
DEP Agreement #: INV28 
1 

FLORIDA DEPARTMENT OF ENVIRONMENTAL 
PROTECTION 

Final Report 

DEP Agreement No.: INV28 

Grantee Name: Florida State University 

Grantee Address: 874 Traditions Way, Third Floor, 
Tallahassee, FL 32306 

Reporting Period: 07/31/2022– 04/30/2024 

Project Number and Title: Development of a Statewide Tool to 
Predict Harmful Algal Blooms in 
Freshwater Lakes 

This report was funded under the Innovative Technologies for Harmful Algal Blooms Program 
through a grant agreement from the Florida Department of Environmental Protection. The views, 
statements, findings, conclusions, and recommendations expressed herein are those of the 
author(s) and do not necessarily reflect the views of the State of Florida or any of its subagencies. 



DEP Agreement #: INV28 
2 

Project Background 

Excess nutrient export from agricultural nonpoint source pollution, point discharges from 
wastewater treatment plants, and atmospheric deposition from air pollution cause eutrophication 
and associated harmful algal blooms in inland waters and freshwater systems. Florida’s lakes, 
rivers, and springs experience cyanobacteria blooms at the highest frequency in the nation. Along 
with endangering public health and wildlife, the blooms cost local economies hundreds of millions 
of dollars. For example, agricultural and urban development in Lake Okeechobee in Southeast 
Florida and the construction of the Central and South Florida Project for flood control have caused 
excessive nutrient inputs and cyanobacteria blooms. 

Project Description & Location 

This project aims to develop a statewide tool to analyze the relationship between 
Cyanobacteria concentrations (indicators of algal blooms), and watershed and water body 
independent variables such as land use, temperature, runoff, etc. Specifically, an online integrated 
map-viewer platform will be developed by the Florida State University that provides insights into 
the correlations between cyanobacteria and these variables. Advanced data analysis techniques 
will be used to develop the platform using existing water quality datasets and remote sensing data, 
so that decision-makers and water managers can select sustainable, innovative, and cost-effective 
watershed management strategies such as best management practices (BMPs) in regions 
experiencing harmful algal blooms. The tool will be applicable to different ranges of scales across 
the diverse climates of Florida. 

Project Objectives and Tasks 

The overarching goal of this project is to develop an online integrated map-viewer platform 
that analyzes the relationship between cyanobacteria concentrations and various watershed and 
water body independent variables, facilitating informed decision-making for sustainable watershed 
management strategies in regions experiencing harmful algal blooms. Specific tasks are to 1) 
develop a quality assurance (QA) manual for data evaluation and usability, including draft and 
final versions, 2) collect and analyze data on cyanobacterial blooms, including remote sensing 
data, existing datasets, and relevant factors affecting cyanobacteria concentrations, 3) develop and 
deliver a tool that establishes the relationship between cyanobacteria and watershed/water body 
independent variables, incorporating advanced numerical methods such as machine learning. 
deliver an online integrated map and a presentation showcasing the tool's application, and 4) 
prepare a comprehensive final report summarizing the project's results, including all tasks in the 
grant work plan. This report primarily focuses on the completion and findings of Task 2, which 
involved data collection and analysis related to cyanobacterial concentrations. The report provides 
insights into the collected data, its sources, and the calculated cyanobacteria concentrations 
presented through an interactive online map. 

Task 1. Quality Assurance Project Plan (QAPP) 

The QAPP was submitted by the Florida State University on November 16, 2022, and was 
approved by FDEP on December 08, 2022. No amendments have been made to the QAPP. 
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Task 2. Data Collection and Analysis 

The online tool developed in Task 2 and the interim report were submitted by the Florida State 
University on June 6th, 2023. All data collected and calculated for this project have been 
deposited into the FDEP data repository. 

2.1 Calculation of Cyanobacteria Concentrations 

To effectively manage water quality, allocate monitoring resources, and aid managers in 
responding to cyanobacterial harmful algal blooms (CyanoHABs), it is crucial to have access to 
timely cyanoHAB data derived from satellites through web-based platforms. Addressing this need, 
we have developed an online map indicating the calculated cyanobacteria concentrations for the 
time period of 2002 to 2022 across Florida using satellite remote sensing data based on 7-day 
maximum value composites derived from different sensors: the European Space Agency 
Copernicus’s Medium Resolution Imaging Spectrometer (MERIS; 2002-2012), Ocean and Land 
Colour Instrument (OLCI) on Sentinel-3A (2016-present), and OLCI on Sentinel-3B (2018- 
present). Remote sensing data have been obtained from Cyanobacteria Assessment Network 
(CyAN) project (https://oceancolor.gsfc.nasa.gov/projects/cyan/), which is a collaborative effort 
among the U.S. Environmental Protection Agency (EPA), the National Aeronautics and Space 
Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and the 
United States Geological Survey (USGS). Remote sensing data obtained from the CyAN project 
include digital numbers (DN) that can be used to calculate cyanobacteria concentrations using 
Equation (1). The spatial resolution of the data is 300 meters, meaning each pixel represents an 
area of 300 square meters on the ground, and a 50-meter land mask. The temporal resolution 
depends on the sensor and date, with the best coverage since 2018 due to the utilization of sensors 
on two Sentinel-3 satellites. CyAN data are available in GeoTIFF format, with daily values (2022 
to present), 7-day maximum values (2007 to present), and 14-day maximum values (2002-2008). 

In our online tool, we have employed a 7-day maximum value approach for estimating 
cyanobacteria concentrations, driven by two key factors. Firstly, cyanobacteria blooms typically 
occur over the span of a few days to a week, making it necessary to consider a longer time period 
for accurate estimation. Secondly, the use of a 7-day composite minimizes the impacts of cloud 
cover and maximizes the frequency of available data based on a typical workweek to guide 
management decisions. Due to the unavailability of weekly data from CyAN for a certain period 
(i.e., 2002-2007), we generated weekly 7-day composite images by retaining the maximum value 
detected for each pixel from daily values within that specific timeframe using a raster calculator 
tool at ArcMap (V 10.8.1). Upon completion of creating 7-day maximum values for 2002 to the 
end of 2022 across Florida, rasters were processed using ArcMap. First, rasters were clipped to the 
Florida border, ensuring that the analysis focuses on the specific region of interest. Then, 
cyanobacteria concentrations were calculated using Equation 1. 

DN Guide: 

 0 indicates below the threshold of CI detection limits (grey color) 

https://oceancolor.gsfc.nasa.gov/projects/cyan


DEP Agreement #: INV28 
4 

 1-253 are data. 
 254 is land (brown). 
 255 are no data (black--e.g., a cloudy pixel). 
 To convert Digital Number (DN) to CI_cyano: 

CIcyano=10 (DN∗0.011714−4.1870866) Eq (1) 

That range is ~10,000 to 7,000,000 cells/ml. Each shapefile includes DNs, cyanobacteria 
concentrations, and whether cyanobacteria concentrations exceeded safety thresholds per pixel 
across Florida (see Table 1). Figure 1 indicates an example of cyanobacteria concentrations 
calculated in this study in Lake Okeechobee in January and February of 2022. To explore 
cyanobacteria concentrations in various lakes across Florida and for different time periods ranging 
from 2002 to 2022, please refer to the web application. 
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Figure 1. Visualization of cyanobacteria concentrations (cells/ml, 7-day maximum) in Lake 
Okeechobee during January and February of 2022, with color-coded safety thresholds. 

2.2 Safety Thresholds for Cyanobacteria Concentrations 

While satellite observations are unable to detect toxins (Stumpf et al., 2016), they can 
accurately measure the abundance of cyanoHABs (cyanobacterial harmful algal blooms) (Kutser, 
2009). Considering the limitations in toxin monitoring (Clark et al., 2017), cyanoHAB abundance 
assessed through the CyAN app may be more suitable for evaluating risks in Florida. Cell counts 
and microcystin concentrations are commonly utilized as indicators of potential health hazards, 
with various states adopting customized thresholds based on local data (Graham et al., 2009). For 
instance, Oklahoma and Massachusetts have developed specific guidelines to determine safe 
levels. In Oklahoma, a warning is issued to lake users if cell counts surpass 100,000 cells mL−1 or 
microcystin concentrations exceed 20 μg L−1 . On the other hand, Massachusetts has established 
guidelines stating that an advisory against water contact should be issued when cell counts go 
beyond 70,000 cells mL−1 or microcystin concentrations exceed 14 μg L−1 . 

The World Health Organization (WHO) provides estimates of microcystin concentrations 
corresponding to the cell abundance at each guideline level. The U.S. Environmental Protection 
Agency (EPA) has also established a drinking water health advisory for cyanobacteria microcystin 
toxin (U.S. EPA, 2015). The WHO employs a three-level guideline approach, utilizing chlorophyll- 
a, a widely present photosynthetic pigment, and cyanobacterial cell abundance (cells mL−1) to 
determine associated risks and issue warnings or closures. These values take into consideration 
potential exposures through various recreational activities such as contact with water, ingestion, 
and inhalation. These parameters are used in our online Tool as indicators to estimate the potential 
health risks associated with engaging in recreational activities in environments where 
cyanobacteria are present (see Table 1). 

Table 1. Thresholds used in our CyanoHABs Florida online tool to evaluate the risks of 
cyanobacteria based on WHO’s Guidelines for Safe Practice in Managing Recreational Waters. 

Guidance level or 
situation 

How guidance level 
derived 

Health risks Typical actions 

Relatively low 
probability of adverse 
health effects 
20000 cyanobacterial 
cells/ml 
or 
10 ug chlorophyll-a/liter 
with dominance of 
cyanobacteria 

From human bathing 
epidemiological 
study 

Short-term adverse 
health outcomes, e.g., 
skin irritations, 
gastrointestinal illness 

Post on-site risk 
advisory signs 
Inform relevant 
authorities 

Moderate probability of 
adverse health effects 
100 000 cyanobacterial 

From provisional 
drinking-water 
guideline value for 

Potential for long-term 
illness with some 
cyanobacterial species 

Watch for scums or 
conditions conducive to 
scums and further 
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Guidance level or 
situation 

How guidance level 
derived Health risks Typical actions 

cells/ml 
or 
50 ug chlorophyll-a/liter 
with dominance, of 
cyanobacteria 

microcystin-LR and 
data concerning other 
cyanotoxins 

health outcomes, e.g., 
skin irritations, 
gastrointestinal illness 

investigate hazard 
Post on-site risk 
advisory signs 
Inform relevant 
authorities 

High probability of 
adverse health effects 
Cyanobacterial scum 
formation in areas where 
whole-body contact 
and/or risk of 
ingestion/aspiration 
occur. 

Inference from oral 
animal lethal 
poisoning. 
Actual human illness 
case histories 

Potential for acute 
poisoning 
Potential for long-term 
illness with 
cyanobacterial species 
Short-term adverse 
activities health 
outcomes, e.g., skin 
irritations, 
gastrointestinal illness 

Immediate action to 
control contact with 
scums; possible 
prohibition of 
swimming and other 
water contact activities 
Public health follow-up 
investigation Inform 
public and relevant 
authorities 

2.3 Development of an Online Application for Cyanobacteria Concentrations 

We have developed an online map alongside an online map package that includes shapefiles 
representing weekly cyanobacteria concentrations across Florida. This map also includes the 
evaluation of cyanobacteria-related risks based on WHO safety thresholds. In addition to 
cyanobacteria concentrations and risk assessment, the developed web application includes several 
features to enhance user experience and functionality: 

1. Dropdown Menu for Selecting Years: The application includes a dropdown menu that 
allows users to select different years for cyanobacteria concentration data. This feature 
facilitates temporal analysis and comparison of cyanobacteria blooms over multiple years. 

2. Zooming In and Out: Users can zoom in and out of the map to view cyanobacteria 
concentrations at different levels of detail. This feature allows for a closer examination of 
specific areas or a broader view of the entire map. 

3. Search for Location: The application provides a search function that allows users to enter 
a specific location or address. This enables them to quickly navigate to their desired area 
of interest without manually searching for it on the map. 

4. Inserting Coordinates: Users can input specific coordinates to navigate directly to a 
particular location on the map. 

5. Basemap Selection: The web application offers a variety of basemap options for users to 
choose from. They can select different basemaps such as satellite imagery, street maps, 
topographic maps, or custom basemaps, depending on their preference or the specific 
context of analysis. 

6. Layer List: The application provides a layer list that displays the available data layers and 
allows users to toggle their visibility on or off. This feature enables users to customize the 
displayed information based on their specific interests or analysis requirements. 
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7. Bookmark: Users can create bookmarks or save specific locations of interest within the 
application. This feature allows for easy navigation and quick access to frequently visited 
areas or important points on the map. 

8. Print: The application includes a printing functionality, allowing users to generate printable 
maps or reports of their selected areas and data layers. 

9. Query: Users can perform queries or spatial analysis on the data, allowing them to extract 
specific information or insights based on their criteria or spatial relationships. 

Figure 2 indicates an overview of the web application alongside these features. These features 
collectively enhance the usability and functionality of the web application, providing users with 
intuitive tools for exploring and analyzing cyanobacteria concentrations across Florida. In addition 
to web applications, a map package is available online for users to download and open in desktop 
GIS software such as ArcMap. A map package is a file format that bundles together all the 
necessary data, including shapefiles, associated with the project. By providing a map package for 
download, users can access all the shapefiles and other data layers included in the package for 
further analysis, exploration, and customized visualizations using desktop GIS software. The web 
application and map package can be accessed using the links below: 

1. Online map: 
https://cosspp.maps.arcgis.com/home/item.html?id=e7c5c9cb3ba9404f8d6e86ea44b540a 
3 

2. Map package: 
https://cosspp.maps.arcgis.com/home/item.html?id=a9b4380188be4384b3c586700b0e87 
6b 

https://cosspp.maps.arcgis.com/home/item.html?id=a9b4380188be4384b3c586700b0e87
https://cosspp.maps.arcgis.com/home/item.html?id=e7c5c9cb3ba9404f8d6e86ea44b540a
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Figure 2. depicts an overview of the web application, showcasing cyanobacteria concentrations 
(measured in cells/ml, with 7-day maximum values) in Florida's lakes spanning the period from 

2002 to 2022. The application allows users to interact with the map by clicking on specific 
locations. Upon selection, attribute tables are displayed, providing detailed information on 

concentrations as well as safety statuses determined by the World Health Organization (WHO) 
safety thresholds. 

Task 3. Tool Development and Verification of Success 

In this task, we established a comprehensive statewide tool to examine the correlation between 
Cyanobacteria concentrations (indicative of algal blooms) and a range of independent variables 
including land use, temperature, rainfall, etc. Subsequently, an integrated online map-viewer 
platform was created to enhance understanding of the connections between cyanobacteria and 
these diverse variables within watersheds and water bodies across the state. Detailed information 
regarding data and methodologies is outlined below. Additionally, to enhance clarity, a conceptual 
workflow illustrating the data flow and analysis methods is presented in Figure 3 

Figure 3. Satellite data processing and analysis workflow for processing and analyzing satellite 
data, emphasizing the key methods and steps involved in investigating the relationship between 
watershed variables and changes in cyanobacteria bloom magnitude in Florida lakes from 2002 

to 2022. Additionally, it showcases the development of an inline tool for predicting 
cyanobacteria in freshwater lakes based on established relationships. 

3.1 Seasonal Bloom Magnitude 

The Cyanobacteria bloom magnitude aims to capture two fundamental aspects of algal blooms: 
the quantity of biomass and the duration of the bloom. While metrics such as frequency and spatial 
extent offer insights into the temporal and spatial characteristics of the bloom within a lake, they 
do not specifically address the seasonal/annual intensity. To address this, a spatial-temporal mean 
is employed to capture the quantity and duration of the entire lake's cyanobacteria biomass over 
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the course of a year. Consequently, we estimated the bloom magnitude as the spatiotemporal mean 
cyanobacteria biomass within a lake throughout the year using the following equation (Mishra et 
al., 2023; Schaeffer et al, 2024): 

Where the indices P and T denote the number of valid pixels in a lake or water body and the 
number of composite (time) sequences in each month (e.g., four in a month), respectively. Here, 
M represents the number of months in a season or the annual study period, ap is the area of a pixel, 
and Alake is the area of the lake extracted from the National Hydrography Dataset Plus version 2.0 
(NHDPlusV2) lake vector layer. Utilizing only the valid pixel area for calculating the spatial mean 
could introduce bias to the estimates. An excess of invalid pixels during high-concentration bloom 
events might lead to underestimation, while more invalid pixels over periods of bloom absence or 
non-detect pixels may result in overestimation of the bloom magnitude. To address this, we 
incorporated the lake area into the equation for estimating bloom magnitude. Henceforth, for 
brevity, we refer to the spatiotemporal mean cyanobacteria bloom magnitude as simply "bloom 
magnitude." 

For accurate remote sensing data, it is essential to ensure a sufficient spatial resolution. In our 
case, we require a minimum of three pixels per lake, with each pixel measuring 300 by 300. By 
applying this criterion, we identified 134 lakes in Florida that meet the requirement of having at 
least three pixels and are of a size suitable for utilizing remote sensing data for cyanobacteria 
concentrations. Figure 4 depicts the geographical distribution of these lakes, and detailed 
information, including the name and characteristics of each lake, can be found in the data directory. 
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Figure 4: Geographical distribution of 134 lakes in Florida meeting the criteria for accurate 
remote sensing data analysis. Each lake, represented on the map, possesses a minimum of three 
pixels, each measuring 300 by 300, making them suitable for the assessment of cyanobacteria 

concentrations using remote sensing data. 

3.2 Meteorological Variables 

We utilized monthly climate data to explore the correlation between observed differences in 
bloom magnitude and various climate variables. The monthly climate data were obtained from the 
North American Land Data Assimilation System Phase 2 (NLDAS-2) 
(https://ldas.gsfc.nasa.gov/nldas). NLDAS integrates a large quantity of observation-based and 
model reanalysis data to drive offline (not coupled to the atmosphere) land-surface models (LSMs) 
and executes at 1/8th-degree grid spacing over central North America, enabled by the Land 
Information System (LIS). NLDAS forcing drives four land-surface models: NASA’s Mosaic, 
NOAA’s Noah, the NWS Office of Hydrological Development’s (OHD) SAC, and Princeton’s 
implementation of VIC. Obtained climate data included average surface skin temperature (AVFST, 
°F), liquid precipitation (rainfall, ARAIN, kg/m^2), subsurface runoff (baseflow, BGRUN, 
kg/m^2), and surface runoff (non-infiltrating, SSRUN, kg/m^2). 

To enhance our analysis, we derived additional features from the monthly climate data by 
calculating the statistical mean, minimum, and maximum of a climate variable over specific time 
periods (e.g., a year). Examples include determining the maximum annual temperature (°F) or 
computing the cumulative precipitation (kg/m^2) by summing precipitation over January to 
December. The aggregation of climate variables was tailored to lacustrine cyanobacterial algal 
bloom phenology in lakes (Coffer et al., 2020). Notably, the final selection of climate variables 
was not predetermined but instead driven by a data-driven approach utilizing the Random Forest 
model to identify variable importance. 

Furthermore, we obtained the U.S. Climate Extreme Index (CEI) dataset for each year by 
climate region from the National Climate Data Center (NCDC) website 
https://www.ncei.noaa.gov/access/monitoring/cei/graph ). The CEI quantifies observed changes in 
climate within each region, summarizing a comprehensive set of multidimensional climate 
variables in nine climate regions defined by the National Center for Environmental Information 
(Karl and Koss, 1984). This dataset was employed during the observation period to establish 
correlations between the simplified and summarized state of climate and occurrences of 
cyanobacterial harmful algal blooms (cyanoHAB) in FL lakes. 

3.3 Land Use and Land Cover (LULC) data 

We obtained annual Land Use and Land Cover (LULC) data for the observation period from 
the United States Department of Agriculture (USDA) National Agricultural Statistical Service 
(NASS)( https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php). For 
each lake, we extracted the relevant LULC data within hydrological units at two hierarchical levels 
that enclose the lake. The Hydrologic Unit Code (HUC) is a hierarchical land area classification 
system established by the United States Geological Survey (USGS) based on surface hydrologic 

https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php
https://www.ncei.noaa.gov/access/monitoring/cei/graph
https://ldas.gsfc.nasa.gov/nldas
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features in a standardized geographical framework. The United States is partitioned into 
successively smaller hydrologic units, classified into regions (HUC-2), subregions (HUC-4), 
basins (HUC-6), sub-basins (HUC-8), watersheds (HUC-10), and sub-watersheds (HUC-12). In 
this study, we utilized HUC -10, and -12 to consider LULC and physical factors surrounding a lake 
at watershed to sub-watershed scale, and their impact on bloom magnitude. 

Annual acreage information for relevant LULC types, including cropland area, wetland, 
grassland and pasture, forest and shrubland, and developed area, was extracted two HU boundaries 
with HU codes ten and twelve (HUC10, HUC12). Pixel counts from the cropland Data Layers 
(CDL) were converted to acreage by LULC type. Additionally, we calculated the fraction of 
acreage for each LULC class in each HU, considering the area of the corresponding HU. We 
incorporated HUCs at two different scales enclosing a lake (HUC10 and HUC12) and allowed the 
Random Forest feature selection (described below) to determine the relationship between the 
spatial scale of LULC variables and their impact on bloom magnitude. In our dataset, there are 84 
HUC-10 and 165 HUC-12 units enclosing our targeted lakes. Figure 5 displays these HUC-10 and 
HUC-12 units enclosing Lake Okeechobee. 

Figure 5. Visualization of Hydrologic Unit Code 10 (HUC-10) and Hydrologic Unit Code 12 
(HUC-12) boundaries enclosing Lake Okeechobee. 

3.4 Estimation of Total Nitrogen and Phosphorus 

In this study, we estimated Total Nitrogen (TN) and Total Phosphorus (TP) for each HUC-10 
and HUC-12 watershed enclosing the lakes using the EPA approach, which involves assessing the 
relationship between nutrient levels and the proportion of land dedicated to specific uses 
(https://www.epa.gov/sites/default/files/2015-
11/documents/2008_04_18_nps_watershed_handbook_ch08.pdf). This method considers the 
impact of land use on nutrient runoff and aids in predicting TN and TP concentrations in water 
bodies based on the surrounding land cover composition. Such estimation is widely utilized in 

https://www.epa.gov/sites/default/files/2015
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watershed management and environmental studies to comprehend the influence of human 
activities on nutrient levels in aquatic systems. 

Since we have already included the percentages of various land uses as explanatory variables 
in predicting cyanobacteria concentrations, and also estimated TN and TP based on land uses, we 
refrain from using TN and TP directly for predicting cyanobacteria. This approach is adopted to 
prevent redundancy, address collinearity concerns, and avoid potential overfitting. By 
concentrating on the most relevant variables, we aim for accurate predictions in our model. 
Nonetheless, in the final online tool, we present baseline TN and TP values. Additionally, the tool 
allows users to estimate TN and TP based on their input for different land use types. This feature 
enhances the tool's versatility, providing users with the ability to estimate TN and TP according to 
varying land use scenarios. 

3.5 Feature Selection with Random Forest Model 

We have compiled an extensive dataset encompassing 300 physical and climate variables for 
each of the 134 lakes, as outlined in Table 2. Recognizing the intricacies of this dataset, we utilized 
a Random Forest (RF) regression model for feature selection. RF identifies the most important 
features by aggregating insights from multiple decision trees. It assesses how each feature 
contributes to prediction accuracy, assigning higher importance scores to those consistently 
enhancing the model's performance. This ensemble approach enables robust identification of key 
variables influencing outcomes, such as cyanobacteria concentrations in our study. In addition, RF 
models have proven effective in discerning significant variables, even in datasets with a high 
number of features. Furthermore, our previous study demonstrated the effectiveness of the RF 
algorithm in predicting HAB in Florida (Yan et al., 2024), highlighting its suitability for our current 
analysis. Thus, we have utilized the RF algorithm to identify the most significant features 
impacting cyanobacteria concentrations in our study. 

Table2. Details of the physical and climate variables utilized as input for the algorithm aimed at 
identifying the most significant features impacting cyanobacteria concentrations in our study. 

Variable 
Type 

Variable Name 

Dependent Annual Cyanobacteria bloom magnitude 
Explanatory Minimum annual temperature 
Explanatory Maximum annual temperature 
Explanatory Average annual temperature 
Explanatory Minimum annual rainfall 
Explanatory Maximum annual rainfall 
Explanatory Average annual rainfall 
Explanatory Sum of annual rainfall 
Explanatory Palmer Drought Severity Index (PDSI) 
Explanatory Percentage of cropland area in HUC-10 watershed enclosing each lake 
Explanatory Percentage of wetland area in HUC-10 watershed enclosing each lake 
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Explanatory Percentage of grassland and pasture in HUC-10 watershed enclosing each lake 
Explanatory Percentage of forest and shrubland in HUC-10 watershed enclosing each lake 
Explanatory Percentage of developed area in HUC-10 watershed enclosing each lake 
Explanatory Percentage of cropland area in HUC-12 watershed enclosing each lake 
Explanatory Percentage of wetland area in HUC-12 watershed enclosing each lake 
Explanatory Percentage of grassland and pasture in HUC-12 watershed enclosing each lake 
Explanatory Percentage of forest and shrubland in HUC-12 watershed enclosing each lake 
Explanatory Percentage of developed area in HUC-12 watershed enclosing each lake 

Utilizing feature ranks and importance scores, we identified 6 key LULC and climate features 
crucial for modeling bloom magnitude, as detailed in Table 3. 

Selected LULC features 

 All_crops_acr_pct_hu10: is the percentage of the total acreage of all croplands in the 
HUC 10, representing the agricultural activity in the hydrologic unit surrounding a lake 
under study. Therefore, that would serve as a proxy of nutrient loading to a lake in the 
form of excess nutrients transferred from surrounding agricultural land to the lake 
through surface runoff. 

 Forest_shrub_acr_pct_hu12: is the percent area of the HU with code 12 surrounding a 
lake covered by forest and shrubland. Lakes in hydrologic units with higher forest and 
shrubland cover would be expected to be in pristine condition with less anthropogenic 
disturbance. 

 Grassland_pasture_acr_pct_hu10: is the percent area of the HU with code ten 
surrounding a lake covered by grassland and pasture. Grasslands and pastures can act as 
sources by working as a nonpoint source of excessive fertilizer. It can also serve as a sink 
by absorbing nutrients from the surface runoff by taking the role of cover crops. 

 Developed_acr_pct_hu12: is the percent area of the HU with code 12 surrounding a lake 
covered by developed areas. Developed areas can act as nutrient sources, contributing to 
higher nutrient levels in a lake and influencing bloom conditions. 

Selected climate features 

 Tmax: represents the maximum monthly temperature recorded from January to December. 

 Average monthly precipitation is the mean precipitation over the months of January to 
December. 

Table 3: Key Land Use and Climate Features Identified for Modeling Bloom Magnitude through 
Feature Ranks and Importance Scores. 

Selected features Description 
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AVFST_Max Maximum of air temperature observed over a year. 

ARAIN_Average The average annual precipitation. 

HUC12_TN The average total nitrogen concentrations of the HU with code 12 
surrounding a lake. 

HUC10_TP Average total phosphorus concentrations of the HU with code 10 
surrounding a lake. 

HUC10_ % cropland 
area 

Percentage of the total acreage of all croplands in the HUC 10, 
representing the agricultural activity in the hydrologic unit 
surrounding a lake under study. 

HUC12_ 
%developed area 

Percent area of the HU with code 12 surrounding a lake covered by 
developed area, representing urban areas. 

3.6 Geographically Weighted Regression (GWR) 

In this study, we employed Geographically Weighted Regression (GWR), a spatial statistical 
method designed for modeling spatially heterogeneous processes. GWR allows for varying 
relationships between a response variable and a set of covariates across geographic space 
(Fotheringham et al., 2001). GWR extends ordinary least-square (OLS) regression. Using a spatial 
weight matrix allows models to vary over space, addressing the non-stationary effect of 
independent variables on the response variable (Fotheringham et al., 2001). 

𝑦𝑖 = 𝛽𝑖0 + ∑𝑚 
𝑘=1 𝛽𝑖𝑘𝑥𝑖𝑘 + 𝜀𝑖 (S1) 

Where yi is the dependent variable at lake year i; βi0 refers to the regression intercept; βik refers to 
the independent parameter; Xik is the value of the kth regression parameter; εi refers to the model 
residuals at lake year location i. 

𝛽   = (𝑋𝑇𝑊 𝑋)−1𝑋𝑇𝑊 𝑦 (S2) 
𝑖 𝑖 𝑖 

𝑤𝑖𝑗 = [− 
1   𝑑𝑖𝑗 

2 

( )
2 𝑏 

] (S3) 
  

̂

where dij is the Euclidian distance between observation point j and regression point i with planar 
coordinates, and b is the kernel bandwidth. 

GWR has been recognized as a superior approach (Kang et al., 2023) compared to classical 
linear regression, especially when the effects of independent variables exhibit spatial variability. 
Unlike classical linear regression, which assumes that data comes from an independent and 
identically distributed population of random variables and does not consider the geographical 
location of variables, GWR explicitly incorporates spatial information into the regression model. 
This enables the detection of spatial variation in the relationship among variables. 
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In this study, GWR was applied to model localized physical and anthropogenic factors 
surrounding lakes, as outlined in Table 3, and their association with bloom magnitude. The primary 
component of GWR is the spatial weight matrix, wherein closer observations are assigned larger 
weights defined by spatial kernel functions such as a Gaussian function (Brunsdon et al., 2002). In 
this study, we utilized an adaptive kernel as the kernel type and employed a bandwidth method to 
determine the bandwidth parameter. The adaptive kernel, combined with the specified bandwidth 
method, allowed for a customized spatial weighting scheme tailored to the unique characteristics 
of each lake, enhancing the precision of the GWR models in capturing the spatially varying 
relationships within the study area. 

The six independent variables were scaled to a range of zero to one before training the GWR 
regression models. This scaling facilitates the comparison of model coefficient maps and the 
relative effects of independent variables based on the magnitude or size of the coefficients. It is 
important to note that variable selection for GWR was performed 'globally' using a Random Forest 
model, not 'locally.' This approach aimed to capture local relations without training over-fitted 
GWR models, which can occur with local variable selection. Additionally, meaningful variables 
with broader significance across the FL were chosen to draw meaningful conclusions in a 
statewide-wide study. Consequently, localized regression models are calibrated by data from 
surrounding locations. GWR produces n sets of model coefficients and model R2 (local R2), 
corresponding to the number of lakes (134), allowing for visualization through descriptive 
statistics or surface maps. GWR statistics, including an overall R2 of 0.5222, are summarized, and 
additional metrics can be referenced in Table 4.   

Verification of the success: Figure 6 showcases the relationship between the predicted and the 
observed annual cyanobloom magnitudes for 134 lakes in Florida during the study period, offering 
insights into the model’s performance. With an R^2 value of 0.522, the model demonstrates a 
strong predictive capability, particularly significant in the context of cyanobacterial bloom 
prediction. This level of accuracy is noteworthy, as predicting cyanobacterial blooms is inherently 
challenging due to their complex nature and the multitude of influencing environmental factors. 

The substantial predictive power is further highlighted by a Residual Squares value of 0.3236, 
indicating that the model is not only capable of capturing the general trends in cyanobacterial 
bloom occurrences but also minimizes the error margin in its predictions. Such precision in 
prediction is crucial for effective monitoring and management of water bodies, potentially 
allowing for timely intervention and mitigation strategies against bloom events. 

The results signify a considerable achievement in predictive modeling of cyanobacteria, yet they 
also suggest an opportunity for ongoing improvement. By continuously refining the model, 
particularly focusing on reducing residual errors and enhancing its explanatory power, we can aim 
to achieve even greater accuracy in predicting and managing cyanobacterial blooms.   

Table 4. Geographically Weighted Regression (GWR) statistics, showcasing the overall R2 value 
and additional relevant metrics for the modeling of spatially varying relationships between 
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dependent and explanatory variables in the study. 

OBJECTID VARNAME VARIABLE DEFINITION 
1 Neighbors 25 
2 ResidualSquares 0.3236 
3 EffectiveNumber 23.5546 
4 Sigma 0.0942 
5 AICc -69.5149 
6 R2 0.5222 
7 Dependent Field 0 Norm_CyAN_ 
8 Explanatory Field 1 HUC10_crop 
9 Explanatory Field 2 HUC10_gras 
10 Explanatory Field 3 HUC12_deve 
11 Explanatory Field 4 HUC12_fore 
12 Explanatory Field 5 ARAIN_Aver 
13 Explanatory Field 6 AVFST_Max_ 
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Figure 6. Scatter Plot comparing Predicted Annual Cyanobloom Magnitude to Observed Annual 
Cyanobloom Magnitude for 134 lakes in Florida within the study period. This visual 

representation provides insights into the accuracy and effectiveness of the predictive model in 
capturing cyanobloom occurrences. 
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Figure 7. Spatial Distribution of Standardized Residuals (StdResid) from the Geographically 
Weighted Regression (GWR) Model. Standardized residuals highlight areas of significant 

deviations between observed and predicted values, aiding in the assessment of model 
performance and identification of spatial patterns in model errors. 

3.6 Development of an Online Open-Source Tool 

We have integrated regression equations for each lake into our online web app tool, enabling 
users to manipulate variables such as % land uses (cropland, developed areas, forest, and 
grassland) along with meteorological variables (maximum temperature and average rainfall) to 
predict bloom magnitude. The tool is developed using ArcGIS Online and Python, and the Python 
code can be found in Appendix B. Metrics values from 2022 serve as the baseline, allowing the 
tool to predict bloom magnitude and the % increase or decrease compared to 2022. We checked 
the accuracy of the model by predicting observed HAB data for 134 lakes. The results are presented 
in Figure 6. No expertise in GIS or Python is required. The tool features functionalities such as 
search, and filtering based on counties and bloom magnitude. It is open source and easy to use. 
Additionally, a map package is provided for download, enabling more in-depth analysis in GIS 
desktop applications. 

Our tool comprises two components: a spatial tool indicating bloom magnitude for 2022, color- 
coded based on quantile classification; and a second part where users can click on each lake. This 
action redirects them to the online interface for inputting values and predicting cyanobacteria 
bloom magnitude. These two components are shown in Figure 8. 
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Figure 8. Spatial Visualization of Cyano bloom Magnitude in 2022 - Color-coded representation 
based on quantile classification, providing a comprehensive overview of bloom intensity across 
lakes alongside a predictive component, allowing estimation of cyanobacteria bloom magnitude 

through consideration of land use, land cover, and meteorological variables. 

 Access our developed online tool at 
https://cosspp.maps.arcgis.com/apps/webappviewer/index.html?id=65fbe71c7c6940a09d 
09049df2f378f3. 

 For further in-depth analysis, download the map package for GIS desktop use from 
https://cosspp.maps.arcgis.com/home/item.html?id=1764ecfee36149c886408fb34e4b539 
1 

Project Timeline and Budget Summary: 

Task/ 
Deliverabl 

e No. 
Task or Deliverable Title Task Start Date 

Task End 
Date 

1 Quality Assurance Manual   

1a Draft Quality Assurance Manual Upon Execution 9/30/2022 

1b Quality Assurance Manual Upon Execution 11/30/2022 

2 
Data Collection and Analysis Upon Execution 

2a Interim Report Upon Execution 06/30/2023 

3 
Tool Development and Verification 
of Success 

Upon Execution 

3a Interim Report Upon Execution 01/31/2024 

4 Final Report Upon Execution 

https://cosspp.maps.arcgis.com/home/item.html?id=1764ecfee36149c886408fb34e4b539
https://cosspp.maps.arcgis.com/apps/webappviewer/index.html?id=65fbe71c7c6940a09d
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4a Draft Final Report Upon Execution 2/29/2024 

4b Final Report Upon Execution 06/10/2024 

BUDGET DETAIL BY TASK: 
Budget Category Budget Amount 

Total for Task 1: $50,785 
Total for Task 2: $118,501 
Total for Task 3: $118,501 
Total for Task 4: $50,787 
Total $338,575 

* No adjustments were made to the overall budget for each task; it simply involved reallocating 
funds among tasks due to modifications in personnel costs and their associated fringe benefits. 
Additionally, we extended the deadline for the final task to accommodate the revisions requested 
by the FDEP grant manager.   

Project Schedule vs. Actual Completion 

The project has adhered closely to the original timeline and scope as detailed in the Grant Work 
Plan. This alignment is a confirmation to the effective planning, management, and execution of 
the project tasks by the team. Despite the complex nature of developing a statewide predictive 
tool for harmful algal blooms, the project has met its milestones on time and has successfully 
navigated the challenges inherent in such an ambitious endeavor. 

Schedule Adherence 

From the outset, the project was structured around a detailed timeline that included key 
milestones such as the development of the Quality Assurance Project Plan (QAPP), data 
collection and analysis, model development and testing. Each phase was completed as planned, 
with no significant deviations from the scheduled dates. 

Unexpected Site Conditions and Adjustments 

Given the statewide scope of the project, potential for unexpected site conditions and the need 
for adjustments was anticipated. However, through diligent planning and flexible management 
strategies, the project team was able to preempt and mitigate these risks effectively. There were 
no reported unexpected site conditions that necessitated significant adjustments to the project 
plan. 

Significant Delays and Corrections 

Remarkably, the project encountered no significant unexpected delays or corrections. This 
achievement is particularly notable given the project's reliance on field data collection and 
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analysis, which are often susceptible to delays due to weather conditions, equipment 
malfunctions, or data quality issues. 

Deviations from the Original Project Plan 

The project's adherence to the original project plan, without any significant deviations, 
underscores the robustness of the initial project design and the effectiveness of the project 
management approach. This fidelity to the planned process ensured that the project objectives 
were met within the established timeframe and budget, ultimately contributing to the project's 
success. 

Discussion on the Anticipated Benefits Realization 

Given the project's on-time completion and adherence to the planned activities, it's critical to 
assess whether the anticipated benefits, particularly regarding Best Management Practices 
(BMP) and their expected removal efficiency, have been or will likely be achieved. The project 
aimed at developing a predictive tool for HABs in freshwater lakes across Florida, with several 
key anticipated benefits: 

 Enhanced Predictive Capabilities: The tool integrates advanced data analysis and 
machine learning algorithms to predict HAB occurrences. This capability allows for 
proactive rather than reactive measures in managing water quality, directly contributing 
to the efficacy of BMPs aimed at nutrient reduction and bloom prevention. 

 Informed Decision-Making: By providing detailed analysis and visualization of the 
relationships between cyanobacteria concentrations and various environmental variables, 
the tool empowers water managers and decision-makers. This informed decision-making 
facilitates the selection and implementation of BMPs tailored to specific conditions and 
challenges of different water bodies. 

 Increased Efficiency of BMPs: The predictive tool's insights into nutrient loading and its 
impact on HAB occurrences help refine the application of BMPs. By understanding the 
variables most significantly associated with bloom events, management practices can be 
optimized for maximum nutrient removal efficiency. 

 Cost-Effectiveness: The ability to predict and thereby prevent HABs can significantly 
reduce the costs associated with bloom management, such as treatment, cleanup, and 
economic losses related to recreational and commercial water use disruptions. 

Considering these points, the project's successful execution suggests that the anticipated benefits 
are well on their way to being realized. The development and implementation of the predictive 
tool marks a significant advancement in the management of freshwater resources in Florida. By 
providing a means to better understand and predict HAB occurrences, the tool directly supports 
the enhanced effectiveness and efficiency of BMPs. 

While it's too early to quantify the exact improvement in BMP removal efficiency, the project's 
outcomes align with the goals of improving water quality management and reducing the 



DEP Agreement #: INV28 
22 

incidence and impact of HABs. Continued monitoring and analysis will be essential to fully 
assess the long-term benefits and the tool's contribution to BMP performance improvements. 

Appendices 

Appendix A: Data Directory 
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TASK 3 

1. Cyanobacteria concentrations 
2. Meteorological Variables: 
3. Land use land cover 
4. Regression Equations 

Appendix B: Code for Developing Online Tool 

Appendix B contains the code for developing an online tool. The provided code, exemplified using 
Lake Apopka as a sample, has been crafted to accommodate all 134 lakes. 

import streamlit as st 

import pandas as pd 

import numpy as np 

# Display the title with blue color and centered text 

title_markdown = "<h1 style='color: blue; text-align: center;'>Future Cyanobacteria Bloom 
Magnitude Estimation in Lake Apopka</h1>" 

st.markdown(title_markdown, unsafe_allow_html=True) 

# Initial values according to the baseline of 2022 for Lake Apopka 

initial_values = { 

'Norm_CyAN': 141.348473, 

'AVFST_Max': 88.106, 

'ARAIN_Average': 184.16, 

'HUC12_forest_and_shrubland_4': 4.511227711, 

'HUC10_grassland_and_pasture_3': 12.92275406, 

'HUC10_cropland_area_1': 3.332721843, 

'HUC12_developed_area_5': 27.27513883 

} 

# Coefficients for Lake Apopka 
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coefficients = { 

'intercept': 2.707261329, 

'AVFST_Max': 0.057913537, 

'ARAIN_Average': -0.112755289, 

'HUC12_forest_and_shrubland_4': -0.363781812, 

'HUC10_grassland_and_pasture_3': -5.514615137, 

'HUC10_cropland_area_1': -2.882319595, 

'HUC12_developed_area_5': -2.836429498 

} 

# Equations variables 

b1, c1, d1, e1, f1, g1 = 82.04, 163.72, 0, 0, 0, 0.052616068 

b2, c2, d2, e2, f2, g2 = 90.86, 223.83, 80.3992991, 81.38497115, 86.75640259, 79.36556518 

# Sidebar for user inputs with icons 

st.sidebar.markdown("<h2 style='font-size: 24px;'>   User Inputs:</h2>", 
unsafe_allow_html=True) 

st.sidebar.write("The default values represent mean annual measurements derived from the 
2022 baseline for Lake Apopka.") 

# Slider variables: 

b3, c3, d3, e3, f3, g3 = 82.04, 0.00, 0.00000000, 0.000000000, 0, 0.000000000 

b4, c4, d4, e4, f4, g4 = 106.00, 450.00, 100.00, 100.00, 100.00, 100.00 

# User Input in the sidebar with colorful labels 

AVFST_Max_user = st.sidebar.slider("**   AVFST_Max_°F**", b3, b4, 
initial_values['AVFST_Max'], step=0.1, key="avfst_max", help="Adjust the annual 
maximum air temperature.") 



DEP Agreement #: INV28 
25 

ARAIN_Average_user = st.sidebar.slider("**   ARAIN_Average_kg/m^2**", c3, c4, 
initial_values['ARAIN_Average'], step=0.1, key="arain_average", help="Adjust the annual 
average rainfall.") 

HUC12_forest_and_shrubland_4_user = st.sidebar.slider("** 
HUC12_Forest_and_Shrubland_%**", d3, d4, 
initial_values['HUC12_forest_and_shrubland_4'], step=0.1, key="huc12_forest_shrubland", 
help="Modify the percentage of forest and shrubland within the HUC12 watershed enclosing 
the lake.") 

HUC10_grassland_and_pasture_3_user = st.sidebar.slider("** 
HUC10_Grassland_and_Pasture_%**", e3, e4, 
initial_values['HUC10_grassland_and_pasture_3'], step=0.1, 
key="huc10_grassland_pasture", help="Modify the percentage of grassland and pasture 
within the HUC10 watershed enclosing the lake.") 

HUC10_cropland_area_user = st.sidebar.slider("**   HUC10_Cropland_Area_%**", 
float(f3), float(f4), initial_values['HUC10_cropland_area_1'], step=0.1, 
key="huc10_cropland", help="Modify the percentage of cropland within the HUC10 
watershed enclosing the lake.") 

HUC12_developed_area_5_user = st.sidebar.slider("**•    HUC12_Developed_Area_%**", 
float(g3), float(g4), initial_values['HUC12_developed_area_5'], step=0.1, 
key="huc12_developed", help="Modify the percentage of developed area within the HUC12 
watershed enclosing the lake.") 

# Calculate Predicted Magnitude 

Y = coefficients['intercept'] + \ 

coefficients['AVFST_Max'] * (AVFST_Max_user - b1) / (b2 - b1) + \ 

coefficients['ARAIN_Average'] * (ARAIN_Average_user - c1) / (c2 - c1) + \ 

coefficients['HUC12_forest_and_shrubland_4'] * (HUC12_forest_and_shrubland_4_user - 
d1) / (d2 - d1) + \ 

coefficients['HUC10_grassland_and_pasture_3'] * 
(HUC10_grassland_and_pasture_3_user - e1) / (e2 - e1) + \ 

coefficients['HUC10_cropland_area_1'] * (HUC10_cropland_area_user - f1) / (f2 - f1) + \ 

coefficients['HUC12_developed_area_5'] * (HUC12_developed_area_5_user - g1) / (g2 - 
g1) 
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final_bloom_magnitude = Y * 194.0458755 

percentage_change = (final_bloom_magnitude - initial_values['Norm_CyAN']) / 
initial_values['Norm_CyAN'] * 100 

# Main content to display the output with an icon 

st.header("   Model Output") 

# Bar chart data 

chart_data = pd.DataFrame({ 

'Magnitude Type': ['Initial Bloom Magnitude', 'Predicted Bloom Magnitude'], 

'Magnitude Value': [initial_values['Norm_CyAN'], final_bloom_magnitude] 

}) 

# Display the final result with bold text 

st.write(f"**Initial Cyanobacteria Bloom Magnitude with the Baseline of 2022:** 
{initial_values['Norm_CyAN']:.4f}") 

st.write(f"**Predicted Cyanobacteria Bloom Magnitude:** {final_bloom_magnitude:.4f}") 

# Display the percentage change with bold text 

st.write(f"**Percentage Change:** {percentage_change:.2f}%") 

# Display a message based on the change with color and bold text 

threshold = 0.001 

if abs(percentage_change) < threshold: 

st.info("**The estimated bloom magnitude remains the same.**") 

elif percentage_change > 0: 

st.error("**The annual magnitude of cyanobacteria bloom is predicted to increase.**") 
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else: 

st.success("**The annual magnitude of cyanobacteria bloom is predicted to decrease.**") 

# Bar chart 

chart_data = pd.DataFrame({ 

'Magnitude Type': ['Initial Bloom Magnitude', 'Predicted Bloom Magnitude'], 

'Magnitude Value': [initial_values['Norm_CyAN'], final_bloom_magnitude] 

}) 

# Display the bar chart 

st.bar_chart(chart_data, x='Magnitude Type', y='Magnitude Value') 
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