Farm</td>
<td>0.000</td>
<td>17</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Oramentals</td>
<td>0.002</td>
<td>246</td>
<td>76</td>
<td>170</td>
</tr>
<tr>
<td>Pasture and Mixed Rangeland</td>
<td>0.848</td>
<td>70,330</td>
<td>42,684</td>
<td>27,647</td>
</tr>
<tr>
<td>Row/Field/Mixed Crops</td>
<td>0.127</td>
<td>3,348</td>
<td>2,734</td>
<td>614</td>
</tr>
<tr>
<td>Sod Farms</td>
<td>0.014</td>
<td>180</td>
<td>172</td>
<td>8</td>
</tr>
<tr>
<td>Tree Nurseries</td>
<td>0.448</td>
<td>1,262</td>
<td>538</td>
<td>724</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>1.763</strong></td>
<td><strong>130,523</strong></td>
<td><strong>92,077</strong></td>
<td><strong>38,446</strong></td>
</tr>
</tbody>
</table>
Table C-11. Agricultural acreage in the LET for the Lower Kissimmee Sub-watershed

1 The estimated TP reductions are based on 100% enrollment of acres not already enrolled as of January 1, 2009.
2 Enrolled acres are the total acres enrolled prior to and after January 1, 2009.

<table>
<thead>
<tr>
<th>LET Land Use</th>
<th>Estimated TP Reductions (mt/yr)</th>
<th>LET Acres</th>
<th>Enrolled Acres</th>
<th>Remaining Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle Feeding Operations</td>
<td>0.003</td>
<td>45</td>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td>Citrus</td>
<td>0.316</td>
<td>10,513</td>
<td>10,263</td>
<td>250</td>
</tr>
<tr>
<td>Dairies</td>
<td>0.073</td>
<td>6,480</td>
<td>6,115</td>
<td>365</td>
</tr>
<tr>
<td>Fruit Orchards/Other Groves</td>
<td>0.116</td>
<td>607</td>
<td>595</td>
<td>12</td>
</tr>
<tr>
<td>Horse Farm</td>
<td>0.013</td>
<td>265</td>
<td>203</td>
<td>62</td>
</tr>
<tr>
<td>Oramentals</td>
<td>0.000</td>
<td>17</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Pasture and Mixed Rangeland</td>
<td>4.149</td>
<td>185,499</td>
<td>130,155</td>
<td>53,345</td>
</tr>
<tr>
<td>Row/Field/Mixed Crops</td>
<td>1.910</td>
<td>12,849</td>
<td>11,743</td>
<td>1,106</td>
</tr>
<tr>
<td>Tree Nurseries</td>
<td>0.010</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>6.590</strong></td>
<td><strong>216,284</strong></td>
<td><strong>159,084</strong></td>
<td><strong>57,200</strong></td>
</tr>
</tbody>
</table>

Table C-12. Agricultural acreage in the LET for the Taylor Creek/Nubbin Slough Sub-watershed

1 The estimated TP reductions are based on 100% enrollment of acres not already enrolled as of January 1, 2009.
2 Enrolled acres are the total acres enrolled prior to and after January 1, 2009.

<table>
<thead>
<tr>
<th>LET Land Use</th>
<th>Estimated TP Reductions (mt/yr)</th>
<th>LET Acres</th>
<th>Enrolled Acres</th>
<th>Remaining Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle Feeding Operations</td>
<td>0.032</td>
<td>387</td>
<td>342</td>
<td>46</td>
</tr>
<tr>
<td>Citrus</td>
<td>0.094</td>
<td>3,482</td>
<td>3,118</td>
<td>363</td>
</tr>
<tr>
<td>Dairies</td>
<td>0.842</td>
<td>10,223</td>
<td>10,001</td>
<td>222</td>
</tr>
<tr>
<td>Fruit Orchards/Other Groves</td>
<td>0.026</td>
<td>361</td>
<td>267</td>
<td>94</td>
</tr>
<tr>
<td>Horse Farm</td>
<td>0.028</td>
<td>492</td>
<td>397</td>
<td>95</td>
</tr>
<tr>
<td>Oramentals</td>
<td>0.004</td>
<td>66</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>Pasture and Mixed Rangeland</td>
<td>3.167</td>
<td>114,997</td>
<td>89,672</td>
<td>25,525</td>
</tr>
<tr>
<td>Poultry Feeding Operations</td>
<td>0.003</td>
<td>72</td>
<td>35</td>
<td>38</td>
</tr>
<tr>
<td>Row/Field/Mixed Crops</td>
<td>0.384</td>
<td>6,905</td>
<td>5,963</td>
<td>941</td>
</tr>
<tr>
<td>Sod Farms</td>
<td>0.367</td>
<td>1,522</td>
<td>1,520</td>
<td>2</td>
</tr>
<tr>
<td>Tree Nurseries</td>
<td>2.784</td>
<td>2,414</td>
<td>2,096</td>
<td>318</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>7.731</strong></td>
<td><strong>140,921</strong></td>
<td><strong>113,446</strong></td>
<td><strong>27,475</strong></td>
</tr>
</tbody>
</table>
Table C-13. Agricultural acreage in the LET for the Upper Kissimmee Sub-watershed

<table>
<thead>
<tr>
<th>LET Land Use</th>
<th>Estimated TP Reductions (mt/yr)(^1)</th>
<th>LET Acres</th>
<th>Enrolled Acres(^2)</th>
<th>Remaining Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle Feeding Operations</td>
<td>0.001</td>
<td>19</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Citrus</td>
<td>0.263</td>
<td>47,330</td>
<td>29,073</td>
<td>18,257</td>
</tr>
<tr>
<td>Dairies</td>
<td>0.001</td>
<td>53</td>
<td>39</td>
<td>14</td>
</tr>
<tr>
<td>Fruit Orchards/Other Groves</td>
<td>0.051</td>
<td>1,593</td>
<td>375</td>
<td>1,218</td>
</tr>
<tr>
<td>Horse Farm</td>
<td>0.005</td>
<td>220</td>
<td>3</td>
<td>217</td>
</tr>
<tr>
<td>Ornamentals</td>
<td>0.003</td>
<td>470</td>
<td>116</td>
<td>354</td>
</tr>
<tr>
<td>Pasture and Mixed Rangeland</td>
<td>2.295</td>
<td>212,121</td>
<td>86,774</td>
<td>125,347</td>
</tr>
<tr>
<td>Poultry Feeding Operations</td>
<td>0.002</td>
<td>102</td>
<td>11</td>
<td>92</td>
</tr>
<tr>
<td>Row/Field/Mixed Crops</td>
<td>0.598</td>
<td>9,143</td>
<td>5,875</td>
<td>3,268</td>
</tr>
<tr>
<td>Sod Farms</td>
<td>0.309</td>
<td>3,538</td>
<td>1,918</td>
<td>1,620</td>
</tr>
<tr>
<td>Tree Nurseries</td>
<td>0.060</td>
<td>445</td>
<td>51</td>
<td>395</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>3.58</strong></td>
<td><strong>275,034</strong></td>
<td><strong>124,240</strong></td>
<td><strong>150,794</strong></td>
</tr>
</tbody>
</table>

Table C-14. Agricultural acreage in the LET for the Fisheating Creek Sub-watershed

<table>
<thead>
<tr>
<th>LET Land Use</th>
<th>Estimated TP Reductions (mt/yr)(^1)</th>
<th>LET Acres</th>
<th>Enrolled Acres(^2)</th>
<th>Remaining Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus</td>
<td>0.826</td>
<td>7,878</td>
<td>5,566</td>
<td>2,312</td>
</tr>
<tr>
<td>Dairies</td>
<td>0.002</td>
<td>27</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Fruit Orchards/Other Groves</td>
<td>0.006</td>
<td>46</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>Ornamentals</td>
<td>0.107</td>
<td>391</td>
<td>245</td>
<td>146</td>
</tr>
<tr>
<td>Pasture and Mixed Rangeland</td>
<td>5.646</td>
<td>164,521</td>
<td>138,544</td>
<td>25,977</td>
</tr>
<tr>
<td>Poultry Feeding Operations</td>
<td>0.000</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Row/Field/Mixed Crops</td>
<td>0.131</td>
<td>832</td>
<td>794</td>
<td>38</td>
</tr>
<tr>
<td>Sod Farms</td>
<td>0.168</td>
<td>737</td>
<td>735</td>
<td>2</td>
</tr>
<tr>
<td>Tree Nurseries</td>
<td>1.095</td>
<td>123</td>
<td>29</td>
<td>94</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>6.980</strong></td>
<td><strong>174,561</strong></td>
<td><strong>145,940</strong></td>
<td><strong>28,621</strong></td>
</tr>
</tbody>
</table>
Figure C-2. Agricultural lands in the LET enrolled in BMP programs as of September 30, 2016
FDACS also provides cost-share funds, which are primarily used for the implementation of structural BMPs that are otherwise not economically feasible for individual producers. For the purposes of this BMAP, a 5% reduction of the TP load calculated using the LET was attributed to parcels where FDACS cost-share funds were spent for water control structures. This is consistent with the low end of efficiencies for these cost-share activities for agricultural operations. As additional project-specific information becomes available, this methodology will be refined to better reflect nutrient reduction benefits at the parcel level based on the specific nutrient management practice.

FDACS also manages HWTT and FAVT projects in the LOW. Details on these projects can be found in Appendix A. Table C-15 summarizes the TP reductions estimated for owner-implemented and cost-share agricultural BMPs and FDACS-led projects in the northern sub-watersheds.

Table C-15. Summary of TP load reductions on agricultural lands

<table>
<thead>
<tr>
<th>Sub-watershed</th>
<th>Agricultural BMPs (mt/yr)</th>
<th>Cost-Share BMPs (mt/yr)</th>
<th>HWTT/FAVT (mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisheating Creek</td>
<td>6.98</td>
<td>0.27</td>
<td>8.59</td>
</tr>
<tr>
<td>Indian Prairie</td>
<td>6.72</td>
<td>0.28</td>
<td>N/A</td>
</tr>
<tr>
<td>Lake Istokpoga</td>
<td>1.72</td>
<td>0.11</td>
<td>N/A</td>
</tr>
<tr>
<td>Lower Kissimmee</td>
<td>6.59</td>
<td>0.32</td>
<td>N/A</td>
</tr>
<tr>
<td>Taylor Creek/Nubbin Slough</td>
<td>7.73</td>
<td>2.31</td>
<td>7.57</td>
</tr>
<tr>
<td>Upper Kissimmee</td>
<td>3.56</td>
<td>0.03</td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>33.3</strong></td>
<td><strong>1.58</strong></td>
<td><strong>16.17</strong></td>
</tr>
</tbody>
</table>

N/A = Not applicable

Note: These attenuated project reductions are calculated specifically to estimate the reductions at the inflow to Lake Okeechobee.

Reductions for cost-share BMPs include Legislative Cost-Share Appropriation Program dairy projects in Table 2 and Table A-7, in addition to other cost-share BMPs.
Appendix D: BMAP Monitoring Network

Table D-1 lists the stations included in the BMAP monitoring network and the date of the latest sample from the reporting period available in STORET. These stations are not specifically BMAP stations, i.e., the data they generate are also used for other purposes, but the data collected at these sites will be used to monitor the effectiveness of the BMAP. The water quality monitoring will be conducted in accordance with the frequencies below. The stations in the monitoring network are also shown in Figure D-1.
Table D-1: BMAP monitoring network

<table>
<thead>
<tr>
<th>Sampling Entity</th>
<th>Station Name</th>
<th>Florida Station ID</th>
<th>Frequency</th>
<th>Year Site Established</th>
<th>Sub-watershed</th>
<th>Date of Latest Sample in Florida STORET</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Orlando</td>
<td>Buck Lake</td>
<td>BUCK</td>
<td>Quarterly</td>
<td>1994</td>
<td>Upper Kissimmee</td>
<td>12/11/2014</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>Lake Fran</td>
<td>FRAN</td>
<td>Quarterly</td>
<td>1999</td>
<td>Upper Kissimmee</td>
<td>1/26/2015</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>Lake Mare Prairie</td>
<td>MARE PRAIRIE</td>
<td>Quarterly</td>
<td>1990</td>
<td>Upper Kissimmee</td>
<td>12/17/2014</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>Mud Lake</td>
<td>MUD</td>
<td>Quarterly</td>
<td>1994</td>
<td>Upper Kissimmee</td>
<td>12/11/2014</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>Turkey Lake (North)</td>
<td>TURKEY NORTH</td>
<td>Quarterly</td>
<td>1985</td>
<td>Upper Kissimmee</td>
<td>10/30/2014</td>
</tr>
<tr>
<td>City of Orlando</td>
<td>Turkey Lake (South)</td>
<td>TURKEY SOUTH</td>
<td>Quarterly</td>
<td>1985</td>
<td>Upper Kissimmee</td>
<td>10/30/2014</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>East City Ditch Outfall</td>
<td>MS 02</td>
<td>Quarterly</td>
<td>2007</td>
<td>Upper Kissimmee</td>
<td>10/30/2014</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>Mill Slough Outfall</td>
<td>MS 03</td>
<td>Quarterly</td>
<td>2007</td>
<td>Upper Kissimmee</td>
<td>10/30/2014</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>Bass Slough at Boggy Creek</td>
<td>MS 04a</td>
<td>Quarterly</td>
<td>2007</td>
<td>Upper Kissimmee</td>
<td>10/30/2014</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>Bass Slough at Timothy Lane</td>
<td>MS 05</td>
<td>Quarterly</td>
<td>2007</td>
<td>Upper Kissimmee</td>
<td>10/30/2014</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>Mill Slough at Mill Run Blvd.</td>
<td>MS 06a</td>
<td>Quarterly</td>
<td>2007</td>
<td>Upper Kissimmee</td>
<td>10/30/2014</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>West City Ditch at Hacienda Circle</td>
<td>MS 13a</td>
<td>Quarterly</td>
<td>2007</td>
<td>Upper Kissimmee</td>
<td>10/30/2014</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>Shingle Creek at John Young Parkway</td>
<td>MS 14a</td>
<td>Quarterly</td>
<td>2007</td>
<td>Upper Kissimmee</td>
<td>10/30/2014</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>Shingle Creek at Town Center Blvd.</td>
<td>MS 15a</td>
<td>Quarterly</td>
<td>2007</td>
<td>Upper Kissimmee</td>
<td>10/30/2014</td>
</tr>
<tr>
<td>City of Kissimmee</td>
<td>Shingle Creek at Yates Rd.</td>
<td>MS 17a</td>
<td>Quarterly</td>
<td>2007</td>
<td>Upper Kissimmee</td>
<td>10/30/2014</td>
</tr>
<tr>
<td>Orange County</td>
<td>Boggy Creek A (Tradeport)</td>
<td>BCA</td>
<td>Quarterly</td>
<td>1982</td>
<td>Upper Kissimmee</td>
<td>10/30/2014</td>
</tr>
<tr>
<td>Orange County</td>
<td>Shingle Creek (Central FL Pkwy.)</td>
<td>SCC</td>
<td>Quarterly</td>
<td>1972</td>
<td>Upper Kissimmee</td>
<td>10/30/2014</td>
</tr>
<tr>
<td>Sampling Entity</td>
<td>Station Name</td>
<td>Florida STORET Station IDb</td>
<td>Frequency</td>
<td>Year Site Established</td>
<td>Sub-watershed</td>
<td>Date of Latest Sample in Florida STORETb</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>Orange County</td>
<td>Boggy Creek B (S.R. 527A)</td>
<td>BCB</td>
<td>Bimonthly (winter and summer)</td>
<td>1999</td>
<td>Upper Kissimmee</td>
<td>7/19/2010</td>
</tr>
<tr>
<td>Orange County</td>
<td>Boggy Creek @ 527A City of Orlando Site aka bcb</td>
<td>BCO</td>
<td>Bimonthly (winter and summer)</td>
<td>1999</td>
<td>Upper Kissimmee</td>
<td>3/21/2016</td>
</tr>
<tr>
<td>Orange County</td>
<td>Shingle Creek City of Orlando</td>
<td>SCO</td>
<td>Bimonthly (winter and summer)</td>
<td>1999</td>
<td>Upper Kissimmee</td>
<td>2/29/2016</td>
</tr>
<tr>
<td>Osceola County</td>
<td>ETO5253114</td>
<td>ETO5253114</td>
<td>Monthly, if flowing</td>
<td>2009</td>
<td>Upper Kissimmee</td>
<td>5/11/2016</td>
</tr>
<tr>
<td>Osceola County</td>
<td>JUDGES_DCH</td>
<td>JUDGES_DCH</td>
<td>Monthly, if flowing</td>
<td>2011</td>
<td>Upper Kissimmee</td>
<td>3/30/2016</td>
</tr>
<tr>
<td>Osceola County</td>
<td>PARTIN_CNLT</td>
<td>PARTIN_CNLT</td>
<td>Monthly, if flowing</td>
<td>2011</td>
<td>Upper Kissimmee</td>
<td>5/11/2016</td>
</tr>
<tr>
<td>Osceola County</td>
<td>RUNNYMEDE</td>
<td>RUNNYMEDE</td>
<td>Monthly, if flowing</td>
<td>2011</td>
<td>Upper Kissimmee</td>
<td>12/1/2015</td>
</tr>
<tr>
<td>SFWMD</td>
<td>A03</td>
<td>A03</td>
<td>Bimonthly (6 times/yr)</td>
<td>1981</td>
<td>Upper Kissimmee</td>
<td>6/13/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>B02</td>
<td>B02</td>
<td>Bimonthly (6 times/yr)</td>
<td>1981</td>
<td>Upper Kissimmee</td>
<td>6/13/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>B06</td>
<td>B06</td>
<td>Bimonthly (6 times/yr)</td>
<td>1981</td>
<td>Upper Kissimmee</td>
<td>6/13/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>B09</td>
<td>B09</td>
<td>Bimonthly (6 times/yr)</td>
<td>1981</td>
<td>Upper Kissimmee</td>
<td>6/13/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>C03</td>
<td>C03</td>
<td>Bimonthly (6 times/yr)</td>
<td>1981</td>
<td>Upper Kissimmee</td>
<td>6/13/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>C38W</td>
<td>C38W</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>Indian Prairie</td>
<td>6/20/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>C41H78</td>
<td>C41H78</td>
<td>Weekly – ACT/ Biweekly, if flowing/ Monthly/Quarterly</td>
<td>2008</td>
<td>Indian Prairie</td>
<td>6/20/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>CL06283111</td>
<td>CL06283111</td>
<td>Biweekly, if flowing*</td>
<td>2006</td>
<td>Upper Kissimmee</td>
<td>5/16/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>CULV5</td>
<td>CULV5</td>
<td>Biweekly, if flowing / Monthly/Quarterly</td>
<td>1973</td>
<td>Fisheating Creek</td>
<td>6/6/2016</td>
</tr>
</tbody>
</table>

---

Page 84 of 104
<table>
<thead>
<tr>
<th>Sampling Entity</th>
<th>Station Name</th>
<th>Florida STORET Station ID</th>
<th>Frequency</th>
<th>Year Site Established</th>
<th>Sub-watershed</th>
<th>Date of Latest Sample in Florida STORET</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFWMD</td>
<td>CULV5A</td>
<td>CULV5A</td>
<td>Biweekly, if flowing / Monthly/Quarterly</td>
<td>1973</td>
<td>West Lake Okeechobee</td>
<td>6/6/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>D02</td>
<td>D02</td>
<td>Bimonthly (6 times/yr)</td>
<td>1981</td>
<td>Upper Kissimmee</td>
<td>6/13/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>E02</td>
<td>E02</td>
<td>Bimonthly (6 times/yr)</td>
<td>1981</td>
<td>Upper Kissimmee</td>
<td>6/13/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>ET05253114</td>
<td>ET05253114</td>
<td>Biweekly, if flowing*</td>
<td>2006</td>
<td>Upper Kissimmee</td>
<td>5/11/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>FECSR78</td>
<td>FECSR78</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>Fisheating Creek</td>
<td>6/20/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>INDUSCAN</td>
<td>INDUSCAN</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>South Lake Okeechobee</td>
<td>6/6/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>IOC</td>
<td>IOC©</td>
<td>Weekly recorded flow ACF/Biweekly grabs</td>
<td>2012</td>
<td>Within Lake</td>
<td>6/21/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>ISTK6</td>
<td>ISTK6</td>
<td>Bimonthly (6 times/yr)*</td>
<td>1998</td>
<td>Lake Istokpoga</td>
<td>11/16/2015</td>
</tr>
<tr>
<td>SFWMD</td>
<td>KISSR0.00</td>
<td>KISSR0.0</td>
<td>Monthly</td>
<td>1986</td>
<td>Within Lake</td>
<td>6/14/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>KREA 30A/02273630</td>
<td>KREA 30A</td>
<td>Biweekly, if flowing*</td>
<td>1988</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>2/18/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>L001</td>
<td>L001</td>
<td>Monthly</td>
<td>1986</td>
<td>Within Lake</td>
<td>6/14/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>L004</td>
<td>L004</td>
<td>Monthly</td>
<td>1986</td>
<td>Within Lake</td>
<td>6/14/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>L008</td>
<td>L008</td>
<td>Monthly</td>
<td>1986</td>
<td>Within Lake</td>
<td>6/14/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>L59E</td>
<td>L59E</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>Indian Prairie</td>
<td>6/6/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>L59W</td>
<td>L59W</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>Indian Prairie</td>
<td>6/20/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>L60E</td>
<td>L60E</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>Indian Prairie</td>
<td>6/20/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>L60W</td>
<td>L60W</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>Indian Prairie</td>
<td>6/6/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>LI02362923</td>
<td>LI02362923</td>
<td>Biweekly, if flowing*</td>
<td>2011</td>
<td>Lake Istokpoga</td>
<td>5/25/2016</td>
</tr>
<tr>
<td>Sampling Entity</td>
<td>Station Name</td>
<td>Florida STORET Station ID&lt;sup&gt;b&lt;/sup&gt;</td>
<td>Frequency</td>
<td>Year Site Established</td>
<td>Sub-watershed</td>
<td>Date of Latest Sample in Florida STORET&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>--------------------------------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>SFWMD</td>
<td>LZ30</td>
<td>LZ30</td>
<td>Monthly</td>
<td>1986</td>
<td>Within Lake</td>
<td>6/15/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>POLE3S</td>
<td>POLE3S</td>
<td>Monthly</td>
<td>1986</td>
<td>Within Lake</td>
<td>6/15/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S127</td>
<td>S127</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>Indian Prairie</td>
<td>6/6/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S129</td>
<td>S129</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>Indian Prairie</td>
<td>6/6/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S131</td>
<td>S131</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>Indian Prairie</td>
<td>6/6/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S133</td>
<td>S133</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>Taylor Creek/Nubbin Slough</td>
<td>6/6/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S135</td>
<td>S135</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>Taylor Creek/Nubbin Slough</td>
<td>6/6/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S154</td>
<td>S154</td>
<td>Weekly – ACT/Biweekly, if flowing/ Monthly/Quarterly*</td>
<td>1973</td>
<td>Taylor Creek/Nubbin Slough</td>
<td>6/20/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S154C</td>
<td>S154C</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>Taylor Creek/Nubbin Slough</td>
<td>6/20/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S169</td>
<td>S169</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>South Lake Okeechobee</td>
<td>6/6/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S2</td>
<td>S2</td>
<td>Weekly – ACF/Biweekly, if flowing/ Monthly/Quarterly/Event</td>
<td>1973</td>
<td>South Lake Okeechobee</td>
<td>6/6/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S236</td>
<td>S236</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1979</td>
<td>South Lake Okeechobee</td>
<td>5/9/2016</td>
</tr>
<tr>
<td>Sampling Entity</td>
<td>Station Name</td>
<td>Florida STORET Station ID</td>
<td>Frequency</td>
<td>Year Site Established</td>
<td>Sub-watershed</td>
<td>Date of Latest Sample in Florida STORET</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S308C</td>
<td>S308C</td>
<td>Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>East Lake Okeechobee</td>
<td>6/6/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S392</td>
<td>S392d</td>
<td>Weekly ACF/ Biweekly grabs</td>
<td>2006</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>6/21/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S4</td>
<td>S4</td>
<td>Weekly ACF/ Biweekly, if flowing/ Monthly/Quarterly</td>
<td>1973</td>
<td>South Lake Okeechobee</td>
<td>6/6/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S650</td>
<td>S650</td>
<td>Weekly ACF/ Biweekly grabs</td>
<td>2012</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>6/21/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S71</td>
<td>S71</td>
<td>Weekly – ACF/ Biweekly, if flowing/ Monthly</td>
<td>1973</td>
<td>Indian Prairie</td>
<td>6/22/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S72</td>
<td>S72</td>
<td>Weekly – ACF/ Biweekly, if flowing/ Monthly</td>
<td>2007</td>
<td>Indian Prairie</td>
<td>6/8/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S77</td>
<td>S77</td>
<td>Biweekly, if flowing/ Monthly</td>
<td>2007</td>
<td>Within Lake</td>
<td>6/20/2016</td>
</tr>
<tr>
<td>Sampling Entity</td>
<td>Station Name</td>
<td>Florida STORET Station ID</td>
<td>Frequency</td>
<td>Year Site Established</td>
<td>Sub-watershed</td>
<td>Date of Latest Sample in Florida STORET</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>SFWMD</td>
<td>S84</td>
<td>S84</td>
<td>Biweekly, if flowing/ Monthly</td>
<td>2007</td>
<td>Indian Prairie</td>
<td>6/20/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>TCNS 201</td>
<td>TCNS 201</td>
<td>Biweekly, if flowing*</td>
<td>1988</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>2/8/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>TCNS 204</td>
<td>TCNS 204</td>
<td>Biweekly, if flowing*</td>
<td>1988</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>6/16/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>TCNS 207</td>
<td>TCNS 207</td>
<td>Biweekly, if flowing*</td>
<td>1988</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>6/16/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>TCNS 220</td>
<td>TCNS 220</td>
<td>Biweekly, if flowing*</td>
<td>1988</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>6/1/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>TCNS 222</td>
<td>TCNS 222</td>
<td>Biweekly, if flowing*</td>
<td>1988</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>6/1/2016</td>
</tr>
<tr>
<td>SFWMD</td>
<td>TCNS 228</td>
<td>TCNS 228</td>
<td>Biweekly, if flowing*</td>
<td>1988</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>10/14/2015</td>
</tr>
<tr>
<td>SFWMD</td>
<td>TCNS 230</td>
<td>TCNS 230</td>
<td>Biweekly, if flowing*</td>
<td>1988</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>9/30/2015</td>
</tr>
<tr>
<td>SFWMD</td>
<td>TCNS 249</td>
<td>TCNS 249</td>
<td>Biweekly, if flowing*</td>
<td>1988</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>2/18/2016</td>
</tr>
<tr>
<td>SFWMD/USGS</td>
<td>02273198</td>
<td>02273198</td>
<td>Weekly – ACT</td>
<td>2005</td>
<td>Lake Istokpoga</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>SFWMD/USGS</td>
<td>TCNS 209/02274005</td>
<td>TCNS 209</td>
<td>Biweekly, if flowing*</td>
<td>1988</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>6/16/2016</td>
</tr>
<tr>
<td>SFWMD/USGS</td>
<td>TCNS 213/02274010</td>
<td>TCNS 213</td>
<td>Biweekly, if flowing*</td>
<td>1988</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>6/16/2016</td>
</tr>
<tr>
<td>SFWMD/USGS</td>
<td>TCNS 217/02274505</td>
<td>TCNS 217</td>
<td>Biweekly, if flowing*</td>
<td>1988</td>
<td>Taylor Creek/ Nubbin Slough</td>
<td>6/1/2016</td>
</tr>
<tr>
<td>SFWMD/USGS</td>
<td>02255600</td>
<td>02255600</td>
<td>Biweekly, if flowing*</td>
<td>2005</td>
<td>Fisheating Creek</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>SFWMD/USGS</td>
<td>02256500</td>
<td>02256500</td>
<td>Biweekly, if flowing*</td>
<td>2005</td>
<td>Fisheating Creek</td>
<td>4/17/2017</td>
</tr>
<tr>
<td>SFWMD/USGS</td>
<td>02272676</td>
<td>02272676</td>
<td>Biweekly, if flowing*</td>
<td>2005</td>
<td>Upper Kissimmee</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>Sampling Entity</td>
<td>Station Name</td>
<td>Florida STORET Station ID</td>
<td>Frequency</td>
<td>Year Site Established</td>
<td>Sub-watershed</td>
<td>Date of Latest Sample in Florida STORET</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>SFWMD/USGS</td>
<td>02273230</td>
<td>02273230</td>
<td>Biweekly, if flowing*</td>
<td>2005</td>
<td>Indian Prairie</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>SFWMD/USGS</td>
<td>02275197</td>
<td>02275197</td>
<td>Biweekly, if flowing*</td>
<td>2005</td>
<td>Taylor Creek/Nubbin Slough</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>SFWMD/USGS</td>
<td>KREA 01/02272650</td>
<td>KREA 01</td>
<td>Biweekly, if flowing*</td>
<td>1986</td>
<td>Upper Kissimmee</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>USGS</td>
<td>Boggy Creek near Taft</td>
<td>02262900</td>
<td>Continuous</td>
<td>1959</td>
<td>Upper Kissimmee</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>USGS</td>
<td>Shingle Creek at Airport near Kissimmee</td>
<td>02263800</td>
<td>Continuous</td>
<td>1958</td>
<td>Upper Kissimmee</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>USGS</td>
<td>2272650</td>
<td>02272650</td>
<td>Continuous</td>
<td>2003</td>
<td>Lower Kissimmee</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>USGS</td>
<td>2273230</td>
<td>02273230</td>
<td>Continuous</td>
<td>2003</td>
<td>Indian Prairie</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>USGS</td>
<td>2273630</td>
<td>02273630</td>
<td>Continuous</td>
<td>2003</td>
<td>Taylor Creek/Nubbin Slough</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>USGS</td>
<td>2274005</td>
<td>02274005</td>
<td>Continuous</td>
<td>2003</td>
<td>Taylor Creek/Nubbin Slough</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>USGS</td>
<td>2274010</td>
<td>02274010</td>
<td>Continuous</td>
<td>2003</td>
<td>Taylor Creek/Nubbin Slough</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>USGS</td>
<td>2274325</td>
<td>02274325</td>
<td>Continuous</td>
<td>2004</td>
<td>Taylor Creek/Nubbin Slough</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>USGS</td>
<td>2274490</td>
<td>02274490</td>
<td>Continuous</td>
<td>2003</td>
<td>Taylor Creek/Nubbin Slough</td>
<td>12/30/2016</td>
</tr>
<tr>
<td>USGS</td>
<td>2274505</td>
<td>02274505</td>
<td>Continuous</td>
<td>2003</td>
<td>Taylor Creek/Nubbin Slough</td>
<td>12/30/2016</td>
</tr>
</tbody>
</table>
Figure D-1. Water quality monitoring network for the Lake Okeechobee Watershed as of December 2016
Appendix E: Water Quality Analyses

For this progress report, trend analyses were conducted on available data from stations within the Lake Okeechobee BMAP network using a variation of temporal and spatial attributes from an overall POR of January 1, 2009, to December 31, 2016. Section 3.1 summarizes the analyses and results, and additional details are provided below.

Methods

TP and TN concentration data available in STORET were retrieved and processed for all stations in the BMAP network monitored by local entities. TP loading data for SFWMD individual stations were also obtained from SFWMD staff and draft trend analysis were completed. Further analyses will be completed for SFWMD stations in the BMAP monitoring network and included in future reports. Table 10 lists the stations used for trend analyses, including their respective sampling entity, available POR (within the overall POR), and number of samples used in the analyses.

Nonparametric statistical techniques were used to identify monotonic trend analyses in a statistically rigorous way with the Seasonal Kendall and Mann-Kendall trend tests. Seasonal Kendall tests were performed when sufficient data were available; otherwise only Mann-Kendall tests were performed for stations that did not have sufficient data. Data are not required to conform to a particular distribution for nonparametric analyses. Nonparametric tests are also robust against outliers and large data gaps, which were evident in some of the station datasets.

Because of the differences in data collection frequency by sampling entity, slight variations in trend analysis factors were necessary to appropriately analyze each particular dataset. The number of data points was limited each year in the POR. Therefore, trend analyses were conducted on TP and TN concentrations using (1) the entire processed POR dataset for each individual station incorporating season (attributed to the quarter that the sample was collected) as a factor, and (2) the entire processed POR dataset using data aggregated into AGMs using WY.

For all Mann-Kendall tests, statistical results were considered significant if the p-value was less than 0.05 (p-value < 0.05). The strength of the trend analysis result is described as the correlation coefficient, or Tau for the Mann-Kendall test, which represents how concentration or load and time tend to change together over the established POR. If the result is statistically significant (p-value < 0.05), then a negative Tau value and slope represent a downward or decreasing trend indicating improvement, and positive Tau and slope values suggest an increasing or upward trend (decline in water quality conditions).

Results

The results are summarized in Table 11 and Table 12 of Section 3.1, and represented through Figure E-1 to Figure E-23 in this appendix. Figures are first grouped by the type of statistical test performed to obtain the results, and then by the parameter (TP or TN).
Mann-Kendall Trend Analysis

*Total Phosphorus*

**Figure E-1.** Mann-Kendall trend analysis for TP at Orange County Station BCA

**Figure E-2.** Mann-Kendall trend analysis for TP at Osceola County Station ETO5253114
Figure E-3. Mann-Kendall trend analysis for TP at Osceola County Station Judges_DCH

Figure E-4. Mann-Kendall trend analysis for TP at Osceola County Station Partin_CNL
Figure E-5. Mann-Kendall trend analysis for TP at Osceola County Station Runnymede

Figure E-6. Mann-Kendall trend analysis for TP at Orlando/Orange County Station SCC
Figure E-7. Mann-Kendall trend analysis for TP at Orange County Station XLKEHS62

Total Nitrogen

Figure E-8. Mann-Kendall trend analysis for TN at Orange County Station BCA
Figure E-9. Mann-Kendall trend analysis for TN at Osceola County Station ETO5253114

Figure E-10. Mann-Kendall trend analysis for TN at Osceola County Station Runnymede
Figure E-11. Mann-Kendall trend analysis for TN at Orlando/Orange County Station SCC

Figure E-12. Mann-Kendall trend analysis for TN at Orange County Station XLKEHS62

Seasonal Kendall Trend Analysis

*Total Phosphorus*
Figure E-13. Seasonal Mann-Kendall trend analysis for TP at Orange County Station BCA

Figure E-14. Seasonal Mann-Kendall trend analysis for TP at Osceola County Station ETO5253114
Figure E-15. Seasonal Mann-Kendall trend analysis for TP at Osceola County Station Judges_DCH

Figure E-16. Seasonal Mann-Kendall trend analysis for TP at Osceola County Station Partin_CNL
Figure E-17. Seasonal Mann-Kendall trend analysis for TP at Orange County Station Runnymead.

Figure E-18. Seasonal Mann-Kendall trend analysis for TP at Orlando/Orange County Station SCC.
Figure E-19. Seasonal Mann-Kendall trend analysis for TP at Orange County Station XLKEHS62

Total Nitrogen

Figure E-20. Seasonal Mann-Kendall trend analysis for TN at Orange County Station BCA
Figure E-21. Seasonal Mann-Kendall trend analysis for TN at Osceola County Station Runnymede

Figure E-22. Seasonal Mann-Kendall trend analysis for TN at Orlando/Orange County Station SCC
Figure E-23. Mann-Kendall trend analysis for TN at Orange County Station XLKEHS62
Appendix F: Important Links

Cover page:
DEP homepage: http://www.dep.state.fl.us

Acknowledgments:
Sara Davis email: sarac.davis@dep.state.fl.us

Summary:
TP TMDL for Lake Okeechobee: http://www.dep.state.fl.us/water/tmdl/final_tmdl.htm

Section 1, Introduction:
TP TMDL for Lake Okeechobee: http://www.dep.state.fl.us/water/tmdl/final_tmdl.htm
Lake Okeechobee BMAP: http://www.dep.state.fl.us/water/watersheds/bmap.htm

Section 2.2, SFWMD Activities:

Section 2.4, Agricultural Activities:

Section 2.6, Summary of Accomplishments:

Section 3.1.3, Water Quality Analyses:
2017 SFER – Volume I, Chapter 8B: https://www.sfwmd.gov/science-data/sfer

Section 4.2.3, Public Education and Outreach:
Everglades Research and Education Center website: http://erec.ifas.ufl.edu/research/index_soil_and_water.shtml

Appendix B: Future BMAP Projects:
Chapter 2016-1, Laws of Florida: http://laws.flrules.org/2016/1