

HISTORICAL LEAD (Pb) EXCEEDANCES: CLEARING FOR CLOSURE

Jessica Duke, P.G.

Division of Waste Management / Petroleum Restoration Program Florida Department of Environmental Protection

Tallahassee, FL | Feb. 22, 2024

HISTORICAL LEAD (Pb) EXCEEDANCES: CLEARING FOR CLOSURE

Presentation Agenda:

- Historical Pb Groundwater Sampling Methodology.
- Site and Data Evaluation -Are the Exceedances Real?
- Evaluate the Monitoring Data - Pre-Post Active Remediation Monitoring (PARM) review.
- Guidance on Clearing
 Exceedances:
 - o Existing well sampling.
 - o Well replacement.
- Example scenarios.

B2 207			
Pb Lead			
	Sa	mple	Lead
	Location	Date	(µg/L)
	G	CTLs	15
	N	ADCs	150
		8/15/1994	51
	MM-8	3/21/1995	12.20
		DESTROYED	
		8/15/1994	121
		3/21/1995	17.70
	MW-10		
	MW-10	4/13/1995	NS

Pb Image source: Periodic Table of Elements, National Library of Medicine, National Institute of Health, {https://pubchem.ncbi.nlm.nih.gov/periodic-table/}

HISTORICAL Pb SAMPLING METHODOLOGY

3.4.1 Sampling Methodology

- To prevent potential cross-contamination of groundwater samples, the following guidelines were applied:
 - Prior to well sampling efforts, all equipment used was decontaminated using the following protocol:

Teflon[•] bailers used to purge and collect the groundwater samples for analysis were washed with Liquinox[•] soap and water, rinsed with deionized water, rinsed with a weak nitric acid solution, double rinsed with isopropanol, and allowed to air dry. Following this procedure, all sampling and purge bailers were wrapped with aluminum foil prior to use and transport.

A dedicated decontaminated teflon bailer was used for sampling each monitor well

On July 6, 1995, the standing volume of groundwater within the well casing was first calculated and then consecutive volumes of water were removed from the well and tested for temperature, pH and conductivity until three (3) consecutive measurements were within 5%. A total of fifteen (15) gallons was removed from the well prior to sample collection. Samples were then collected utilizing a 2 foot teflon bailer fitted with burette attachment. Samples were placed in laboratory supplied vials and containers, capped, labeled, packed on ice and transported to Progress Environmental Laboratories in Tampa. The water quality sampling data sheet, chain-of-custody form and laboratory analysis are included as Appendix III of this report.

		DEP-SOP- FS 2200 Groundw Form FD 9 GROUNDWATER S	001/01 vater Sampling 000-24 SAMPLING LOG		
	ER DELTA MR.	LINES FUELFAM LOCAT	one Thinph a	DATE 6.7	07
	100-1	PURGING	DATA	0.1	
WELL DIAMETER (inches):	L TUBING	WELL SCREEN INTERVAL	TO WATER (bet)	PURGE PUMP TYPE OR BAILER:	REPP
WELL VOLUME PU	RGE: 1 WELL VOLUME = (TOT	AL WELL DEPTH - STATIC DE	PTH TO WATER X WELL	APACITY	- 00

Historical Pb Sampling Methodology – Groundwater:

- Bailer sampling can yield unreliable Pb data.
- Increased turbidity associated with bailer sampling method can result in high Pb readings in groundwater sampling due to sediment particulates in the sample.
- Bailer sampling was most often used in the 1980s and 1990s. Review old sampling reports and logs for sampling methodology.

SITE AND DATA EVALUATION

Site and data evaluation: Are the Pb exceedances real?

Storage Tank Contamination Monitoring database (STCM) and Oculus: Review registration data and site history in STCM and in the Oculus site file.

Review site data:

- How high are the exceedances?
- How widespread are they?
- Where were exceedances relative to the source?
- Have any historical exceedances been confirmed in more recent sampling?

Is high Pb due to natural background?

SITE AND DATA EVALUATION - REVIEWING TANK REGISTRATION

STCM stores tank registration information.

*Historical information may not be complete.

*The discharge may or may not have come from a leaded gas tank.

🛓 Florida	a Dep	artment of	Enviro	nmental Pr	otectior	n - Enterprise App	lication	s					
<u>)</u> etail <u>F</u> a	acility	RePorts	Hel	p E <u>x</u> it <u>V</u>	/indow								
] 📃 [D 6	2 👫 🗄	ā 📢		•	• • •	× 1	1 ? 🔌					
Storage	e Tanl	k/Contamir	nation	Tracking -	Facility I	Detail							<u>_</u>
	Fa Ad Ad Facili Inv Cum	acility ID County Name * Idress * Idress2 City ty Contact voice Activit rent Placar	85 37 R&R S 208 W TALL/ Name ty Date d Date	LEON ERVICE CE TENNESSE AHASSEE NORMAN 05/12/199	NTER E ST RAGAN 7	Facility Status District FI S Fi Conta	CLOS NWD	ED 301 1320 contact Phone e Verified By ontact Phone La	Co Ac 904 st Ver	Create Date Name Update Addr Update mments?(Y/N) count Status IN ASTC -224-4165 Ext	Y VOICE	DUE USTC Phone # Changes	4 Verified?
		Tk ID*	A/U	Gallons		Substance		Installed Date	Statu	us/Effective Date	PD) Replos	
Fi	in	1	UN	4000	A	Leaded Gas			В	02/28/1993	Y		
CI	ur Ie:	2	UN	4000	A	Leaded Gas			В	02/28/1993	Y		
		3	UN	4000	D	Vehicular Diese	el		B	02/28/1993	Y		
	۲	4	UN	4000	В	Unleaded Gas		L	B	02/28/1993	Y		
	L												
E	in l												
												orum n	

SITE AND DATA EVALUATION - TANK REGISTRATION AND SITE HISTORY

List 14 Tank contents are: A. leaded gasoline,	DER FORM 17-1.218	INSTRU A new ta Tank 3R necessary	STIONS: Use on the installed wh is first replace Write your fac	one row across fo ere a registered t ement for tank 3. ility number, if k	r each tank counter ank was removed s . It is in the same p nown, or name and	Pege 2 Form 17- d in question 8. Th hould be given the lace where tank 3 address, exactly as	1.218(2) te tank number mu a number of the re was. Tank 3R2 is t s it appears on the t	st agree with the nu moved tank with a he second replacem front of the form, o	mber on the sketch n R and a number ent for tank 3. Att n all extra pages.	n of your facility. added. Example: ach extra pages if
 B. unleaded gasoline. C. Alcohot enriched gasoline. D. dieset fuel. 	(7) 9/1/84 (2/2	(12) Tank Number	(13) Tank Size in Gallons	(14) Tenk Contents (see List 14 below)	(15) Tank Installation Date. Month/Year (put X if unknown)	(16) Underground or Aboveground Tank (write U or A)	(17) Tank Construction Specifics (see List 17U or 17A below)	(18) Integral Piping System Construction Specifics (see List 18 below)	(19) Monitoring System Type (see List 19)	(20) Tank <u>Disposel</u> Method (see List 20)
Z. other.	Ň	1	4000	A	APP 12 YRS	UNDERGROUND	STEEL C	Ý	У	
		2	4000	А	APP 12 YRS	UNDERGROUND	- STEEL -C	y y	V	
		3	400Õ	D	APP 12 YRS	UNDERGROUND	STEED C	Y .	\sim	
		4	4000	В	APP 12 YRS	UNDERGROUND	STEEL C	ý	- V	
	-									

Tank registration forms can be found in Oculus to identify what petroleum products were likely stored on site. Assessment reports can also be reviewed for information on site history.

EVALUATE THE MONITORING DATA – PRE-PARM REVIEW

Review and evaluate monitoring data prior to Post Active Remediation Monitoring (PARM).

Identify early any exceedances in Pb or other contaminants that need to be resampled prior to well abandonment and closure.

Approximate cost to add Pb analysis to a well that is already being sampled during a monitoring event is \$15.

Costs increase if an extra monitor event is required and increase even more if wells need to be reinstalled after abandonment to obtain samples.

GUIDANCE ON CLEARING EXCEEDANCES

Clearing Exceedances: 2014 Guidance memo on Closure Sampling Guidelines.

- SUBJECT: Petroleum Restoration Program Closure Sampling Guidelines for Groundwater
- DATE: January 27, 2014

results toward NAM or PARM. Individual wells that are not part of the approved monitoring network are not required to achieve two clean quarters before the site can be issued a SRCO. However, any MW that has had documented contamination must have at least one clean sampling event unless and pursuant to 62-780.680(1)(c), F.A.C., the FDEP or the FDEP local program has concurred that groundwater sampling is unnecessary based on site-specific conditions (for example, a compliance well or MW of questionable integrity, a MW impacted by another discharge, or other MW(s) in the vicinity that adequately represent(s) the groundwater quality at that well).

GUIDANCE ON CLEARING EXCEEDANCES

Subject:	Clarification to Petroleum Restoration Program Closure Sampling Guidelines for Groundwater
Date:	January 12, 2022

Individual wells that are not part of the approved monitoring network do not need to be sampled for four quarters of PARM or NAM. However, all site monitoring wells not included in the PARM or NAM monitoring network with previously documented contamination should have had a clean sampling event the last time the well(s) was sampled for the site to meet SRCO criteria. If a well with documented contamination was destroyed or abandoned before having a clean sampling event, then one of the following options should be utilized to meet SRCO criteria.

- The FDEP professional may allow data from an existing representative well with similar construction to satisfy SRCO criteria if it had similar or higher historic concentrations and is in close proximity to the destroyed or abandoned well.
- A replacement monitoring well may be installed and sampled to satisfy SRCO criteria.
- A grab groundwater sample may be collected and used to satisfy SRCO criteria.

Obtaining at least one clean sample for closure is preferred: if the well still exists, resample.

What if the well has been abandoned/destroyed? Do not need to reinstall wells to resample every single well with a historical Pb exceedance on a 1:1 basis.

- Are there existing wells onsite that can be used as proxy wells to clear the old exceedance?
- If there are multiple abandoned wells with exceedances, can a few representative wells be installed to serve as proxy wells?
- Some flexibility in distance.

Use best professional judgment.

CLEARING EXCEEDANCES - EXAMPLES

Example – scenario one:

Site review: No history of leaded gasoline stored onsite. All Pb exceedances are historical.

Existing conditions: Most on-site wells destroyed/abandoned; some wells have been replaced.

Strategy: Review data to determine how to clear historical Pb exceedances.

•	Storage T	ank/Co	ontaminatio	on Track	ing - Tank List					≚×
	Tk ID*	A/U	Gallons		Substance	Installed Date	Statu	us/Effective Date	PD	Replcs
	1	UN	12000	D	Vehicular Diesel	05/01/1985	A	02/12/2007	Y	
	2	UN	8000	В	Unleaded Gas	05/01/1985	В	01/01/2007	Y	
	3	UN	8000	В	Unleaded Gas	05/01/1985	В	01/01/2007	Y	
	4	UN	8000	В	Unleaded Gas	05/01/1985	A	02/12/2007	Y	
	5	UN	20000	D	Vehicular Diesel	12/01/2006	U	12/01/2006		1
	6	UN	20000	В	Unleaded Gas	12/01/2006	U	12/01/2006		2

EXAMPLES SCENARIO ONE

Red circle= historical Pb exceedance (zero clean).

- Six wells with historical Pb exceedances.
- Five wells also had historical exceedances in other contaminants.
- How would you clear the Pb exceedance for closure?

Sample Location	Date	Benzene	Ethylbenzene	MTBE	Tolucne	Total Xylenes	Lead	EDB	1,2,4-Tri-methyl-benzene	1,3,5-Tri-methyl-benzene	Cumene (Isopropyl benzene)	H4XL OY4~14
GC	TLs	1	30	20	40	20	15	0.02	10	10	.8	5000
NA	DCs	100	300	200	400	200	150	2	100	100	8	50000
1994 Complia	nce and Asses	ment Wells	(Eligible)				_					
CW-1	5/16/1994	2570	1150	590	319	3299	4.3	0.2 U				16700
CW-1R	11/29/2023	0.30 U	0.461	1.61	0.33 U	2.1 U						1800
	EINRIADOL											
CW-2	3/10/1994											
											17.0	700.00
CW-2R	11/29/2023	0.30 0	0.30 0	1.20	0.33 0	2.10	2.10	0.0075 0	0.24 0	0.24 0	17.2	760.0
	E/18/1004	40.0	7.60	64.2	2.02	12.0	12	0.211				0220
CW-3	0/10/1994	40.6	7.00	04.Z	0.00	15.8	12	0.2 0				3230
	11/20/2023	0.30 U	0.30 U	1211	0.33 U	210						790 U
CW-3R	11/20/2020	0.00 0	0.00 0	1.20	0.00 0	2.10						1000
	5/16/1994	89.7	21.7	86	4.23	21.23	130	02U				2740
CW-4												
CW 4D	11/29/2023	0.30 U	0.30 U	3.11	0.33 U	2.1 U						1300
CW-4R												
MM E	9/2/1994	0.86 U	0.87 U	55.6	0.83 U	1.6 U	25.5	0.019 U				280
C-VVIV												
MW-8	9/2/1994	0.86 U	0.87 U	60.5	0.83 U	1.6 U	46.2	0.019 U				
MW-7	9/2/1994	27	0.87 U	127	0.83 U	1.6 U	53.3	0.019 U				330
MW-7R	11/29/2023	0.30 U	0.30 U	1.2 U	0.33 U	2.1 U		_				770 U
MW-8	9/2/1994	0.86 U	0.87 U	0.96 U	0.83 U	1.6 U	104	0.019 U				330
MW-9	9/2/1994	0.86 U	0.87 U	186	0.83 U	2.5 U	40.7	0.019 U				250
	10/10/1001	0.02.11	0.07.11	0.0011	0.0011	1.011	0.55					
MW-10	10/13/1994	0.86 0	0.87 0	0.96.0	0.83 U	1.6 U	8.55	•				-
L	10/12/1004	0.02.11	0.07.11	0.0211	0.02.11	1.011	1.05					
MW-11	10/13/1884	0.80 U	0.87 0	0.90 0	0.63 0	1.0 U	1.20					-

EXAMPLES SCENARIO TWO

Red circle= historical Pb exceedance (zero clean).

- What if there were no exceedances in the wells for other contaminants?
- How would you clear the Pb exceedances for closure?

Sample Location	Date	Benzene	Ethylbenzene	MTBE	Toluene	Total Xylenes	Lead	EDB	1,2,4-Tri-methyl-benzene	1,3,5-Tri-methyl-benzene	Cumene (Isopropyl benzene)	FL-PRO TRPH
GC	TLs	1	30	20	40	20	15	0.02	10	10	.8	5000
NA	DCs	100	300	200	400	200	150	2	100	100	8	50000
1994 Complia	nce and Asses	ment Wells	(Eligible)				_					
CW-1	5/16/1994	2570	1150	590	319	3299	4.3	0.2 U				16700
	11/20/2022	0.20.11	0.481	1.81	0.22.11	2.4.11						1000
CW-1R	11/28/2023	0.30 0	0.401	1.01	0.33 0	2.10						1800
	5/16/1994											
CW-2	5110/100-1											
0111 000	11/29/2023	0.30 U	0.30 U	1.2 U	0.33 U	2.1 U	2.1 U	0.0075 U	0.24 U	0.24 U	17.2	760 U
CW-2R												
CW-3	5/16/1994	40.6	7.68	64.2	3.83	13.9	12	0.2 U				9230
044-5												
CW-3R	11/29/2023	0.30 U	0.30 U	1.2 U	0.33 U	2.1 U						790 U
CW-4	5/16/1994	89.7	21.7	86	4.23	21.23	130	0.2 U				2740
	110000000	0.00.11	0.00.11	2.41	0.00.11							1000
CW-4R	11/29/2023	0.30 U	0.30 U	3.11	0.33 U	2.10						1300
	0/2/1004	0.8611	0.8711	55.6	0.8311	1.6.0	25.5	0.01011				280
MW-5	01211004	0.000	0.07 0	33.0	0.00 0	1.0 0	23.5	0.018 0				200
	9/2/1994	0.86 U	0.87 U	60.5	0.83 U	1.6 U	46.2	0.019 U				
MW-6												
MW-7	9/2/1994	27	0.87 U	127	0.83 U	1.6 U	53.3	0.019 U				330
MW-7R	11/29/2023	0.30 U	0.30 U	1.2 U	0.33 U	2.1 U						770 U
MW-8	9/2/1994	0.86 U	0.87 U	0.96 U	0.83 U	1.6 U	104	0.019 U				330
MW-9	9/2/1994	0.86 U	0.87 U	186	0.83 U	2.5 U	40.7	0.019 0				250
	10/12/1004	0.0011	0.0711	0.0811	0.0211	1.611	0.55					
MW-10	10/13/1894	0.86 U	0.87 0	0.90 0	0.83 0	1.0 U	8.00					-
	10/13/1004	0.86.11	0.8711	0.0811	0.8311	1.6.0	1.25					
MW-11	10/10/1004	3.00 0	0.010	0.000	3.00 0	1.00	1.20	-				-

EXAMPLES SCENARIO THREE

Red circle= historical Pb exceedance (zero clean).

- What if there was also an historical exceedance in a deep well that had been abandoned/destroyed?

- How would you clear the Pb exceedance for closure?

Sample Location	Date	Benzene	Ethylbenzene	MTBE	Toluene	Total Xylenes	Lead	EDB	1,2,4-Tri-methyl-benzene	1,3,5.Tri-methyl-benzene	Cumene (Isopropyl benzene)	H4XL 084-71
GC	TLs	1	30	20	40	20	15	0.02	10	10	.8	5000
NA	DCs	100	300	200	400	200	150	2	100	100	8	50000
1994 Complia	nce and Asses	ment Wells	(Eligible)									
CW-1	5/16/1994	2570	1150	590	319	3299	4.3	0.2 U				16700
	44,000,0000	0.00.00	0.001	4.01	0.00.11							1000
CW-1R	11/29/2023	0.30 U	0.461	1.61	0.33 U	2.10						1800
	5/18/1004											
CW-2	0/10/1004											
	11/29/2023	0.30 U	0.30 U	120	0.33 U	210	210	0.0075 U	0.24 U	0.24 U	17.2	760 U
CW-2R		0.000	0.000		0.000	2	2	0.00700	0.210	0.210		
C14/ 2	5/16/1994	40.6	7.68	64.2	3.83	13.9	12	0.2 U				9230
CW-3												
CW-3R	11/29/2023	0.30 U	0.30 U	1.2 U	0.33 U	2.1 U						790 U
CW-4	5/16/1994	89.7	21.7	86	4.23	21.23	130	0.2 U				2740
CW-4R	11/29/2023	0.30 U	0.30 U	3.11	0.33 U	2.1 U						1300
	0.014.004						05.5					
MW-5	9/2/1994	0.86.0	0.87 0	33.6	0.83 0	1.0 U	25.5	0.019 0				280
	0/2/1004	0.9811	0.9711	C0 5	0.0211	1.811	46.2	0.010.11				
MW-6	0/2/1004	3.60 0	3.67 0	00.0	0.00 0	1.00	40.2	0.018 0				
1041 7	9/2/1994	27	0.87 U	127	0.83 U	1.6 U	53.3	0.019 U				330
MW-/												
MW-7P	11/29/2023	0.30 U	0.30 U	1.2 U	0.33 U	2.1 U						770 U
MINT-/ IX												
MW-8	9/2/1994	0.86 U	0.87 U	0.96 U	0.83 U	1.6 U	104	0.019 U				330
MW-9	9/2/1994	0.86 U	0.87 U	186	0.83 U	2.5 U	40.7	0.019 U				250
	101101100											
MW-10	10/13/1994	0.86 U	0.87 U	0.96 U	0.83 U	1.6 U	8.55	•				-
	10/12/1004	0.0811	0.9711	0.0811	0.0211	1.811	1.25					
MW-11	10/13/1894	0.86 0	0.87 0	0.90 0	0.83 0	1.0 U	1.20					-

EXAMPLES SCENARIO FOUR

Red circle= historical Pb exceedance (zero clean).

- What if there was also a **recent** Pb exceedance that wasn't collected using bailer sampling?

- How would you clear the Pb exceedance for closure?

Sample Location	Date	Benzene	Ethylbenzene	MTBE	Toluene	Total Xylenes	Lead	EDB	1,2,4-Tri-methyl-benzene	1,3,5-Tri-methyl-benzene	Cumene (Isopropyl benzene)	H4NT OR-LT
GC	TLs	1	30	20	40	20	15	0.02	10	10	.8	5000
NA	DCs	100	300	200	400	200	150	2	100	100	8	50000
1994 Complia	nce and Asses	ment Wells	(Eligible)									
CW-1	5/16/1994	2570	1150	590	319	3299	4.3	0.2 U				16700
CW-1R	11/29/2023	0.30 U	0.461	1.61	0.33 U	2.1 U						1800
	Ellen and a											
CW-2	5/16/1994											
	440000000	0.00.11	0.00.11	4.011	0.00.11			0.0075.11		0.0411	47.0	700.11
CW-2R	11/29/2023	0.30 0	0.30 0	1.20	0.33 U	2.10	2.10	0.0075 0	0.24 0	0.24 0	17.2	760.0
	E/18/1004	40.0	7.60	64.2	2.02	12.0	12	0.211				0000
CW-3	0/10/1994	40.6	7.00	04.2	0.00	15.8	12	0.2 0				3230
	11/20/2023	0.30 U	0.30 U	1211	0.33 U	210						790 U
CW-3R	11/20/2020	0.00 0	0.00 0	1.20	0.00 0	2.10						1000
	5/16/1994	89.7	21.7	86	4.23	21.23	130	0.2 U				2740
CW-4												
CWLAD	11/29/2023	0.30 U	0.30 U	3.11	0.33 U	2.1 U						1300
CW-4R												
MW 5	9/2/1994	0.86 U	0.87 U	55.6	0.83 U	1.6 U	25.5	0.019 U				280
MW-O												
MW-8	9/2/1994	0.86 U	0.87 U	60.5	0.83 U	1.6 U	46.2	0.019 U				
MW-7	9/2/1994	27	0.87 U	127	0.83 U	1.6 U	53.3	0.019 U				330
MW-7R	11/29/2023	0.30 U	0.30 U	1.2 U	0.33 U	2.1 U						770 U
MW-8	9/2/1994	0.86 U	0.87 U	0.96 U	0.83 U	1.6 U	104	0.019 U				330
MW-9	9/2/1994	0.86 U	0.87 U	186	0.83 U	2.5 U	40.7	0.019 U				250
	10/10/100	0.00.11	0.07.11	0.0011	0.00.11	4.011	0.55					
MW-10	10/13/1994	0.86 U	0.87 U	0.96 U	0.83 U	1.6 U	8.55	•				-
	10/10/1001	0.02.11	0.07.11	0.0011	0.00.11	1.011	1.05					
MW-11	10/13/1994	0.86 U	0.87 0	0.96.0	0.83 0	1.0 U	1.25					-

How to clear historical Pb exceedances?

Resample existing wells if available: If the well still exists, resample it; if the wells has been abandoned or destroyed but a nearby well exists that can serve as a proxy, sample it.

Install replacement wells if necessary: Install replacement wells, if needed, at representative locations.

Use best professional judgment: Try to obtain data that is representative of site conditions.

THANK YOU

Jessica Duke Division of Waste Management / Petroleum Restoration Program Florida Department of Environmental Protection

> Contact Information: 850-245-8891 Jessica.Duke@floridaDEP.gov

