
Stony Coral Spawning Hubs in the Southeast Florida Coral Reef Ecosystem Conservation Area: Phase I and II

FINAL REPORT

Florida Department of Environmental Protection Office of Resilience and Coastal Protection

Stony Coral Spawning Hubs in the Southeast Florida Coral Reef Ecosystem Conservation Area: Phase I and II

Final Report

Prepared By:

David S. Gilliam, Joana Figueiredo, Cassie M. VanWynen, and Hope E. Hefley Nova Southeastern University Halmos College of Arts and Sciences 8000 N. Ocean Dr. Dania Beach FL 33004

June 2021

Completed in Fulfillment of Purchase Order B774C1 for

Florida Department of Environmental Protection Office of Resilience and Coastal Protection 1277 N.E. 79th Street Causeway Miami, FL 33138

This report should be cited as follows:

Gilliam, D.S., Figueiredo, J., VanWynen, C.M., and Hefley, H.E. 2021. Stony Coral Spawning Hubs in the Southeast Florida Coral Reef Ecosystem Conservation Area: Phase I and II Final Report. Florida DEP. Miami, FL. pp. 38.

This report was prepared for the Florida Department of Environmental Protection, Office of Resilience and Coastal Protection by Nova Southeastern University. Funding was provided by the Florida Department of Environmental Protection Award No. B774C1. The views, statements, findings, conclusions, and recommendations expressed herein are those of the authors and do not necessarily reflect the views of the State of Florida or any of its subagencies.

TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF ACRONYMS	ii
LIST OF FIGURES	ii
LIST OF TABLES	ii
PROJECT DESCRIPTION	1
TASK DESCRIPTION AND METHODOLOGY	2
Spawning Hub Site Selection	2
Colony Relocation	3
Colony Monitoring	4
RESULTS	4
Spawning hub site selection	4
Site establishment and colony relocation	4
Colony monitoring	5
Conclusions	12
Literature Cited	14
Acknowledgements	15

LIST OF ACRONYMS Coral ECA......Southeast Florida Coral Reef Ecosystem Conservation Area LIST OF FIGURES Figure 1. Habitat map with 10 surveyed selection sites (red stars) identified during biophysical dispersal models site selection process, and the locations of the north and south established spawning hub sites (circled red dots). Refer to Table 1 for additional site information......6 **Figure 2.** Landscape images of the selected North (top image) and South (bottom image) hub sites......7 Figure 3. Habitat map with the relocated colony donor sites (colored triangle, diamond, star and dot) and the spawning hub sites (red dots with black outline). Refer to Appendix **Figure 4.** Images of recently relocated *P. clivosa* colony 701 (top left) in the North hub, *P.* strigosa colony 901 (top right) in the South hub, D. labyrinthiformis colony 916 (bottom left) in the South hub, and O. faveolata colony 925 (bottom right) in the South hub.9 **Figure 5.** Image on the left shows three four eyed butterflyfishes 'biting' a relocated P. clivosa colony during the 1-month monitoring event, and the image on the right shows the bite scar from spotlight parrotfish predation on a relocated P. clivosa colony during the Figure 6. Progression of the disease lesion on North hub colony 729 when first observed on 16 November (top left), 23 November (top right), 11 December 2020 (bottom left), and **Figure 7.** Images showing the bite scars from parrotfish predation on a relocated D. labyrinthiformis (left) and P. strigosa (right) colonies during the 2-week monitoring 11 LIST OF TABLES **Table 1.** Summary information for the 10 model selection sites that were included in the survey dives. The two grey shaded sites were chosen as the North and South spawning hubs......5 **Table 2.** Relocated *P. clivosa* colonies observed during each monitoring event with indications of fish predation......9 **Table 3.** North hub relocated *P. clivosa* colonies with disease lesions on 16 and 23 November and 11 December 2020, and 27 May 2021. Percent colony mortality (% OM = **Table 4.** Reference colonies mapped, mean colony diameter, and number monitored at the

PROJECT DESCRIPTION

Florida's coral reefs are currently experiencing a multi-year stony coral disease-related mortality event, that has resulted in massive die-offs in multiple coral species. Impacts were first widely recorded in the Coral ECA in 2014 (Walton et al., 2018), and the disease has since spread throughout the extent of the Florida's Coral Reef. The best available information indicates that the disease outbreak has spread to the Dry Tortugas and is continuing to spread throughout the Caribbean.

In the Coral ECA, the SCTLD outbreak (has caused the loss of >60% of all stony coral live tissue, with certain species losing >90% of all live tissue (Walton et al. 2018; Gilliam et al. 2021). These losses have affected nearly 20 Coral ECA coral species, including both Endangered Species Act-listed and the primary reef-building species (Walton et al., 2018; Gilliam et al., 2021; SCTLD Case Definition 2018). Coral ECA reef habitats are an important economic asset for the region. The reef system has been estimated to protect nearly 6,000 people, over \$500 million in infrastructure and \$300 million in economic activity from storm-related flooding (Storlazzi et al., 2019). These reefs have also been estimated to generate more than \$3 billion in sales and income and support more than 35,000 jobs (Johns et al., 2001, 2004). While the Coral ECA reefs are clearly an important resource, their location offshore a highly urbanized area (population > 6 million) drives ever-increasing and human activity-related stress on the reefs. The effects of these chronic stresses on Coral ECA reefs have now been compounded by this multi-year disease-related mortality event.

Coral populations typically recover after disturbances through sexual reproduction which results in the production of recruits that replenish depleted reefs. However, because disease susceptible stony coral colony abundance has significantly declined, the likelihood of eggs and sperm from different colonies naturally encountering each other has been severely reduced, limiting successful recruitment that drives reef recovery. Hence, aside from minimizing or eliminating local and global stressors to reduce loss, reef recovery can be accelerated by increasing stony coral density through restoration processes. Increasing Coral ECA coral density can be done through asexual and sexual forms of reproduction. On a more local-scale, density can be managed by relocating colonies to specific sites in an attempt to bring sexually mature colonies close enough together to increase the likelihood that eggs and sperm from these colonies will come into contact during spawning events, essentially creating an in-situ spawning hub for select species. This restoration activity not only promotes species recovery through supporting recruitment driven by natural sexual reproduction but also promotes recovery by providing sites where efficient spawning observations and gamete capture can occur. Spawning observations will advance our understanding of stony coral reproductive ecology while gamete capture will support our ability to rear larvae in land-based nurseries furthering species recovery opportunities.

In the first phase of this project (June – December 2020) we established two spawning hub locations in the Coral ECA offshore Broward County on Inner reef habitat. These are the first sites ever established in the Coral ECA for the purpose of facilitating natural sexual reproduction and providing sites for researchers to observe spawning and capture gametes. For the first phase, *Pseudodiploria clivosa* was the target species. *Pseudodiploria clivosa* is a species that has been identified as highly susceptible to SCTLD and has had measurable losses in abundance. It is a species identified as high priority during the SCTLD response Coral Rescue Team (https://floridadep.gov/rcp/coral/content/coral-rescue-team). Although *P. clivosa* has been impacted by the disease event, our observations have identified locations that have colonies suitable for relocation. *Pseudodiploria clivosa* is also a simultaneous hermaphroditic, broadcast spawning species (Weil and Vargas, 2010). These reproductive traits make *P. clivosa* an excellent target species for spawning hubs. Gamete bundles can be captured during spawning events and taken to land-based facilities for fertilization. The goal of this first phase was to establish two spawning hub sites and relocate a limited number *P. clivosa* colonies prior to the predicted September 2020 spawning event.

Thirty P. clivosa colonies were successfully relocated to each of two spawning hubs, and all 60 colonies survived through the end of phase I in December 2020. There was also no evidence of increased disease prevalence within the stony coral population in the hub sites following colony relocation. The success of phase I supported the continuation of the project (through June 2021). The scope of phase II included the addition of relocated Orbicella faveolata, Diploria labyrinthiformis, and Pseudodiploria strigosa colonies to the same established spawning hubs. These species have been identified as highly susceptible to SCTLD and priority during the **SCTLD** response Coral Rescue high Team (https://floridadep.gov/rcp/coral/content/coral-rescue-team). These species are also a simultaneous hermaphroditic, broadcast spawning species (Van Veghel, 1994; Van Veghel and Kahmann, 1994; Weil and Vargas, 2010) and similarly to *P. clivosa* are excellent species to be incorporated in spawning hubs. In April and May 2021, a total of 31 colonies representing O. faveolata, P. strigosa, and D. labyrinthiformis were collected and relocated to the two spawning hubs. Future coral spawning hub project phases may expand the efforts to include more sites within the Coral ECA, more species, and greater efforts to manage the sites including activities that have been proposed by the Restoring Seven Iconic Reefs: Mission Recover the Coral Reefs Florida of the **Keys** (https://www.fisheries.noaa.gov/southeast/habitat-conservation/restoring-seven-iconic-reefs-missionrecover-coral-reefs-florida-keys) such as disease interventions, when needed, and removal of competing benthic groups (*Palythoa*, macroalgae, etc.). The outcomes of this project will be incorporated into an ongoing coral disease response effort which seeks to improve understanding about the scale and severity of the stony coral disease outbreak, identify primary and secondary causes, identify management actions to remediate disease impacts, restore affected resources and, ultimately, prevent future outbreaks.

This final project report includes both phase I and II efforts and data summaries.

TASK DESCRIPTION AND METHODOLOGY

Spawning Hub Site Selection

The first task was to select the two spawning hub sites. The site section area was limited to offshore Broward County in either the nearshore ridge complex or Inner reef habitats in approximately 7-10 m water depths. For phase I of this project working in Broward County close to NSU was the most efficient use of resources (time and funds). The nearshore ridge complex or Inner reef are appropriate habitats for spawning hubs because our observations indicate that these habitats support populations of the SCTLD susceptible species included in this project and may be included in spawning hub efforts in the future. Water depths less than 10 m are also conducive to efficient use of project resources time and funds.

Spawning hub sites should be appropriate for colony growth and survival and be in areas that are sources of larvae to other areas. Dr. Joana Figueiredo and colleagues have developed bio-physical dispersal models for *Acropora* species (Figueiredo, 2019) and *Montastraea cavernosa* (Frys et al., 2020). There is currently no larval dispersal model for *P. clivosa* (phase I target species); however, this species is expected to have a very similar larval dispersal to *M. cavernosa*. The potential differences in larval dispersal patterns between coral species are driven by differences in larval competency dynamics (i.e. time from fertilization until larvae are able to settle) and currents during the spawning event. The larval competency dynamics of *P. clivosa* is expected to be very similar to *M. cavernosa*. The egg diameter of broadcast spawning corals is a very good predictor of the time it takes larvae to develop and settle (Figueiredo et al., 2013). *Pseudodiploria clivosa* has about the same egg diameter as *M. cavernosa*, *Orbicella faveolata* (phase II target species) and *Diploria labyrinthiformis* (around 400 µm) (phase II target species), thus it is expected to have similar larval competency dynamics, i.e. start settling 4 days after fertilization. Also, like *M. cavernosa*, *P. clivosa* is predicted to spawn in September around the same time, 6-9 days after the full

moon (Jordan, 2018; Vermeij et al., 2007–2020), thus the ocean currents used in the *M. cavernosa* larval dispersal model would be equal. In sum, because the larval competency dynamics and time of spawning of *P. clivosa* is expected to be very similar to *M. cavernosa*, their larval dispersal patterns should be extremely similar. Since in the future we aim to expand these spawning hubs to other species, our aim was to select sites that would not only be good for *P. clivosa*, but also for other species. The selected spawning hubs sites for this project are predicted to be a good source of larvae for *P. clivosa*, but also, according to the larval dispersal models, appropriate sites for additional, similar species including *P. strigosa*, *O. faveolata*, and *D. labyrinthiformis*.

Utilizing the existent modeling tools, five potential sites were selected (500m x 500m each) within Broward County, which the bio-physical model of coral larval dispersal projects has the highest source indices (i.e. produce a greater number of larvae that settles on a greater number of reefs) and are also surrounded by sites with high source indices (aims to maximize the chances that the site selected is indeed a good source). These sites were also evaluated in terms of their distance from local current or future sources of disturbance such as Port Everglades. These selected 10 sites (five north and five south) were surveyed on scuba by three experienced researchers conducting approximately 30 min random swims recording notes and taking images. The types of information the researchers recorded included the abundance and size (colony diameter) distribution of SCTLD susceptible species, cover of stable substrate with minimal unconsolidated substrate and competing benthic groups (*Palythoa*, macroalgae, etc.), and indications of current, past, or potential physical disturbance (e.g., sheared barrel sponges, lobster pots and line, anchor drags, etc.). Based on all the above criteria and discussion and agreement amongst the three researchers, two sites were chosen.

Colony Relocation

Phase II target was to re-locate 30 *P. clivosa* colonies to each spawning hub site (60 total colonies). The Phase II target was to relocate a total of 30 colonies representing *P. strigosa*, *O. faveolata*, and *D. labyrinthiformis*. The abundance and distribution of these 30 colonies was not intended to be equal among species, but the goal was to relocate approximately 15 colonies to each hub with representation of all three species. Target colony sizes of all four species ranged from approximately 15 to 30 cm diameter. Colonies of this size range are likely mature (Van Veghel and Kahmann, 1994; Weil and Vargas, 2010) but small enough to be removed, transported, and reattached without special equipment or the use of larger vessels. The goal was to relocate genetically unique colonies. Donor colony sites were distributed throughout the nearshore ridge habitat and along the inner reef line in Broward County. To maximize the potential of relocating as many genotypes as possible donor colonies were removed from sites separated by 50 m or more. During Phase I, *P. clivosa* colonies were specifically targeted and the only species relocated. Phase II colonies were collected opportunistically and colonies of any of these three species were be collected as found.

Colonies were removed by research divers using hammers and chisels. Colonies were chosen based on the likelihood that fragmentation will not occur during removal. All colonies were also free of recent mortality, boring sponge (*Cliona* spp.), and had a maximum of 25% old partial mortality. Colonies were not removed from locations where active disease lesions were identified on any corals in the area. Where colonies were removed donor site GPS location was recorded. Colonies were transported on NSU vessels and were kept in coolers under shade. Phase II colonies were collected opportunistically; and therefore, colonies were safely cached at the offshore NSU coral nursery for 2-6 weeks such that most colonies could be relocated to one of the hubs at the same time for attachment. During transport, bubble wrap was used to separate colonies in the coolers to minimize abrasion. Once at the spawning hub, portland cement was used to securely attach the colonies to the substrate. The attachment site was prepared by removing turf and macroalgae, was free of unconsolidated sediment, and was not immediately adjacent to benthic

organisms that might interfere with relocated colony growth (e.g., other stony corals, octocorals, large sponges, etc.). Relocated colonies were attached with a 0.5-1.5 m target separation which provided space to grow but is also close enough to maximize the potential for gametes meeting in the water column during spawning events.

Colony Monitoring

To facilitate monitoring, a tagged permanent pin was installed at the center of each spawning hub colony relocation area. All relocated colonies were tagged and mapped by recording the distance and bearing from the center pin. For phase I, P. clivosa colonies images and colony data was recorded at the time of relocation (initial event) and at approximately one month, three months, and nine months after the completion of all colony relocation. For phase II, colony images and data were collected at the time of collection and relocation (initial event). During collection, whole colony size (diameter and height) and percent colony mortality were recorded. These colonies did not have any conditions such as recent mortality or boring sponge presence at the time of relocation. During monitoring events, colony attachment security (attached, loose, or missing), percent alive, and condition (percent colony old and recent mortality, presence boring sponge, and bleaching) were recorded. In addition to the relocated colonies, a set of reference SCTLD susceptible colonies, approximately 10 cm diameter or greater, located within 25 m of the center pin were mapped on 17 August (North hub) and 18 August (South hub) 2020. Reference whole colony size (diameter and height), percent alive, and condition (percent colony old and recent mortality, presence boring sponge, and bleaching) were recorded. A subset of the reference colonies was monitored during the 1-month and 3-month of phase I monitoring events. A minimum of 20 colonies in each hub, representing all reference colony species, was chosen at random and monitored at both events. All reference colonies were monitored again during the phase I 9-month event and the phase II initial event. Images were taken of all reference colonies when data was collected. These images were not used for quantitative analysis but provide a visual representation of the health of the colonies.

RESULTS

Spawning hub site selection

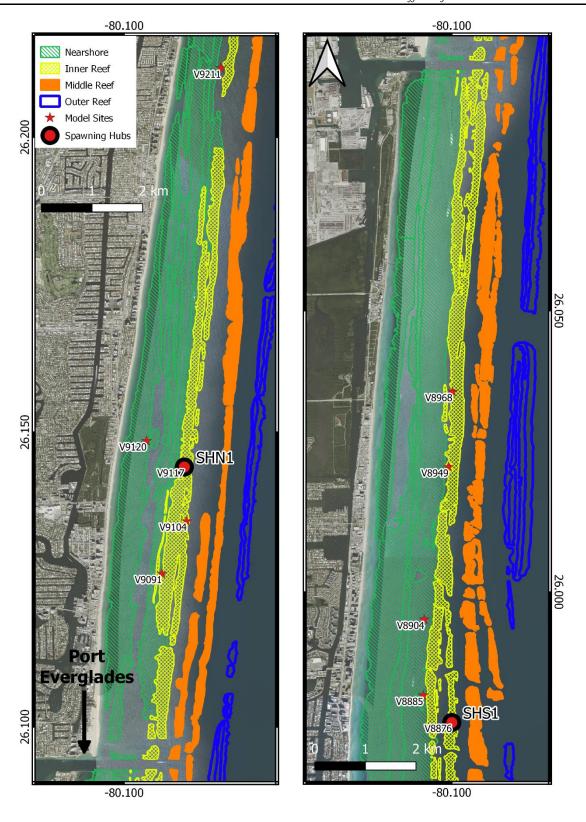
Table 1 provides summary information for the 10 model ranked selection sites, and 1 maps the locations of those 10 sites. Spawning hub site selection survey dives were completed on 29 and 30 July 2020. The model ranked sites chosen as the northern and southern spawning hub sites were V9117 and V8876, respectively (1 and Table 1). Both sites were ranked #1 unanimously by the researchers. Both sites are located on the Inner reef habitat in approximately 7-8 m water depth, greater than 1000 m from shore, had healthy (visually disease-free) SCTLD susceptible colonies, stable substrate for attachment, and no signs of current or past physical disturbances. Figure 2 provides representative landscape images of both sites.

Site establishment and colony relocation

All 30 phase I *P. clivosa* colonies were relocated to each hub site during seven field days between 28 July and 2 September 2020. All donor sites were located on the nearshore hardbottom habitat in 5-6 m water depths (Figure 3. Habitat map with the relocated colony donor sites (colored triangle, diamond, star and dot) and the spawning hub sites (red dots with black outline). Refer to Appendix Table 1 and Appendix Table 3 for additional donor site information. and Appendix Table 1). Colony sizes (diameter) ranged from 18 to 58 cm and percent colony mortality ranged from 0% to 20% (Appendix Table 2). No colonies were partially bleached, had

Table 1. Summary information for the 10 model selection sites that were included in the survey dives. The two grey shaded sites were chosen as the North and South spawning hubs.

North or South of Port Everglades	Model Site	Model Rank	Diver Rank	Latitude (dd)	Longitude (dd)	Distance from Shore (m)	Habitat
North	V9120	1	2	26.1485	-80.0962	325	NRC
North	V9117	2	1	26.1441	-80.0898	1300	Inner
North	V9091	3	3	26.1260	-80.0936	1065	Inner
North	V9104	4	4	26.1349	-80.0894	1480	Inner
North	V9211	5	5	26.2117	-80.0836	870	Inner
South	V8876	1	1	25.9768	-80.1000	2000	Inner
South	V8904	2	3	25.9951	-80.1049	1300	NRC
South	V8949	3	4	26.0222	-80.1006	1570	Inner
South	V8968	4	5	26.0356	-80.0999	1530	Inner
South	V8885	5	2	25.9816	-80.1051	1500	NRC


recent mortality, or the presence of boring sponge (*Cliona* spp.). A relocation area center pin was installed at each hub, and the colonies were tagged and mapped within each area be recording the distance and bearing from the center pins (Appendix Table 1).

Thirty-one phase II colonies were collected during seven field days between 1 April 2021 to 28 May 2021 and some relocated to the in-water nursery. Colonies were later relocated to the spawning hubs on 13 May (South hub) or 28 May (North hub) 2021. Thirteen colonies were relocated to the North hub and 18 were relocated to the South hub. Species distribution among the hubs included five *O. faveolata*, five *P. strigosa*, and three *D.* labyrinthiformis in the North hub, and three *O. faveolata*, eight *P. strigosa*, and seven *D. labyrinthiformis* in the South hub. All donor sites were located on the nearshore hardbottom or Inner reef in 5-10 m water depths (Figure 2 and Appendix Table 3). Colony sizes (diameter) ranged from 18 to 35 cm and percent colony old mortality ranged from 0% to 30% (Appendix Table 4). None of colonies were partially bleached, had recent mortality, or the presence of boring sponge (*Cliona* spp.). All colonies were mapped in relation to the center pin at each hub. The target was to collect 30 colonies. The thirty-first colony was a *D. labyrinthiformis* colony (North hub tag #914) of opportunity that was found loose and upside down. Although the colony had mortality associated with being upside down it was included in the project as an additional colony. Figure 4 provides representative images of all four relocated species (*P. clivosa*, *O. faveolata*, *P. strigosa*, and *D. labyrinthiformis*).

Colony monitoring

Phase I - P. clivosa

Initial colony data was collected on the day the colonies were relocated to the hubs (see Appendix Table 1 and Appendix Table 2). The 1-month post-relocation monitoring event at both hubs was completed on 29 September 2020. This event was just over three weeks from the last relocation date (2 September) and approximately eight weeks from the first relocation date (28 July). The 3-month event at both hubs was completed on 16 November 2020. During both monitoring events 100% of the relocated corals at both hubs were alive and securely attached to the substrate (Appendix Table 5 and Appendix Table 6). The 9-month monitoring event was completed on 27 May (North hub) and 28 May (South hub) 2021 during the phase II initial event.

Figure 1. Habitat map with 10 surveyed selection sites (red stars) identified during bio-physical dispersal models site selection process, and the locations of the north and south established spawning hub sites (circled red dots). Refer to Table 1 for additional site information.

Figure 2. Landscape images of the selected North (top image) and South (bottom image) hub sites.

Nine months post-relocation all *P. clivosa* colonies were alive and securely attached. Recent colony mortality was recorded for eight colonies (four in each hub) but was less than 2% and was attributed to fish predation (Appendix Table 7). Fish predation by the stoplight parrotfish, *Sparisoma viride*, and/or the four eyed butterflyfish, *Chaetodon capistratus*, was the most prevalent source of tissue impacts identified during all monitoring events (Figure 5, Table 2, and Appendix Table 5, Appendix Table 6, and Appendix Table 7). Interestingly, both fish species were observed 'biting' four colonies at the North hub and five colonies at the South hub on the day the colonies were relocated while researchers were cementing colonies to the substrate (Appendix Table 2). Most predation appears to have been by the butterflyfish and in all cases affected less than 10% of the colony and in most less than 5% of the colony. With an average *P. clivosa* colony size (diameter) greater than 30 cm, predation at these sites on does not appear to be a stressor that would drive complete colony mortality.

Disease lesions were observed on four colonies at the North hub during the 3-month event (Table 3, Figure 6, and Appendix Table 6). The North hub was visited two additional times, 23 November and 11 December 2020, to track the condition of these four colonies. Three of the four colonies continued to have active disease margins, but one of the colonies did not have an active margin when observed on 23 November or 11 December 2020. During the 9-month event in May 2021, all four colonies were alive, and none had an active disease margin (Appendix Table 7).

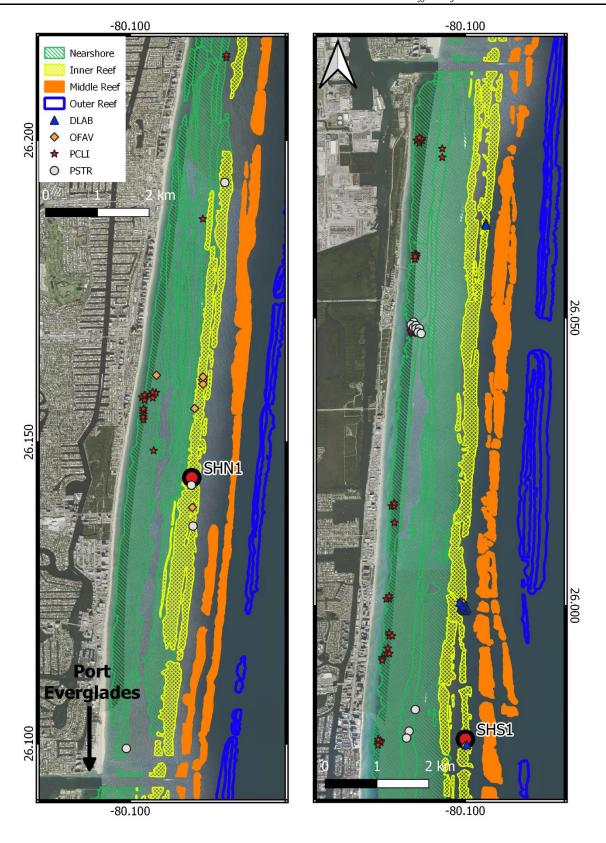
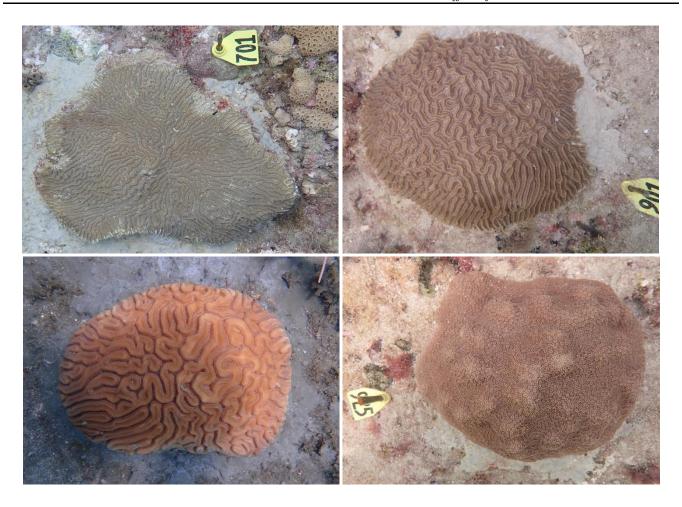



Figure 3. Habitat map with the relocated colony donor sites (colored triangle, diamond, star and dot) and the spawning hub sites (red dots with black outline). Refer to Appendix Table 1 and Appendix Table 3 for additional donor site information.

Figure 4. Images of recently relocated *P. clivosa* colony 701 (top left) in the North hub, *P. strigosa* colony 901 (top right) in the South hub, *D. labyrinthiformis* colony 916 (bottom left) in the South hub, and *O. faveolata* colony 925 (bottom right) in the South hub.

Table 2. Relocated P. clivosa colonies observed during each monitoring event with indications of fish predation.

Hub	Initial	1-month	3-month	9-month
North	4	13	16	4
South	5	12	16	4

Figure 5. Image on the left shows three four eyed butterflyfishes 'biting' a relocated *P. clivosa* colony during the 1-month monitoring event, and the image on the right shows the bite scar from spotlight parrotfish predation on a relocated *P. clivosa* colony during the day of relocation.

Table 3. North hub relocated *P. clivosa* colonies with disease lesions on 16 and 23 November and 11 December 2020, and 27 May 2021. Percent colony mortality (% OM = old mortality and % RM = recent mortality) are presented in 10% bins.

		16 November 2020		23 November 2020		11 December 2020		27 May 2021	
Hub	Colony	% OM	% RM	% OM	% RM	% OM	% RM	% OM	% RM
North	715	1-10	20-30	40-50	1-10	40-50	1-10	40-50	0
North	729	1-10	1-10	11-20	1-10	30-40	1-10	30-40	0
North	746	1-10	11-20	40-50	1-10	50-60	1-10	60-70	0
North	770	1-10	1-10	1-10	0	1-10	0	1-10	0

Phase II – P. strigosa, O. faveolata, and D. labyrinthiformis

Initial colony data was collected on the day the colonies were relocated to the hubs on 13 May (South hub) or 28 May (North hub) 2021 (see Appendix Table 3 and Appendix Table 4). A 2-week post-relocation monitoring event was completed at the South hub and all colonies were securely attached (Appendix Table 8). North hub *D. labyrinthiformis* colony tag #914 was found loose and tissue-side down during colony search activities and had mortality greater than 25%. It was included in the project because it was available and securing it in the hub site increased the likelihood of survival of the colony. Nine colonies (five *P. strigosa* and four *D. labyrinthiformis* colonies) were recorded with recent colony mortality, all less than 3%, attributed to fish predation (Figure 7). No additional monitoring events were completed at the North hub prior to the completion of this funded project.

Figure 6. Progression of the disease lesion on North hub colony 729 when first observed on 16 November (top left), 23 November (top right), 11 December 2020 (bottom left), and on 27 May 2021 which had no disease lesion (bottom right).

Figure 7. Images showing the bite scars from parrotfish predation on a relocated D. *labyrinthiformis* (left) and P. strigosa (right) colonies during the 2-week monitoring

Reference Colonies

Seventy-two reference colonies representing nine species were mapped in the North hub, and 54 representing 13 species were mapped in the South hub in August 2020 (Table 4 and Appendix Table 9). No colonies had visible signs of diseases when mapped (Appendix Table 10). During the phase I 1-month event, only a subset of the reference colonies at each hub were monitored, and one *P. strigosa* colony in the North hub and one *P. clivosa* colony in the South hub were recorded with disease lesions (Appendix Table 11 and Appendix Table 12). Although with measurable tissue loss, both colonies were not recorded with recent mortality during the phase I 3-month event (Appendix Table 11 and Appendix Table 12). During the 9-month phase I and phase II initial monitoring event (May 2021), 62 reference colonies at the North hub were found and monitored with no record of recent colony mortality. At the South hub, 43 reference colonies were found and monitored and only one *O. faveolata* colony had recent colony mortality (1% attributed to predation). Appendix Table 11 and Appendix Table 12 include monitoring data for the subset of reference colonies. Appendix Table 13 includes data for all reference colonies monitored in May 2021.

Table 4. Reference colonies mapped, mean colony diameter, and number monitored at the North and South hubs at initial mapping in August 2020.

		North Hub		South Hub			
Species	# Colonies	Mean Diameter (cm)	# Monitored	# Colonies	Mean Diameter (cm)	# Monitored	
M. cavernosa	44	28.4	3	5	28.4	3	
O. faveolata	6	51.0	2	6	57.3	3	
O. annularis	5	42.2	3	0	0.0	0	
P. strigosa	5	23.9	3	10	17.3	4	
O. franksi	4	58.5	3	3	34.3	3	
M. meandrites	3	7.0	3	9	12.0	3	
D. labyrinthiformis	2	6.0	2	2	13.5	2	
M. aliciae	2	11.5	2	2	12.0	2	
E. fastigiata	1	7.0	1	6	10.8	3	
D, stokesii	0	0.0	0	7	6.3	3	
S. bournoni	0	0.0	0	1	17.5	1	
C. natans	0	0.0	0	1	21.0	1	
P .clivosa	0	0.0	0	1	30.0	1	
A. lamarcki	0	0.0	0	1	28.0	0	
Total	72		22	54		29	

Conclusions

The goal of this project was to establish the first spawning hub sites in the Coral ECA. Spawning hubs promote species recovery by facilitating recruitment driven by natural sexual reproduction and by providing sites where efficient spawning observations and gamete capture can occur. Spawning observations advance our understanding of stony coral reproductive ecology while gamete capture supports our ability to rear larvae in land-based nurseries furthering species recovery opportunities.

The multi-year SCTLD disease event significantly reduced the abundance of many Coral ECA stony coral species; therefore, restoration activities which promote species recovery are required. The creation of spawning hubs is a restoration activity that includes colony relocation. The severity of the SCTLD event highlighted potential risks associated with relocating corals. These risks include relocation stress-related mortality of the relocated colonies, which would contribute to additional species loss and be an inefficient use of resources. The introduction of new colonies may potentially increase the risk of mortality to stony corals present at the hub sites either through the introduction of visually healthy but diseased colonies or and increase in tissue density in the area that may drive increase disease prevalence. Recognizing these risks and rewards, Phase I targeted only two sites and included limited numbers of one stony coral species, *P. clivosa*. The success of phase I supported the phase II effort with the addition *P. strigosa*, *O. faveolata*, and *D. labyrinthiformis* to the hubs.

Four relocated *P. clivosa* colonies at the North hub that were recorded with disease related recent mortality during the phase I 3-month monitoring event. All four of the colonies recovered. Three of these four colonies had predation-related recent mortality (all less than 3% of the colony) recorded prior to disease, but there were 26 additional North hub colonies with recent mortality attributed to predation that were not observed with disease. Twenty-nine South hub colonies with recent mortality attributed to predation were recorded during at least one monitoring event, but no colonies had disease-related recent mortality. Disease-related recent mortality was recorded on one reference colony in each hub during the 1-month monitoring event, but both colonies recovered with no recent mortality recorded during the 3-month event. There does not appear to be information recorded during the monitoring events that would permit identification of drivers associated with these four colonies that were diseased. These colonies may have been diseased when collected but had no visual signs. The final result is that there was no significant loss to the relocated or reference colonies associated with disease during either project phase.

Based on the success of this project, we recommend not only expanding the current hubs with additional mature *P. strigosa*, *O. faveolata*, and *D. labyrinthiformis* colonies, but also adding sexually produced juvenile colonies of less abundant species such as *Colpophyllia natans*, and establishing multi-species hubs in additional Coral ECA reef habitats (i.e., middle and outer reefs). We also recommend that these and future hubs be utilized to support spawning observations and gamete collections We recommend relocated colony monitoring should occur within a month post-relocation and again 3-6 months post-relocation. A subset of established relocated colonies and reference colonies in these sites should also be included during these monitoring events. A monitoring event prior to utilization of the hubs during spawning events would also be recommended. There remains much to be learned about Coral ECA stony coral reproduction and stony coral larval rearing, and the hubs provide excellent support for those studies. Hub sites should be incorporated into greater regional efforts similar to those proposed by the Florida Keys Seven Iconic Reefs project. Spawning hub colonies and hub management activities provide a unique opportunity to support potentially many additional research projects beyond the initial restoration goals.

Literature Cited

- Figueiredo, J. 2019. Optimal placement of coral restoration projects to enhance reef resilience: a management tool. Final Report. NOAA. pp. 74.
- Figueiredo J., Baird A.H., Connolly S.R. 2013. Synthesizing larval competence dynamics and reef-scale retention reveals a high potential for self-recruitment in corals. *Ecology* 94(3), 650-659.
- Frys C., Saint-Amand A., Le Hénaff M., Figueiredo J., Kuba A., Walker B., Lambrechts J., Vallaeys V., Vincent D., Hanert E. 2020. Fine-scale coral connectivity pathways in the Florida Reef Tract: Implications for conservation and restoration. *Frontiers of Marine Science* 7, 312.
- Gilliam, D.S., Hayes, N.K., Ruzicka, R., and Colella, M. 2021a. Southeast Florida Coral Reef Evaluation and Monitoring Project 2020 Year 18 Final Report. Florida DEP & FWC. Miami Beach, FL. pp. 66.
- Johns, G.M., Leeworthy, V.R., Bell, F.W., and Bonn, M.A. 2001. Socioeconomic study of reefs in southeast Florida. Final Report. Hazen and Sawyer Environmental Engineers & Scientists. 348 pp.
- Johns, G.M, Milon, J.W., and Sayers, D. 2004. Socioeconomic study of reefs in Martin County, FL. Final Report Hazen and Sawyer Environmental Engineers & Scientists. 120 pp.
- Jordan, A. C. 2018. Patterns in Caribbean Coral Spawning. M.S. thesis, Nova Southeastern University.
- National Academies of Sciences, Engineering, and Medicine 2019. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC: The National Academies Press. https://doi.org/10.17226/25424.
- SCTLD Case Definition (2018). Florida Coral Disease Response Research & Epidemiology Team. Accessed: June 10, 2021. Link: https://floridadep.gov/sites/default/files/Copy%20of%20StonyCoralTissueLossDisease_CaseDefinition%20final%2010022018.pdf.
- Storlazzi, C.D., Reguero, B.G., Cole, A.D., Lowe, E., Shope, J.B., Gibbs, A.E., Nickel, B.A., McCall, R.T., van Dongeren, A.R., and Beck, M.W. 2019. Rigorously valuing the role of U.S. coral reefs in coastal hazard risk reduction: U.S. Geological Survey Open-File Report 2019–1027, 42 p., https://doi.org/10.3133/ofr20191027.
- Van Veghel, M.L.J. 1994. Reproductive characteristics of the polymorphic Caribbean reef building coral *Montastraea annularis*. I. Gametogenesis and spawning behavior. *Mar. Ecol. Prog. Ser.* 109:211-227.
- Van Veghel, M.L.J., Kahmann, M.E.H. 1994. Reproductive characteristics of the polymorphic Caribbean reef building coral *Montastraea annularis*. II. Fecundity and colony structure. *Mar. Ecol. Prog. Ser.* 109:211-227
- Vermeij, M.J.A., Chamberland, V.F., and Marhaver, K.L. Coral Spawning Predictions, Southern Caribbean 2007–2020. CARMABI, Curacao.
- Walton, C.J., Hayes, N.K., Gilliam, D.S. 2018. Impacts of a regional, multi-year, multi-species coral disease outbreak in Southeast Florida. *Frontiers in Marine Science* 5: 323.
- Weil, E. and Vargas, W.L. 2010. Comparative aspects of sexual reproduction in the Caribbean coral genus *Diploria* (Scleractinia: Faviidae). *Mar. Biol.* 157, 413–426. https://doi.org/10.1007/s00227-009-1328-5.

Acknowledgements

Funding for this project was provided by the State of Florida, as administered by the Office of Resilience and Coastal Protection – Southeast Region, within the Florida Department of Environmental Protection. Thanks to the DEP CRCP staff including Kristi Kerrigan for contract and report-review coordination. We thank the Florida Coral Disease Advisory Committee and the Southeast Florida Coral Reef Initiative Technical Advisory Committee for several valuable spawning hub discussions. We also thank Lisa Gregg for assisting with permitting and many NSU graduate student research assistants for diving and lab assistance.

Appendices

Appendix Table 1. Phase I summary information for the *P. clivosa* colony donor sites and the tag number and distance and bearing from the hub center pin for each relocated colony. Refer to Figure 3 for donor site map locations.

Hub	Tag	Relocation Date	Donor Site	Latitude (dd)	Longitude (dd)	Depth (m)	Distance (m)	Bearing (degrees)
North	700	7/28/2020	1	26.15459	-80.09783	5	4.5	210
North	701	7/28/2020	2	26.15509	-80.09783	5	3.2	240
North	702	7/28/2020	3	26.15462	-80.09783	5	2.15	210
North	703	7/28/2020	4	26.15370	-80.09779	5	3.9	220
North	705	7/28/2020	5	26.15550	-80.09781	5	3.5	295
North	706	7/28/2020	6	26.15416	-80.09787	5	6	210
North	711	8/10/2020	21	26.15780	-80.09676	5	0.7	80
North	714	8/10/2020	22	26.15785	-80.09618	5	6.2	180
North	715	8/10/2020	23	26.15731	-80.09626	5	2.5	70
North	740	8/10/2020	24	26.15818	-80.09576	5	3.4	185
North	770	8/10/2020	25	26.15826	-80.09630	5	3.4	200
North	726	8/11/2020	26	26.15740	-80.09762	4	1.7	280
North	737	8/11/2020	27	26.15741	-80.09805	4	3.2	275
North	789	8/11/2020	28	26.15696	-90.09764	5	2.5	300
North	808	8/11/2020	29	26.15781	-80.09762	5	2.7	280
North	727	8/12/2020	30	26.08080	-80.10843	2	2.1	150
North	729	8/12/2020	31	26.08080	-80.10798	3	3.5	150
North	759	8/12/2020	32	26.08037	-80.10797	3	4.1	140
North	774	8/12/2020	33	26.08080	-80.10752	3	2.7	130
North	784	8/12/2020	34	26.08110	-80.10761	3	5	190
North	804	8/12/2020	35	26.08128	-80.10799	4	3	130
North	738	8/18/2020	48	26.06062	-80.10851	4	1.3	150
North	747	8/18/2020	49	26.06103	-80.10851	4	1.2	130
North	757	8/18/2020	50	26.06112	-80.10876	4	2.5	220
North	788	8/18/2020	51	26.06016	-80.10876	4	1.9	180
North	820	8/18/2020	52	26.06068	-80.10870	4	5.4	180
North	746	9/1/2020	53	26.21370	-80.08408	3	0.9	220
North	756	9/1/2020	54	26.21414	-80.08406	3	2.1	260
North	779	9/1/2020	55	26.18697	-80.08795	4	5.1	180
North	817	9/1/2020	56	26.14858	-80.09612	5	2.75	150

Appendix Table 1. Continued.

Hub	Tag	Relocation Date	Donor Site	Latitude (dd)	Longitude (dd)	Depth (m)	Distance (m)	Bearing (degrees)
South	704	8/5/2020	7	25.97626	-80.11469	5	3	335
South	707	8/5/2020	8	25.97672	-80.11515	5	3.8	355
South	708	8/5/2020	9	25.97674	-80.11513	4	3.8	340
South	713	8/5/2020	10	25.97627	-80.11515	5	2.6	360
South	716	8/5/2020	11	25.97580	-80.11517	5	2.1	335
South	717	8/5/2020	12	25.97653	-80.11473	4	4.5	345
South	710	8/7/2020	13	25.99092	-80.11442	5	2.7	175
South	712	8/7/2020	14	25.99049	-80.11444	5	2.2	180
South	720	8/7/2020	15	25.99258	-80.11345	5	2.5	300
South	801	8/7/2020	16	25.99477	-80.11320	5	3.2	200
South	805	8/7/2020	17	25.99522	-80.11321	5	2.6	270
South	811	8/7/2020	18	25.99165	-80.11321	5	2	230
South	812	8/7/2020	19	25.99474	-80.11271	5	3.75	230
South	815	8/7/2020	20	25.99172	-80.11370	5	4.7	230
South	709	8/14/2020	36	26.00118	-80.11325	5	4.4	280
South	718	8/14/2020	37	26.04729	-80.10907	5	3.7	210
South	728	8/14/2020	38	26.00115	-80.11371	5	3.5	190
South	730	8/14/2020	39	26.01729	-80.11282	5	2.15	240
South	750	8/14/2020	40	26.04825	-80.10903	5	2.9	30
South	760	8/14/2020	41	26.04782	-80.10940	5	1.6	10
South	766	8/14/2020	42	26.00165	-80.11325	5	2.5	150
South	768	8/14/2020	43	26.04745	-80.10936	5	2.8	200
South	771	8/14/2020	44	26.04779	-80.10853	6	2.2	20
South	772	8/14/2020	45	26.04775	-80.10948	5	1.65	30
South	796	8/14/2020	46	26.01727	-80.11237	5	3.5	160
South	803	8/14/2020	47	26.01779	-80.11236	5	3.1	140
South	797	9/2/2020	57	26.01442	-80.11232	6	2.1	300
South	807	9/2/2020	58	26.07936	-80.10401	5	1.3	270
South	809	9/2/2020	59	26.07786	-80.10401	5	1.6	220
South	819	9/2/2020	37	26.04729	-80.10907	6	2.3	340

17

Appendix Table 2. Phase I initial (day of relocation) colony summary data for the 30 relocated P. clivosa colonies in each hub. Percent colony mortality are presented in 10% bins. Refer to Appendix Table 1 for additional information (* = colonies which experienced fish predation the same as day they were relocated).

		Diameter	Height	%
Hub	Tag	(cm)	(cm)	Mortality
North	700	44	12	1-10
North	701	24	4	1-10
North	702	41	12	1-10
North	703	30	7	1-10
North	705	30	10	1-10
North	706	53	13	1-10
North	711	18	6	0
North	714	50	12	1-10
North	715	46	10	1-10
North	740	42	10	1-10
North	770	32	10	1-10
North	726	35	10	1-10
North	737	32	7	11-20
North	789	30	10	1-10
North	*808	30	15	1-10
North	*727	25	10	1-10
North	*729	37	10	1-10
North	759	27	12	1-10
North	774	52	11	1-10
North	784	50	21	1-10
North	804	28	7	1-10
North	738	34	12	1-10
North	747	27	5	1-10
North	757	35	14	1-10
North	788	40	10	1-10
North	820	43	8	1-10
North	746	34	6	1-10
North	756	39	10	11-20
North	779	40	14	1-10
North	817	28	12	1-10

	_	Diameter	Height	%
Hub	Tag	(cm)	(cm)	Mortality
South	704	33	6	1-10
South	707	26	7	1-10
South	708	45	8	11-20
South	713	35	8	1-10
South	716	40	7	1-10
*South	717	32	5	1-10
South	710	45	10	1-10
South	712	49	11	1-10
*South	720	29	4	1-10
South	801	42	6	0
*South	805	32	6	1-10
*South	811	30	7	1-10
*South	812	38	5	1-10
*South	815	20	7	1-10
South	709	58	8	1-10
South	718	40	5	1-10
South	728	26	5	1-10
South	730	43	4	1-10
South	750	40	6	1-10
South	760	27	5	1-10
South	766	47	8	1-10
South	768	41	6	1-10
South	771	36	5	1-10
South	772	40	4	1-10
South	796	29	6	11-20
South	803	36	3	1-10
South	797	41	9	1-10
South	807	25	6	1-10
South	809	35	16	1-10
South	819	34	6	1-10

Appendix Table 3. Phase II summary information for the colony donor sites and the tag number and distance and bearing from the hub center pin for each relocated colony: *O. faveolata* (OFAV), *P. strigosa* (PSTR), and *D. labyrinthiformis* (DLAB). Refer to Figure 3 for donor site map locations.

Hub	Species	Tag	Collection Date	Latitude (dd)	Longitude (dd)	Depth (m)	Distance (m)	Bearing (degrees)
North	PSTR	917	5/7/2021	26.04834	-80.10899	20	4.5	100
North	PSTR	918	5/7/2021	26.04809	-80.10857	20	4.8	100
North	PSTR	919	4/1/2021	26.16590	-80.10065	15	5.3	100
North	PSTR	920	4/26/2021	26.13608	-80.08987	25	4.8	100
North	PSTR	921	5/7/2021	26.04814	-80.10800	21	5.3	100
North	OFAV	922	5/11/2021	26.16078	-80.08793	25	6	170
North	OFAV	923	4/30/2021	26.19302	-80.08433	35	6.3	170
North	OFAV	924	4/26/2021	26.13608	-80.08970	24	6	170
North	OFAV	928	5/11/2021	26.15557	-80.08933	27	6.3	170
North	OFAV	929	5/11/2021	26.16023	-80.08793	28	6	170
North	DLAB	914	5/7/2021	26.00055	-80.10096	21	5.6	60
North	DLAB	915	5/7/2021	26.00004	-80.10050	19	5.5	60
North	DLAB	916	5/7/2021	25.99950	-80.09972	35	5.5	60
South	DLAB	909	5/7/2021	25.97585	-80.09975	35	1.9	90
South	DLAB	910	5/7/2021	26.00000	-80.10000	33	1.6	100
South	DLAB	911	5/7/2021	25.99915	-80.10004	36	1.6	110
South	DLAB	912	5/7/2021	25.99965	-80.10080	37	2.1	100
South	DLAB	913	5/7/2021	25.99936	-80.10044	37	2.6	100
South	DLAB	931	5/28/21	26.06637	-80.09643	15	1.8	115
South	DLAB	930	5/28/21	26.06612	-80.09640	15	2.4	110
South	OFAV	925	5/7/2021	25.97565	-80.10000	24	3.5	300
South	OFAV	926	5/7/2021	26.00065	-80.10080	30	3.9	300
South	OFAV	927	5/7/2021	26.00042	-80.10035	32	4.3	300
South	PSTR	900	4/8/2021	25.97700	-80.11022	16	5.5	170
South	PSTR	901	4/8/2021	25.97820	-80.10978	23	4.6	175
South	PSTR	902	5/7/2021	26.04878	-80.10940	20	5.3	175
South	PSTR	903	5/7/2021	26.04925	-80.10898	20	5.9	175
South	PSTR	904	4/30/2021	26.19302	-80.08433	25	4.8	180
South	PSTR	905	5/7/2021	26.04750	-80.10820	17	5.5	180
South	PSTR	906	5/7/2021	26.04865	-80.10857	15	5.8	185
South	PSTR	907	5/7/2021	26.04725	-80.10767	15	5.1	185

Appendix Table 4. Phase II initial colony summary data for the 31 relocated colonies of *O. faveolata* (OFAV), *P. strigosa* (PSTR), and *D. labyrinthiformis* (DLAB) in each hub (May 2021). Percent colony mortality are presented in 10% bins.

Hub	Species	Tag	Diameter (cm)	% OM	% RM	Condition
North	PSTR	917	21	1-10	0	
North	PSTR	918	27	1-10	0	
North	PSTR	919	21	1-10	0	
North	PSTR	920	27	1-10	0	
North	PSTR	921	25	1-10	0	
North	OFAV	922	20	1-10	0	
North	OFAV	923	27	1-10	0	
North	OFAV	924	21	1-10	0	
North	OFAV	928	30	1-10	0	
North	OFAV	929	27	1-10	0	
North	DLAB	914	20	21-30	0	
North	DLAB	915	18	0	0	
North	DLAB	916	21	1-10	0	
South	DLAB	909	27	1-10	0	
South	DLAB	910	28	1-10	0	
South	DLAB	911	25	1-10	0	
South	DLAB	912	29	1-10	0	
South	DLAB	913	24	1-10	0	
South	DLAB	931	25	1-10	0	
South	DLAB	930	28	1-10	0	
South	OFAV	925	29	1-10	0	
South	OFAV	926	27	11-20	0	
South	OFAV	927	29	1-10	0	
South	PSTR	900	30	1-10	0	
South	PSTR	901	28	1-10	0	
South	PSTR	902	30	1-10	0	
South	PSTR	903	30	1-10	0	
South	PSTR	904	27	1-10	0	
South	PSTR	905	35	1-10	0	
South	PSTR	906	19	1-10	0	
South	PSTR	907	26	1-10	0	

Appendix Table 5. Phase I 1-month monitoring event colony summary data for the 30 relocated *P. clivosa* colonies in each hub. Percent colony mortality are presented in 10% bins. Refer to Appendix Table 1 for additional information (CEM = cement burns; PRD = predation; UNK = unknown).

Hub	Tag#	% OM	%RM	Condition
North	700	1-10	0	
				CEM &
North	701	1-10	1-10	PRD
North	702	1-10	1-10	PRD
North	703	1-10	0	
North	705	1-10	0	
North	706	1-10	1-10	PRD
North	711	0	0	
North	714	1-10	0	
North	715	1-10	1-10	PRD
North	726	1-10	1-10	PRD
North	727	1-10	1-10	PRD
North	729	1-10	1-10	
North	737	11-20	1-10	PRD
North	738	1-10	1-10	PRD
North	740	1-10	1-10	PRD
North	746	1-10	0	
North	747	1-10	0	
North	756	1-10	0	
North	757	1-10	0	
North	759	1-10	1-10	CEM
North	770	1-10	1-10	PRD
North	774	1-10	1-10	PRD
North	779	1-10	1-10	PRD
North	784	1-10	0	
North	788	1-10	1-10	PRD
North	789	1-10	1-10	PRD
North	804	1-10	0	
North	808	1-10	0	
North	817	1-10	1-10	PRD
North	820	1-10	0	

Hub	Tag#	% OM	%RM	Condition
South	704	1-10	0	
South	707	1-10	0	
South	708	11-20	0	
South	709	1-10	0	UNK
South	710	1-10	0	
South	712	1-10	0	
South	713	1-10	1-10	PRD
South	716	1-10	1-10	PRD
South	717	1-10	1-10	PRD
South	718	1-10	0	
South	720	1-10	1-10	PRD
South	728	1-10	0	
South	730	1-10	0	
South	750	1-10	0	
South	760	1-10	0	
South	766	1-10	0	
South	768	1-10	0	
South	771	1-10	1-10	PRD
South	772	1-10	1-10	PRD
South	796	1-10	1-10	PRD
South	797	1-10	0	
South	801	1-10	0	
South	803	1-10	0	
South	805	1-10	1-10	
South	807	1-10	1-10	PRD
South	809	1-10	0	
South	811	1-10	1-10	PRD
South	812	1-10	1-10	PRD
South	815	1-10	0	
South	819	1-10	0	

Appendix Table 6. Phase I 3-month monitoring event colony summary data for the 30 relocated *P. clivosa* colonies in each hub. Percent colony mortality are presented in 10% bins. Refer to Appendix Table 1 for additional information (PRD = predation).

Hub	Tag#	% OM	% RM	Condition	Hub	Tag#	% OM	% RM	Condition
North	700	1-10	0		South	704	1-10	0	
North	701	1-10	0		South	707	1-10	0	
North	702	11-20	0		South	708	11-20	0	
North	703	1-10	1-10	PRD	South	709	1-10	0	
North	705	1-10	0		South	710	1-10	1-10	PRD
North	706	1-10	1-10	PRD	South	712	1-10	0	
North	711	0	0		South	713	1-10	1-10	PRD
North	714	1-10	1-10	PRD	South	716	1-10	0	
North	715	1-10	21-30	Disease	South	717	1-10	1-10	PRD
North	726	1-10	1-10	PRD	South	718	1-10	1-10	PRD
North	727	1-10	1-10	PRD	South	720	1-10	1-10	PRD
North	729	1-10	11-20	Disease	South	728	1-10	0	
North	737	11-20	1-10	UNK	South	730	1-10	0	
North	738	1-10	0		South	750	1-10	1-10	PRD
North	740	1-10	1-10	PRD	South	760	1-10	1-10	PRD
North	746	1-10	11-20	DIS	South	766	1-10	1-10	PRD
North	747	1-10	1-10	PRD	South	768	1-10	0	
North	756	1-10	1-10	PRD	South	771	1-10	1-10	PRD
North	757	1-10	0		South	772	1-10	0	
North	759	1-10	1-10	PRD	South	796	1-10	11-20	PRD
North	770	1-10	1-10	Disease	South	797	11-20	1-10	PRD
North	774	1-10	1-10	PRD	South	801	1-10	0	
North	779	1-10	1-10	PRD	South	803	1-10	0	
North	784	1-10	1-10	PRD	South	805	1-10	1-10	PRD
North	788	1-10	1-10	PRD	South	807	1-10	1-10	PRD
North	789	1-10	1-10	PRD	South	809	1-10	1-10	PRD
North	804	1-10	1-10	PRD	South	811	1-10	0	
North	808	1-10	0		South	812	1-10	1-10	PRD
North	817	1-10	1-10	PRD	South	815	1-10	0	
North	820	1-10	0	Pale	South	819	1-10	1-10	PRD

Appendix Table 7. Phase I 9-month monitoring event colony summary data for the 30 relocated *P. clivosa* colonies in each hub. Percent colony mortality are presented in 10% bins. Refer to Appendix Table 1 for additional information (PRD = predation).

Hub	Tag#	% OM	% RM	Condition	Hub	Tag#	% OM	% RM	Condition
North	700	11-20	1-10	PRD	South	704	1-10	0	
North	701	1-10	0		South	707	1-10	1-10	PRD
North	702	1-10	0		South	708	21-30	1-10	PRD
North	703	1-10	0		South	709	1-10	0	
North	705	1-10	0		South	710	1-10	0	
North	706	1-10	1-10	PRD	South	712	1-10	0	
North	711	0	0		South	713	1-10	0	
North	714	1-10	0		South	716	1-10	0	
North	715	41-50	0		South	717	1-10	0	
North	726	1-10	0		South	718	1-10	0	
North	727	1-10	0		South	720	1-10	0	
North	729	41-50	0		South	728	1-10	0	
North	737	11-20	0		South	730	1-10	0	
North	738	1-10	0		South	750	1-10	0	
North	740	1-10	0		South	760	1-10	0	
North	746	61-70	0		South	766	1-10	0	
North	747	1-10	0		South	768	1-10	1-10	PRD
North	756	1-10	0		South	771	1-10	0	
North	757	1-10	0		South	772	1-10	0	
North	759	1-10	0		South	796	1-10	0	
North	770	11-20	0		South	797	11-20	0	
North	774	11-20	0		South	801	1-10	0	
North	779	1-10	0		South	803	1-10	0	
North	784	1-10	1-10	PRD	South	805	1-10	0	
North	788	1-10	0		South	807	1-10	1-10	PRD
North	789	1-10	0		South	809	1-10	0	
North	804	1-10	0		South	811	1-10	0	
North	808	1-10	0		South	812	1-10	0	
North	817	1-10	0		South	815	1-10	0	
North	820	1-10	0		South	819	1-10	0	

Appendix Table 8. Phase II 2-week summary data for the relocated colonies of *O. faveolata* (OFAV), *P. strigosa* (PSTR), and *D. labyrinthiformis* (DLAB) at the South Hub. Percent colony mortality are presented in 10% bins.

Hub	Species	Tag	Diameter (cm)	% OM	% RM	Condition
South	DLAB	909	27	1-10	1-10	PRD
South	DLAB	910	28	1-10	1-10	PRD
South	DLAB	911	25	1-10	0	
South	DLAB	912	29	1-10	1-10	PRD
South	DLAB	913	24	1-10	1-10	PRD
South	OFAV	925	29	1-10	0	
South	OFAV	926	27	11-20	0	
South	OFAV	927	29	1-10	0	
South	PSTR	900	30	1-10	0	
South	PSTR	901	28	1-10	1-10	PRD
South	PSTR	902	30	1-10	0	
South	PSTR	903	30	1-10	1-10	PRD
South	PSTR	904	27	1-10	1-10	PRD
South	PSTR	905	35	1-10	1-10	PRD
South	PSTR	906	19	1-10	1-10	PRD
South	PSTR	907	26	1-10	1-10	PRD

24

Appendix Table 9. Summary information for the reference colonies at both hub sites including distance and bearing from the hub center pin.

Hub	Species	Colony	Distance (m)	Bearing (deg)
North	M. cavernosa	1	8	0
North	M. cavernosa	2	7	10
North	D. labyrinthiformis	3	24	10
North	M. cavernosa	4	26	20
North	M. cavernosa	5	11.5	40
North	M. cavernosa	6	13	50
North	M. cavernosa	7	16.5	50
North	M. cavernosa	8	16.3	55
North	M. cavernosa	9	13.5	60
North	M. cavernosa	10	20.3	60
North	O. annularis	11	26	60
North	M. cavernosa	12	25	70
North	O. annularis	13	22	75
North	P. strigosa	14	22	75
North	M. cavernosa	16	22.7	85
North	M. cavernosa	17	3.5	90
North	O. faveolata	18	17	90
North	M. cavernosa	19	24	90
North	M. cavernosa	20	14.3	100
North	P. strigosa	21	20.9	100
North	M. cavernosa	22	6	110
North	M. cavernosa	23	19.9	120
North	M. cavernosa	24	20.2	120
North	M. cavernosa	25	23.7	130
North	M. cavernosa	26	2.5	131
North	M. meandrites	27	21.9	140
North	M. cavernosa	28	22.25	140
North	M. cavernosa	29	13.2	145
North	D. labyrinthiformis	30	20.4	145
North	M. cavernosa	31	21.4	145
North	M. cavernosa	32	12.4	150
North	M. cavernosa	33	18	150
North	O. franksi	34	24	150
North	M. cavernosa	35	15.3	155
North	P. strigosa	36	6.3	160
North	M. cavernosa	37	13.9	160

25

Appendix Table 9. Continued

Hub	Species	Colony	Distance (m)	Bearing (deg)
North	M. aliciae	38	13.9	160
North	O. franksi	39	23.7	160
North	O. faveolata	40	8.6	165
North	O. franksi	41	9.1	180
North	O. faveolata	42	5.5	238
North	O. faveolata	43	5.1	240
North	M. cavernosa	44	9.7	240
North	M. cavernosa	45	12.2	260
North	O. annularis	46	7.6	270
North	M. cavernosa	47	17.4	270
North	M. cavernosa	48	20.3	270
North	O. annularis	49	7.3	275
North	M. cavernosa	50	7.4	280
North	M. cavernosa	51	12.5	280
North	P. strigosa	52	15.6	280
North	M. cavernosa	53	17.9	280
North	O. faveolata	54	20.6	280
North	M. cavernosa	55	20.7	280
North	M. cavernosa	56	20.2	290
North	O. annularis	57	20.4	290
North	M. cavernosa	58	20.9	290
North	M. aliciae	59	12.8	295
North	M. cavernosa	60	19.5	295
North	M. cavernosa	61	7.4	300
North	M. cavernosa	62	16.7	300
North	M. cavernosa	63	18.1	300
North	E. fastigiata	64	18.6	300
North	M. cavernosa	65	17.8	305
North	P. strigosa	66	15.2	310
North	M. meandrites	67	16.4	310
North	M. cavernosa	68	16.7	310
North	O. faveolata	69	8.5	315
North	M. meandrites	70	11.1	315
North	M. cavernosa	72	9	340
North	M. cavernosa	73	11.4	340
North	O. franksi	74	9	345

Appendix Table 9. Continued

Hub	Species	Colony	Distance (m)	Bearing (deg)
South	M. cavernosa	1	11	20
South	M. cavernosa	2	5	30
South	O. faveolata	3	9	30
South	P. strigosa	4	8	60
South	M. meandrites	5	23	60
South	E. fastigiata	6	7.7	110
South	E. fastigiata	7	21.2	110
South	E. fastigiata	8	22.2	115
South	A. lamarcki	10	13	120
South	D. stokesii	11	21.2	120
South	D. stokesii	12	6.6	125
South	P. strigosa	13	8.5	130
South	M. meandrites	14	9.5	130
South	P. strigosa	15	21.7	130
South	O. faveolata	16	21.9	145
South	O. faveolata	17	22	145
South	O. faveolata	18	22	145
South	M. meandrites	19	19.1	150
South	S. bournoni	20	16.3	155
South	P. strigosa	21	7.5	175
South	O. faveolata	22	20	190
South	M. cavernosa	23	12.5	240
South	M. cavernosa	24	13	240
South	D. stokesii	25	22.3	240
South	O. faveolata	26	22.1	250
South	P. strigosa	27	17.5	260
South	P. strigosa	28	20.3	260
South	P. strigosa	29	17.3	280
South	P. strigosa	30	20.3	280
South	M. meandrites	31	16.1	290
South	E. fastigiata	32	16.5	290
South	M. cavernosa	33	17.9	290
South	M. aliciae	34	9.7	300
South	M. meandrites	35	16	305

Appendix Table 9. Continued

Hub	Species	Colony	Distance (m)	Bearing (deg)
South	M. meandrites	37	15.7	310
South	D. stokesii	38	16.4	310
South	P. strigosa	39	6.4	320
South	D. stokesii	40	11.3	320
South	M. meandrites	41	14.2	320
South	D. stokesii	42	19.5	320
South	M. meandrites	43	20.7	320
South	P. clivosa	44	22.2	320
South	P. strigosa	45	6.7	325
South	C. natans	46	16.8	325
South	O. franksi	47	20.2	325
South	D. labyrinthiformis	48	19.4	330
South	E. fastigiata	49	24.5	330
South	D. stokesii	50	4.8	335
South	D. labyrinthiformis	51	9.5	335
South	O. franksi	52	21.5	335
South	M. aliciae	53	18.4	340
South	O. franksi	54	24	340
South	E. fastigiata	55	4.2	345

Appendix Table 10. Initial monitoring event colony summary data for the reference colonies in each hub. Percent colony mortality are presented in 10% bins. Refer to Appendix Table 10 for additional information.

Hub	Species	Colony #	Dia. (cm)	Height (cm)	% OM	% RM	Condition
North	M. cavernosa	1	34	14	1-10	0	
North	M. cavernosa	2	14	6	11-20	0	
North	D. labyrinthiformis	3	6	3	1-10	0	
North	M. cavernosa	4	22	10	1-10	0	
North	M. meandrites	5	11	3	0	0	
North	M. cavernosa	5	35	30	61-70	0	
North	M. cavernosa	6	45	36	1-10	0	
North	M. cavernosa	7	12	3	0	0	Pale
North	M. cavernosa	8	20	6	0	0	
North	M. cavernosa	9	45	20	81-90	0	
North	M. cavernosa	10	36	11	1-10	0	
North	O. annularis	11	50	32	21-30	0	Partial bleach
North	M. cavernosa	12	9	4	0	0	
North	O. annularis	13	21	14	61-70	0	
North	P. strigosa	14	38	8	1-10	0	
North	M. cavernosa	16	35	16	71-80	0	Cliona spp.
North	M. cavernosa	17	10	5	1-10	0	
North	O. faveolata	18	80	28	71-80	0	
North	M. cavernosa	19	42	15	1-10	0	
North	M. cavernosa	20	12	5	1-10	0	
North	P. strigosa	21	9	3	1-10	0	
North	M. cavernosa	22	10	6	1-10	0	
North	M. cavernosa	23	47	30	41-50	0	
North	M. cavernosa	24	50	21	21-30	0	
North	M. cavernosa	25	52	17	21-30	0	
North	M. cavernosa	26	13	10	1-10	0	
North	M. meandrites	27	6	2	1-10	0	
North	M. cavernosa	28	11	8	1-10	0	
North	M. cavernosa	29	85	50	51-60	0	Cliona spp.
North	D. labyrinthiformis	30	6	2	0	0	
North	M. cavernosa	31	8	13	61-70	0	
North	M. cavernosa	32	35	12	41-50	0	
North	M. cavernosa	33	10	3	1-10	0	
North	O. fransksi	34	82	45	51-60	0	

Appendix Table 10. Continued

Hub	Species	Colony #	Dia. (cm)	Height (cm)	% OM	% RM	Condition
North	M. cavernosa	35	27	8	1-10	0	
North	P. strigosa	36	15	4	21-30	0	
North	M. cavernosa	37	12	7	1-10	0	
North	M. aliciae	38	13	2	0	0	
North	O. fransksi	39	37	17	61-70	0	
North	O. faveolata	40	77	49	11-20	0	Cliona spp.
North	O. fransksi	41	65	25	61-70	0	Cliona spp.
North	O. faveolata	42	44	29	91-99	0	
North	O. faveolata	43	45	30	1-10	0	
North	M. cavernosa	44	8	5	1-10	0	
North	M. cavernosa	45	25	7	1-10	0	Partial bleach
North	O. annularis	46	75	30	21-30	0	
North	M. cavernosa	47	12	5	1-10	0	
North	M. cavernosa	48	26	6	1-10	0	
North	O. annularis	49	30	20	51-60	0	
North	M. cavernosa	50	12	5	1-10	0	
North	M. cavernosa	51	42	15	41-50	0	
North	P. strigosa	52	25	7	1-10	0	
North	M. cavernosa	53	70	18	1-10	0	
North	O. faveolata	54	50	28	1-10	0	
North	M. cavernosa	55	35	11	1-10	0	
North	M. cavernosa	56	15	5	1-10	0	
North	O. annularis	57	35	25	51-60	0	
North	M. cavernosa	58	50	7	1-10	0	
North	M. aliciae	59	10	2	11-20	0	
North	M. cavernosa	60	55	30	51-60	0	
North	M. cavernosa	61	18	9	1-10	0	
North	M. cavernosa	62	27	7	1-10	0	
North	M. cavernosa	63	60	30	1-10	0	
North	E. fastigiata	64	7	4	0	0	
North	M. cavernosa	65	20	9	1-10	0	
North	P. strigosa	66	31	5	1-10	0	
North	M. meandrites	67	7	2	0	0	
North	M. cavernosa	68	30	15	1-10	0	
North	O. faveolata	69	50	40	61-70	0	

Appendix Table 10. Continued

Hub	Species	Colony #	Dia. (cm)	Height (cm)	% OM	% RM	Condition
North	M. meandrites	70	8	2	0	0	
North	M. cavernosa	72	25	10	21-30	0	
North	M. cavernosa	73	20	8	1-10	0	
North	O. fransksi	74	50	20	71-80	0	
South	M. cavernosa	1	68	34	81-90	0	
South	M. cavernosa	2	15	8	11-20	0	
South	O. faveolata	3	23	11	1-10	0	
South	P. strigosa	4	34	19	11-20	0	
South	E. fastigiata	6	20	4	1-10	0	
South	E. fastigiata	7	10	3	0	0	
South	E. fastigiata	8	13	6	0	0	
South	A. lamarcki	10	28	8	1-10	0	
South	D. stokesii	11	4	1	0	0	
South	D. stokesii	12	4	2	0	0	
South	P. strigosa	13	9	2	1-10	0	
South	M. meandrites	14	52	10	1-10	0	
South	P. strigosa	15	20	8	11-20	0	
South	O. faveolata	16	67	2	61-70	0	
South	O. faveolata	17	27	8	1-10	0	
South	O. faveolata	18	28	5	1-10	0	
South	M. meandrites	19	7	3	0	0	
South	S. bournoni	20	25	5	0	0	
South	P. strigosa	21	34	12	1-10	0	
South	O. faveolata	22	150	64	71-80	0	
South	M. cavernosa	23	12	11	1-10	0	
South	M. cavernosa	24	39	14	41-50	0	
South	D. stokesii	25	14	4	1-10	0	
South	O. faveolata	26	100	52	91-99	0	
South	P. strigosa	27	23	8	0	0	
South	P. strigosa	28	12	4	0	0	
South	P. strigosa	29	22	22	1-10	0	
South	P. strigosa	30	16	7	11-20	0	
South	M. meandrites	31	7	2	1-10	0	
South	E. fastigiata	32	9	4	1-10	0	
South	M. cavernosa	33	8	5	1-10	0	

Appendix Table 10. Continued

Hub	Species	Colony #	Dia. (cm)	Height (cm)	% OM	% RM	Condition
South	M. aliciae	34	12	3	1-10	0	
South	M. meandrites	35	5	1	0	0	
South	M. meandrites	36	6	1	0	0	
South	M. meandrites	37	4	1	0	0	
South	D. stokesii	38	4	4	1-10	0	
South	P. strigosa	39	13	5	1-10	0	
South	D. stokesii	40	4	2	0	0	
South	M. meandrites	41	8	1	1-10	0	
South	D. stokesii	42	8	5	0	0	
South	M. meandrites	43	8	2	1-10	0	
South	P. clivosa	44	30	10	1-10	1-10	Sediment
South	P. strigosa	45	7	2	1-10	0	
South	C. natans	46	8	2	0	0	
South	O. fransksi	47	33	17	11-20	0	
South	D. labyrinthiformis	48	20	12	1-10	0	
South	E. fastigiata	49	7	3	1-10	0	
South	D. stokesii	50	6	3	1-10	0	
South	D. labyrinthiformis	51	7	3	1-10	0	
South	O. fransksi	52	35	30	11-20	0	
South	M. aliciae	53	31	5	1-10	0	
South	O. fransksi	54	25	18	1-10	0	
South	E. fastigiata	55	6	2	0	0	

Appendix Table 11. 1-month and 3-month monitoring events colony summary data for a subset of reference colonies in the North hub. Percent colony mortality are presented in 10% bins. Refer to Appendix Table 8 and Appendix Table 9 for additional information (UNK = unknown condition).

			1-Month			3-Month			
Hub	Species	Colony #	% OM	% RM	Condition	% OM	% RM	Condition	
North	D. labyrinthiformis	3	1-10	0		1-10	0		
North	M. cavernosa	12	1-10	0				Not found	
North	O. annularis	13	61-70	0		51-60	1-10	UNK	
North	P. strigosa	14	1-10	0		1-10	0		
North	P. strigosa	21	1-10	0		0	0		
North	M. meandrites	27	1-10	0		1-10	0		
North	D. labyrinthiformis	30	0	0		1-10	0		
North	O. fransksi	34	51-60	1-10	PRD			Not found	
North	M. aliciae	38	0	0		0	0		
North	O. fransksi	39	41-50	0	PB			Not found	
North	O. faveolata	40	11-20	0	Cliona spp.	1-10	0	Cliona spp.	
North	O. faveolata	43	71-80	0		81-90	0		
North	O. annularis	46	11-20	0	Pale	11-20	0		
North	M. cavernosa	53	1-10	0		1-10	0		
North	O. annularis	57	51-60	0	PB	51-60	1-10		
North	M. cavernosa	58	1-10	0	Pale	1-10	0		
North	M. aliciae	59	1-10	0				Not found	
North	E. fastigiata	64	0	0		0	0		
North	P. strigosa	66	1-10	1-10	Disease	71-80	0		
North	M. meandrites	67	0	0		0	0		
North	M. meandrites	70	0	0		0	1-10		
North	O. fransksi	74	71-80	0		71-80	0		

Appendix Table 12. 1-month and 3-month monitoring events colony summary data for a subset of reference colonies in the South hub. Percent colony mortality are presented in 10% bins. Refer to Appendix Tables 8 and 9 for additional information (PB = partial bleaching; PRD = predation; UNK = unknown condition).

	T		1-Month			3-Month			
Hub	Species	Colony #	% OM	% RM	Condition	% OM	% RM	Condition	
South	M. cavernosa	2	1-10	0		0	0		
South	O. faveolata	3	1-10	0		1-10	0		
South	P. strigosa	4	11-20	0		1-10	0		
South	M. meandrites	5	0	0		0	0		
South	E. fastigiata	6	1-10	0		0	1-10	PB	
South	E. fastigiata	7	1-10	0		1-10	0	Pale	
South	A. lamarcki	10	1-10	0		1-10	0	PB	
South	M. meandrites	14	1-10	1-10	Sediment	1-10	0	Pale	
South	O. faveolata	16	61-70	0		61-70	0	Cliona spp.	
South	S. bournoni	20	51-60	0		61-70	0	Pale	
South	P. strigosa	21	1-10	0		1-10	0	Pale	
South	O. faveolata	22	61-70	0		71-80	0	Cliona spp.	
South	M. cavernosa	24	51-60	0		41-50	0		
South	D. stokesii	25	1-10	0		1-10	0		
South	P. strigosa	27	0	0		0	0		
South	M. cavernosa	33	1-10	0		1-10	0		
South	M. aliciae	34	0	0		0	0		
South	P. strigosa	39	1-10	0		1-10	1-10	PRD	
South	M. meandrites	41	0	0		1-10	0		
South	D. stokesii	42	0	0		0	0		
South	P. clivosa	44	1-10	1-10	Disease			Not found	
South	C. natans	46	0	0		0	0		
South	O. fransksi	47	11-20	0		11-20	0		
South	D. labyrinthiformis	48	1-10	0		0	0		
South	E. fastigiata	49	1-10	0		1-10	0		
South	D. stokesii	50	0	0		1-10	0		
South	D. labyrinthiformis	51	1-10	0		0	0		
South	O. fransksi	52	11-20	0		11-20	1-10	UNK	
South	M. aliciae	53	100	0		100	0		
South	O. fransksi	54	1-10	0	Pale	1-10	0		

Appendix Table 13. 9-month monitoring events colony summary data for a subset of reference colonies in both spawning hubs. Percent colony mortality are presented in 10% bins. Refer to Appendix Tables 10 and 11 for additional information (PRD = predation; UNK=unknown).

Hub	Species	Colony #	Dia. (cm)	Height (cm)	% OM	% RM	Condition
North	M. cavernosa	1	34	14	1-10	0	
North	M. cavernosa	2	14	6	1-10	0	
North	D. labyrinthiformis	3	6	3	0	0	
North	M. cavernosa	4	22	10	1-10	0	
North	M. cavernosa	5	35	30	71-80	0	
North	M. cavernosa	6	45	36	1-10	0	
North	M. cavernosa	7	12	3	0	0	
North	M. cavernosa	8	20	6	0	0	
North	M. cavernosa	9	45	20			Not found
North	M. cavernosa	10	36	11	1-10	0	
North	O. annularis	11	50	32	61-70	1-10	PRD
North	M. cavernosa	12	9	4	0	0	
North	O. annularis	13	21	14	51-60	0	
North	P. strigosa	14	38	8	11-20	0	
North	M. cavernosa	16	35	16	71-80	0	
North	M. cavernosa	17	10	5	0	0	
North	O. faveolata	18	80	28	71-80	0	
North	M. cavernosa	19	42	15	0	1-10	PRD
North	M. cavernosa	20	12	5	11-20	0	
North	P. strigosa	21	9	3	1-10	0	
North	M. cavernosa	22	10	6			Not found
North	M. cavernosa	23	47	30	21-30	0	
North	M. cavernosa	24	50	21	21-30	1-10	UNK
North	M. cavernosa	25	52	17			Not found
North	M. cavernosa	26	13	10	1-10	0	
North	M. meandrites	27	6	2	1-10	0	
North	M. cavernosa	28	11	8			Not found
North	M. cavernosa	29	85	50	61-70	0	
North	D. labyrinthiformis	30	6	2			Not found
North	M. cavernosa	31	8	13			Not found
North	M. cavernosa	32	35	12	31-40	0	
North	M. cavernosa	33	10	3			Not found
North	O. fransksi	34	82	45	51-60	0	

Appendix Table 13. Continued.

Hub	Species	Colony #	Dia. (cm)	Height (cm)	% OM	% RM	Condition
North	M. cavernosa	35	27	8	11-20	0	
North	P. strigosa	36	15	4	1-10	0	
North	M. cavernosa	37	12	7			Not found
North	M. aliciae	38	13	2			Not found
North	O. fransksi	39	37	17			Not found
North	O. faveolata	40	77	49	11-20	1-10	PRD
North	O. fransksi	41	65	25	81-90	1-10	Cliona spp.
North	O. faveolata	42	44	29	81-90	0	
North	O. faveolata	43	45	30	81-90	0	
North	M. cavernosa	44	8	5	91-99	0	
North	M. cavernosa	45	25	7	91-99	0	
North	O. annularis	46	75	30	31-40	0	
North	M. cavernosa	47	12	5	1-10	0	
North	M. cavernosa	48	26	6	1-10	0	
North	O. annularis	49	30	20	61-70	0	
North	M. cavernosa	50	12	5	1-10	0	
North	M. cavernosa	51	42	15	61-70	0	
North	P. strigosa	52	25	7	11-20	0	
North	M. cavernosa	53	70	18	1-10	0	
North	O. faveolata	54	50	28	1-10	0	
North	M. cavernosa	55	35	11	1-10	0	
North	M. cavernosa	56	15	5	1-10	0	
North	O. annularis	57	35	25	51-60	0	
North	M. cavernosa	58	50	7	1-10	0	
North	M. aliciae	59	10	2	11-20	0	
North	M. cavernosa	60	55	30	51-60	0	
North	M. cavernosa	61	18	9	110	0	
North	M. cavernosa	62	27	7	1-10	0	
North	M. cavernosa	63	60	30	1-10	0	
North	E. fastigiata	64	7	4	0	0	
North	M. cavernosa	65	20	9	1-10	0	
North	P. strigosa	66	31	5	81-90	0	
North	M. meandrites	67	7	2	1-10	0	
North	M. cavernosa	68	30	15	1-10	0	
North	O. faveolata	69	50	40	61-70	0	

Appendix Table 13. Continued.

Hub	Species	Colony #	Dia. (cm)	Height (cm)	% OM	% RM	Condition
North	M. meandrites	70	8	2	0	0	
North	M. cavernosa	72	25	10	21-30	0	
North	M. cavernosa	73	20	8	1-10	0	
North	O. fransksi	74	50	20	61-70	0	
South	M. cavernosa	1	68	34			Not found
South	M. cavernosa	2	15	8	1-10	0	
South	O. faveolata	3	23	11	1-10	0	
South	P. strigosa	4	34	19	1-10	0	
South	E. fastigiata	6	20	4	1-10	0	
South	E. fastigiata	7	10	3	1-10	0	
South	E. fastigiata	8	13	6	1-10	0	
South	A. lamarcki	10	28	8	1-10	0	
South	D. stokesii	11	4	1	1-10	0	
South	D. stokesii	12	4	2			Not found
South	P. strigosa	13	9	2	1-10	0	
South	M. meandrites	14	52	10	1-10	0	
South	P. strigosa	15	20	8	1-10	0	
South	O. faveolata	16	67	2	51-60	0	
South	O. faveolata	17	27	8			Not found
South	O. faveolata	18	28	5			Not found
South	M. meandrites	19	7	3	0	0	
South	S. bournoni	20	25	5	1-10	0	
South	P. strigosa	21	34	12	1-10	0	
South	O. faveolata	22	150	64	81-90	1-10	PRD
South	M. cavernosa	23	12	11	1-10	0	
South	M. cavernosa	24	39	14			No found
South	D. stokesii	25	14	4	1-10	0	
South	O. faveolata	26	100	52	91-99	0	
South	P. strigosa	27	23	8			Not found
South	P. strigosa	28	12	4			Not found
South	P. strigosa	29	22	22	0	0	
South	P. strigosa	30	16	7	11-20	0	
South	M. meandrites	31	7	2	0	0	
South	E. fastigiata	32	9	4	0	0	
South	M. cavernosa	33	8	5	0	0	

Appendix Table 13. Continued.

Hub	Species	Colony #	Dia. (cm)	Height (cm)	% OM	% RM	Condition
South	M. aliciae	34	12	3	0	0	
South	M. meandrites	35	5	1	0	0	
South	M. meandrites	36	6	1	0	0	
South	M. meandrites	37	4	1			Not found
South	D. stokesii	38	4	4	0	0	
South	P. strigosa	39	13	5	1-10	0	
South	D. stokesii	40	4	2			Not found
South	M. meandrites	41	8	1	1-10	0	
South	D. stokesii	42	8	5	1-10	0	
South	M. meandrites	43	8	2	0	0	
South	P. clivosa	44	30	10	1-10	0	
South	P. strigosa	45	7	2	1-10	0	
South	C. natans	46	8	2	1-10	0	
South	O. fransksi	47	33	17	1-10	0	
South	D. labyrinthiformis	48	20	12	0	0	
South	E. fastigiata	49	7	3			Not found
South	D. stokesii	50	6	3	1-10	0	
South	D. labyrinthiformis	51	7	3	1-10	0	
South	O. fransksi	52	35	30	21-30	0	
South	M. aliciae	53	31	5			Not found
South	O. fransksi	54	25	18	1-10	0	
South	E. fastigiata	55	6	2	1-10	0	