Strategic Beach Management Plan:
Central Atlantic Coast Region
Office of Resilience and Coastal Protection
Florida Department of Environmental Protection
April 2020
Table of Contents

Introduction – Central Atlantic ... 1
Cape Canaveral ... 2
Strategies for Inlets and Critically Eroded Beaches .. 2
 Kennedy Space Center, Brevard County, V365-V390 .. 2
 Canaveral Inlet, Brevard County, V467-R1 .. 3
 Canaveral and Cocoa Beach (North Reach), Brevard County, R1-R53 .. 4
 Patrick Air Force Base, Brevard County, R53-R75.3 ... 4
 Satellite Beach and Indian Harbour (Mid-Reach), Brevard County, R75.3-R118 5
 Indialantic to Spessard Holland park (South Reach), Brevard County, R118-R139 6
 South Brevard County, R139 –R202 ... 7
Regional Strategies for Beach and Inlet Management .. 9
 Sponsors and Funding ... 9
 Project Coordination .. 9
 Environmental Protection .. 10
 Sand Sources ... 10
 Additional Information .. 11
References .. 13
Indian River Coast ... 16
Strategies for Inlets and Critically Eroded Beaches .. 16
 Sebastian Inlet, Brevard R219 to Indian River County R1 ... 16
 Countywide Studies and Projects, Indian River County ... 18
 Ambersand Beach, Indian River County, R1–R17 ... 18
 Orchid Island and Wabasso Beach, Indian River County, R17-R51.3 .. 20
 Vero Beach, Indian River County, R70–R86 .. 21
 South County Beach, Indian River County, R99–R115.7 ... 21
Regional Strategies for Beach and Inlet Management .. 22
 Sponsors and Funding ... 22
 Project Coordination .. 22
 Environmental Protection .. 23
 Sand Sources ... 23
Innovative Projects .. 24
Additional Information... 24

References .. 26

St. Lucie Beaches ... 26

Strategies for Inlets and Critically Eroded Beaches ... 26
 Fort Pierce Inlet, St. Lucie County, R33-R34 .. 26
 Fort Pierce, St. Lucie County, R34–R46 .. 27

Regional Strategies for Beach and Inlet Management ... 29
 Sponsors and Funding ... 29
 Project Coordination .. 29
 Environmental Protection .. 29
 Sand Sources ... 30
 Additional Information .. 31

References .. 33

Treasure Coast .. 35

Strategies for Inlets and Critically Eroded Beaches ... 35
 Walton Rocks, St. Lucie County, R80-R90.3 .. 35
 South St. Lucie County Beaches, St. Lucie County, R98-R115+1000 (County Line) 35
 Hutchinson Island, Martin County, R1-R34.3 .. 36
 Bathtub Beach and Sailfish Point, Martin County, R34.3-R40 .. 37
 St. Lucie Inlet, Martin County, R44-R45 .. 39
 Jupiter Island, Martin County, R45–R111 .. 40

Regional Strategies for Beach and Inlet Management ... 42
 Sponsors and Funding ... 42
 Project Coordination .. 42
 Environmental Protection .. 42
 Sand Sources ... 43
 Additional Information .. 44

References .. 46

Appendix - Acronyms ... i
Brevard County Shore Protection Project – South Reach sand stockpile pit for the Mid Reach Segment in December 2019, near R140. Photo courtesy of Brevard County’s Natural Resources Management Department, Mike McGarry.
Introduction – Central Atlantic

The Central Atlantic Coast Region has a total of 136.6 miles of beaches of which, 82.7 miles are critically eroded, and 45.6 miles are actively managed. There are also four inlets within the Central Atlantic Region, all of which have an inlet management plan. For additional beach management or project information, see the current Critically Eroded Beaches Report, the joint coastal permits by county or the local government funding requests by county. Each subregion listed below will have the introductory paragraph listing the miles of coastline and erosional events/storms that have affected the subregion.

Each title within the subregion will list the coastal location, the county and the Department Reference or Range (R monument) for the critical erosion area. For inlets, river entrances or passes, the title, the county, and the adjacent R monuments will be stated. On federal lands near Cape Canaveral, virtual (V) monuments are used to identify project locations. In addition, there will be a subregion map highlighting the critical erosion areas and the managed project areas. Finally, references to coastal reports will also be listed at the end of each subregion.

For more specific information concerning projects or strategies along Florida’s coastline, see the following links for the other six coastal regions of Florida and for background information, see the Strategic Beach Management Plan’s Introduction.

Strategic Beach Management Plan’s Introduction
Northeast Atlantic Coast Region
Southeast Atlantic Coast Region
Florida Keys Region
Southwest Gulf Coast Region
Big Bend Gulf Coast Region
Panhandle Gulf Coast Region

For additional information pertaining to beach and ocean conditions, coastal associations, educational institutions or government agencies, see the following related coastal sites.

The State of Florida was significantly impacted by three hurricanes, Hermine, Matthew and Irma during the 2016 and 2017 hurricane seasons. To see additional information for strategies and funding to address recovery for the beaches and dunes, see the “Hurricane Damage Assessment Report for
2016: Florida’s Beaches and Dunes”. For the 2017 Hurricane season, see the “Hurricane Irma Post-Storm Beach Conditions and Coastal Impact in Florida” report. The post-storm survey data has been fully analyzed and an updated list of critically eroded beaches is in the Critically Eroded Beaches Report.

Cape Canaveral

The Cape Canaveral subregion has 71.6 miles of beaches, extending from the Volusia–Brevard County line to Sebastian Inlet at the Brevard–Indian River County line, as shown in Figure 1. There are 41.2 miles of critically eroded beaches in this subregion, of which 17.2 have been restored and maintained through beach nourishment. Brevard County also has additional 18.8 miles of engineered dune projects that are administered by the County.

Strategies for Inlets and Critically Eroded Beaches

Kennedy Space Center, Brevard County, V365-V390

Kennedy Space Center was established in 1962 as a launch facility and has been operating in that capacity for over 50 years at Cape Canaveral. In 2012, a 4.7-mile segment along Kennedy Space Center’s shoreline (V365-V390) was classified as critically eroded, and threatening manned spacecraft facilities, launch pads, Phillips Parkway and buried infrastructure. A truck haul using upland sand that was stockpiled in the Cape Canaveral Air Force Station, placed 85,000 cubic yards (cy) between V374 and V379 in the Spring 2014 to rebuild and reinforce dunes in the Kennedy Space Center. Additional beach and dune restoration is being investigated and currently the DRAFT Environmental Assessment for KSC Shoreline Protection Project of March 2015 is under review for evaluating the best alternatives for shoreline protection.

Strategy: Coordinate beach and dune erosion control activities with the Kennedy Space Center.
Canaveral Inlet, Brevard County, V467-R1

In 1939, the Florida Legislature created the Canaveral Port District, which obtained funding authority in 1941. In 1945, the U.S. Congress, under the Rivers and Harbors Act, authorized construction of a deep-water harbor and channel on the recurving shoreline immediately south of Cape Canaveral. Canaveral Inlet was constructed in 1951 as part of the federal Canaveral Harbor Navigation Project at Port Canaveral. The port and harbor construction were completed in September 1954. The lock that connects the west turning basin to the barge canal was constructed in 1965. Maintenance dredging of the entrance channel generally occurs on an annual or biannual basis with placement of the dredged material within a nearshore or offshore disposal area. The high percentage of fine grain sediment in the dredged material has precluded beach placement. Material used for sand bypassing is dredged from the Air Force Station borrow area on the north side of the north jetty of Canaveral Inlet. The Sand Bypass I project was constructed in 1995, which bypassed 930,000 cy to R1 to R8. The Sand Bypass II project was constructed in 1998, which bypassed 1,000,000 cy of sand using material from the nearshore or beach zone north of the inlet and placing it on the beach south of the inlet between R3 and R14. Sand-tightening improvements to the south jetty were completed in 1995. The Florida Department of Environmental Protection (Department or DEP) adopted an inlet management plan (IMP) in 1996 to implement strategies for bypassing objectives and comprehensive monitoring. The Strategic Beach Management Plan of 2008 further adopted a minimum average annual bypassing objective of 156,000 cy to be placed to the south of Port Canaveral Inlet. Dredging was performed in 2004 to remove material shoaled in during Hurricane Frances. Sand-tightening construction and a 300-ft seaward extension of the north jetty were completed in November 2005. Sand bypassing was completed in December 2007 for the Sand Bypass III project, with placement of 750,000 cy between R3.5 and R10. Sand bypassing occurred again in the spring of 2010 for the Sand Bypass IV project, with placement of 683,100 cy between R2.3 and R3, and also between R4 and R12.6. A study was completed in 2014 to update the inlet’s sediment budget. DEP subsequently adopted the Port Canaveral Inlet Management Plan (2014). The Sand Bypass V project was completed in April 2019, with placement of 1,364,942 cy between R1 and R18. Learn more about Port Canaveral projects and history.

Strategy: Follow the strategies listed in the updated (2014) Port Canaveral IMP. (1) Continue the existing comprehensive beach and inlet hydrographic monitoring program. (2) Continue the authorized inlet sand bypassing protocol. (3) The average annual bypassing objective shall achieve a minimum placement of 156,000 cy per year. (4) In order to bypass the natural net annual longshore
sediment transport (approximately 210,000 cy), in addition to the minimum bypassing quantity in Strategy #3, an additional quantity equal to at least 54,000 cy per year equivalence of beach quality material shall be placed between R20 and R75, with priority placement south of R42. (5) All suitable material from maintenance dredging the Canaveral Harbor Entrance and the south jetty sediment trap containing less than 20 percent fines shall be placed in the authorized nearshore disposal area in the vicinity of R28 to R38 offshore from Cocoa Beach.

Canaveral and Cocoa Beach (North Reach), Brevard County, R1-R53

This is a 9.5-mile segment of critically eroded beach in central Brevard County from the south jetty at Canaveral Inlet (R1) to the south limits of Cocoa Beach (R53). The project history for this segment of shoreline is described in Table 1. The federal Brevard County Shore Protection Project was constructed in 2001. The project design consists of a beach berm at elevation +9 ft NGVD to protect the existing dune and upland development. The project is authorized until 2050. Following the effects of the 2004 hurricane season, nourishment was accelerated with construction completed in the spring of 2005. Due to erosion from Hurricane Sandy, the North Reach was nourished again in 2014, with the assistance of FCCE funds. The next nourishment was completed in April 2018 and placed approximately 825,616 cy of beach quality material in the North Reach from an offshore borrow site.

Table 1. Brevard County Shore Protection Project - North Reach project history.

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Volume (cy)</th>
<th>Sand Source</th>
<th>Project Location (by R monument)</th>
<th>Length (mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2001</td>
<td>3,140,000</td>
<td>Offshore - Canaveral Shoals II</td>
<td>R3-R53</td>
<td>9.1</td>
</tr>
<tr>
<td>May 2005</td>
<td>754,600</td>
<td>Offshore - Canaveral Shoals II</td>
<td>R4-R20 and R33-R45</td>
<td>5.9</td>
</tr>
<tr>
<td>April 2014</td>
<td>972,410</td>
<td>Offshore - Canaveral Shoals II</td>
<td>R6-R24 and R33-R54</td>
<td>7.4</td>
</tr>
<tr>
<td>April 2018</td>
<td>825,616 *</td>
<td>Offshore - Canaveral Shoals II</td>
<td>R3.5-R22.5 and R34-R54</td>
<td>8.7</td>
</tr>
</tbody>
</table>

*Contract/ Pay volume.

Strategy: Maintain the project through monitoring, inlet sand bypassing and nourishment.

Patrick Air Force Base, Brevard County, R53-R75.3

This is a 4.0-mile segment of critically eroded beach extending the length of Patrick Air Force Base.
The project history for this segment of shoreline is described in Table 2. The Patrick Air Force Base Beach Restoration Project was constructed between December 2000 and April 2001. Following the effects of the 2004 hurricane season, nourishment was accelerated and constructed during the spring of 2005. A dune restoration project was constructed in 2011, placing 51,200 cy of material along two miles of shoreline between R64.5 and R75.3. A small dune project occurred in 2014, placing 17,000 cy of material between R64.5 and R70 and again in 2018 in the amount of 25,000 cy between R64 and R75. Beach nourishment occurred in 2020 with placement of approximately 375,000 cy of material on the beach from an offshore borrow site.

Table 2. Patrick Air Force Base Beach Nourishment Project history.

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Volume (cy)</th>
<th>Sand Source</th>
<th>Project Location (by R monument)</th>
<th>Length (mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2001</td>
<td>600,000</td>
<td>Offshore - Canaveral Shoals II</td>
<td>R53-R70</td>
<td>3.2</td>
</tr>
<tr>
<td>March 2005</td>
<td>258,300</td>
<td>Offshore – Canaveral Shoals II</td>
<td>R54.5-R65</td>
<td>3.9</td>
</tr>
<tr>
<td>March 2005</td>
<td>63,200</td>
<td>Offshore - Canaveral Shoals II</td>
<td>R65-R75.4</td>
<td>2.0</td>
</tr>
<tr>
<td>2011</td>
<td>51,200</td>
<td>Nearshore north of Port Canaveral’s north jetty</td>
<td>R64.5-R75.3</td>
<td>2.0</td>
</tr>
<tr>
<td>2014</td>
<td>17,000</td>
<td>Nearshore north of Port Canaveral’s north jetty</td>
<td>R64.5-R70</td>
<td>1.0</td>
</tr>
<tr>
<td>2018</td>
<td>25,000</td>
<td>Nearshore north of Port Canaveral’s north jetty</td>
<td>R64.5-R75.3</td>
<td>2.0</td>
</tr>
<tr>
<td>2020</td>
<td>375,000</td>
<td>Offshore - Canaveral Shoals II</td>
<td>R58-R75</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Strategy: Maintain the project through monitoring and nourishment.

Satellite Beach and Indian Harbour (Mid-Reach), Brevard County, R75.3-R118

This is a 7.7-mile segment of critically eroded beach beginning at the southern boundary of Patrick Air Force Base and extending to just north of Indialantic. This area includes the communities of Satellite Beach and Indian Harbour Beach (R80-R104). Following the effects of the 2004 hurricane season, the design and permitting of a beach restoration project at the Mid-Reach segment of the federal **Brevard County Shore Protection Project** began. The federal shore protection project is authorized until 2050. In the interim, dune restoration projects have been constructed in 2005, 2006, 2008, 2009, 2014, and 2018, see Table 3. This work maintained the
emergency protective berms and was partially funded by the state in 2005; 2008, 2014 and 2018. The emergency protective berms were fully funded by the Federal Emergency Management Agency (FEMA), with additional sand and vegetation placed in 2006/2009. Dune restoration occurred again in 2014, placing 191,770 cy of material in the Mid-Reach segment in response to damages sustained during Hurricane Sandy. Emergency dune restoration occurred in early 2018 due to Hurricane Irma from R75.4 to R118.3 with placement of 156,590 cy of sand along the eroded toe of dune shoreline. Between 2005 and 2018, the dune projects have placed a total of 970,843 cy of sand on the Mid-Reach shoreline. The Department issued a permit in December 2009 for the restoration project, and the federal permit was issued in 2012. Construction of the reef modules was completed in early 2019 and sand placement is scheduled to begin in winter 2019/2020. The beach restoration project is expected to be completed by May 2020 with placement of approximately 350,000 cy of material from offshore that will be trucked into the Mid Reach segment from Spessard Holland Park and with placement between R75.4 to R118.2.

Table 3. Mid Reach Beach and Dune Restoration history.

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Volume (cy)</th>
<th>Sand Source</th>
<th>Project Location (by R monument)</th>
<th>Length (mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>307,300</td>
<td>Upland</td>
<td>R75.3 - R118</td>
<td>7.7</td>
</tr>
<tr>
<td>2006</td>
<td>127,584</td>
<td>Upland</td>
<td>R75.3 - R118</td>
<td>7.7</td>
</tr>
<tr>
<td>2008</td>
<td>95,777</td>
<td>Upland</td>
<td>R75.3 - R118</td>
<td>7.7</td>
</tr>
<tr>
<td>2009</td>
<td>91,822</td>
<td>Upland</td>
<td>R75.3 - R118</td>
<td>7.7</td>
</tr>
<tr>
<td>2014</td>
<td>191,770</td>
<td>Upland</td>
<td>R75.3 - R118</td>
<td>7.7</td>
</tr>
<tr>
<td>2018</td>
<td>156,590</td>
<td>Upland</td>
<td>R75.4 - R118.3</td>
<td>7.7</td>
</tr>
<tr>
<td>May 2020</td>
<td>350,000*</td>
<td>Offshore</td>
<td>R75.4 - R118.2</td>
<td>7.7</td>
</tr>
</tbody>
</table>

*Beach restoration for the federal shore protection project.

Strategy: Construct and maintain the Mid-Reach Beach Restoration segment of the Brevard County Shore Protection Project; monitor.

Indialantic to Spessard Holland Park (South Reach), Brevard County, R118-R139

This is a 3.8-mile segment of critically eroded beach beginning at Indialantic and extending to Spessard Holland Park. The project history for this segment of shoreline is described in Table 4. Beach restoration was initially conducted in 1980, but the project was not maintained. A subsequent
beach restoration project was completed in two segments. Segment I (R122.5-R139) was completed between February and April 2002. Segment II (R118.3-R123.5) was completed between March and April 2003. Following the effects of the 2004 hurricane season, nourishment of this project, referred to as the South Reach segment of the federal Brevard County Shore Protection Project, was accelerated. The project design consists of a beach berm at elevation +9 ft NGVD to protect the existing dune and upland development. The project is authorized until 2050. Beach nourishments were constructed during the spring of 2005, spring of 2010 and early winter of 2014. The next nourishment was completed in April 2018 and placed approximately 273,312 cy of beach quality material in the South Reach from an offshore borrow site. Beach nourishment construction is expected to begin again in the winter of 2019/2020.

Table 4. Brevard County Shore Protection Project - South Reach project history.

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Volume (cy)</th>
<th>Sand Source</th>
<th>Project Location (by R monument)</th>
<th>Length (mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>No data</td>
<td>Trident Submarine Base</td>
<td>Indialantic Beach</td>
<td>No data</td>
</tr>
<tr>
<td>April 2003</td>
<td>1,431,000</td>
<td>Offshore - Space Coast Shoals II and Canaveral Shoals II</td>
<td>R118.3-R139</td>
<td>3.8</td>
</tr>
<tr>
<td>April 2005</td>
<td>578,910</td>
<td>Offshore - Canaveral Shoals II</td>
<td>R118-R139</td>
<td>3.8</td>
</tr>
<tr>
<td>April 2010</td>
<td>650,000</td>
<td>Offshore - Canaveral Shoals II</td>
<td>R118-R139</td>
<td>3.8</td>
</tr>
<tr>
<td>February 2014</td>
<td>692,418</td>
<td>Offshore - Canaveral Shoals II</td>
<td>R118-R139</td>
<td>3.8</td>
</tr>
<tr>
<td>April 2018</td>
<td>273,312</td>
<td>Offshore - Canaveral Shoals II</td>
<td>R118.5-R127 and R132-R139</td>
<td>2.9</td>
</tr>
<tr>
<td>May 2020</td>
<td>500,000</td>
<td>Offshore - Canaveral Shoals II</td>
<td>R119 - R141</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Strategy: Maintain the project through monitoring and nourishment.

South Beaches, Brevard County, R139 –R202

This is an 11.5-mile segment of critically eroded beach. Following the effects of the 2004 hurricane season, emergency protective berms were funded by FEMA and the Department. Dune restoration projects were constructed in 2005, 2006, 2008, 2009, and 2014 to maintain the emergency protective
berms with additional sand and vegetation, see Table 5. Between 2005 and 2014, these projects have placed 447,312 cy of sand on the South Beaches of Brevard. The dune restoration that occurred in 2014 placed 47,262 cy of upland material in the South Beaches. A state and local feasibility study was initiated in 2007 to study economic costs and benefits of storm-damage reduction associated with construction of an erosion control project along the 14.5-mile shoreline (R139-R219) of the Southern Brevard County study area. The study concluded that there were two shoreline reaches with potential net storm damage reduction benefits that are greatest, relative to project costs from a beach nourishment project. The two reaches are Reach A from R139 to R149.3 (1.8 miles), which is south of the existing South Reach project area and Reach C between R164.5 to R176 (2.2 miles). Construction of a nearshore placement project in Reach A (R141-R151) has been permitted for the South Beaches. The proposed project is to place approximately 150,000 cy of beach compatible material in the nearshore at water depths of -24ft to -11ft NAVD 88.

The South Beaches received emergency dune restoration due to Hurricane Matthew beginning in late October 2016, with upland sand placement in the amount of 99,384 cy between R143 to R213, the project was completed in March 2017. Emergency dune restoration occurred again in spring of 2018 due to Hurricane Irma from R141 to R213 with placement of 78,828 cy of sand along the eroded dune toe shoreline. Between 2005 and 2018, the dune projects have placed 625,524 cy of beach quality sand in the South Beaches area. Hurricane Dorian caused additional erosion to the dune project in September 2019, and the county plans to conduct post-storm dune maintenance in 2020.

Table 5. South Beaches Dune Restoration history.

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Volume (cy)</th>
<th>Sand Source</th>
<th>Project Location (by R monument)</th>
<th>Length (mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>252,200</td>
<td>Upland</td>
<td>R141 - R213</td>
<td>13.1</td>
</tr>
<tr>
<td>2006</td>
<td>47,770</td>
<td>Upland</td>
<td>R141 - R213</td>
<td>13.1</td>
</tr>
<tr>
<td>2008</td>
<td>30,948</td>
<td>Upland</td>
<td>R141 - R213</td>
<td>13.1</td>
</tr>
<tr>
<td>2009</td>
<td>69,132</td>
<td>Upland</td>
<td>R141 - R213</td>
<td>13.1</td>
</tr>
<tr>
<td>2014</td>
<td>47,262</td>
<td>Upland</td>
<td>R141 - R213</td>
<td>13.1</td>
</tr>
<tr>
<td>2017</td>
<td>99,384</td>
<td>Upland</td>
<td>R143 - R213</td>
<td>12.7</td>
</tr>
<tr>
<td>2018</td>
<td>78,828</td>
<td>Upland</td>
<td>R141 - R213</td>
<td>13.1</td>
</tr>
</tbody>
</table>
Strategic Beach Management Plan – Central Atlantic Coast Region

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Volume (cy)</th>
<th>Sand Source</th>
<th>Project Location (by R monument)</th>
<th>Length (mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>98,500</td>
<td>Upland</td>
<td>R141 - R213</td>
<td>13.1</td>
</tr>
</tbody>
</table>

Strategy: Maintain the dune project; construct a nearshore placement project and monitor.

Regional Strategies for Beach and Inlet Management

Sponsors and Funding

This subregion contains the governmental entities of Brevard County, the cities of Cape Canaveral, Cocoa Beach, Satellite Beach, Indian Harbour Beach, Melbourne, Indialantic, and Melbourne Beach, the Canaveral Port Authority and the U.S. Army Corps of Engineers (USACE). The beaches of Cape Canaveral are within the Canaveral National Seashore, Kennedy Space Center and Cape Canaveral Air Force Base. Patrick Air Force Base includes 4 miles of shoreline on Canaveral Peninsula. Participants with the Department as sponsors of beach management projects include Brevard County, the Canaveral Port Authority, and the USACE. The sand bypass projects at Port Canaveral in 1995, 1998, 2007, and 2010 were carried out by the USACE, and were 100 percent federally funded. The USACE agreed to provide 100 percent federal cost share for construction of the North Reach in 2009, due to the results of the independent coastal expert (ICE) study. Project cost estimates may be found in the Beach Management Funding Assistance Program - Long Range Budget Plan.

Project Coordination

Regionalization is the funding and coordination of multiple erosion control projects and inlet management activities to take advantage of identifiable cost savings through economies of scale, reduced equipment mobilization and demobilization costs, and elimination of duplicative administrative tasks. Opportunities in this subregion include the implementation of maintenance dredging and sand bypassing at Canaveral Inlet, which should and has been coordinated as much as possible with nourishment of the Brevard County Shore Protection Project. The USACE has acknowledged that 100 percent of the North Reach and Canaveral Inlet Sand Bypassing “construction costs” are federal responsibility to mitigate the impacts of Canaveral Inlet. The coordination between the Canaveral Port Authority, Brevard County and USACE represents one of the state’s better examples of regional sediment management (RSM) to bypassing inlet material (R1-R14) and maintaining the North Reach Shore Protection Project (R1-R53) of Brevard County.
Environmental Protection

The protection of marine turtles, right whales, beach mice, shorebirds and the nearshore hardbottom and sabellariid worm reef communities are primary environmental concerns within this subregion. Sensitive areas for shorebirds include Canaveral National Seashore and Canaveral Air Force Station. Sensitive areas for beach mice include Canaveral National Seashore, Merritt Island National Wildlife Refuge, Kennedy Space Center, Cape Canaveral Air Force Station, Archie Carr National Wildlife Refuge, Ponce Landing, Coconut Point Sanctuary, Twin Shores Park, and Sebastian Inlet State Park (north). Within those sensitive areas, natural communities identified as primary and secondary dunes as well as scrub dunes, back dunes, coastal scrub and or coastal strand all provide essential habitat for beach mouse populations. Additionally, primary dunes and secondary dunes that occur on private lands are important for resilience of those developed lands and sustaining wildlife populations and should be maintained or restored. These areas can be subject to change as conditions change, and coordination with FWC shorebird staff and the FWC Regional Species Conversation Biologist for the FWC region where the project is occurring is encouraged during project development. The timing of construction activities has been restricted during the annual marine turtle nesting season (March 1 through October 31). The Archie Carr National Wildlife Refuge is within – and in close proximity to – the beach projects of this subregion. Project design and method of construction may be restricted to avoid or minimize adverse impacts to the listed species and their habitat. The operation of hopper dredges is restricted to avoid adverse impacts to marine turtles and right whales. The boundaries of project activities have been limited to minimize impacts to hardbottom and worm reef communities.

Sand Sources

Sand sources identified in a previous study and during design of the inlet bypassing and beach restoration projects appear to contain sufficient material for nourishment during the next 15 years. The Canaveral Shoal is estimated to contain more than 100 million cubic yards of beach compatible sand. However, borrow sources more conveniently located offshore of central and southern Brevard County are being investigated. A regional sediment management strategy that uses beach quality sand from upland dredged material management areas (DMMA) and the maintenance dredging of the navigation project has been incorporated into the maintenance of the beach restoration projects since the mid-1990s. Dune restoration efforts in the Mid Reach and South Beaches have placed 1.6Mcy of upland beach quality sand from various mines and quarries.

There is continued coordination between the Department, the USACE, Bureau of Ocean Energy Management (BOEM) and local governments to use best management practices with these offshore
resources, and also determine where sand borrow sites are located offshore along the Atlantic shoreline. For additional information on sand sources, the Department manages the Regional Offshore Sand Source Inventory (ROSSI) database.

Additional Information

The introduction of the state’s Strategic Beach Management Plan provides additional background information on the Department’s Beach Management Programs, and includes overviews of:

- The principles and statutes followed to help guide the state’s management strategies
- Comprehensive list of Florida’s inlets
- The miles of critically eroded beaches under active management
- Statewide sand source studies
- Statewide monitoring programs
- Innovative technologies examined
- Basic suggestions for emergency response plans
Figure 1. Map of the beaches of Brevard County, including Cape Canaveral. View an interactive map or COASTS imagery.
References

Florida Department of Environmental Protection, 2017. *Critically Eroded Beaches in Florida*,

Indian River Coast

There are 22.4 miles of beaches in the Indian River Coast subregion, which extends from Sebastian Inlet to the Indian River–St. Lucie County line, as shown on Figure 2. There is a total of 15.7 miles of critically eroded beaches in this subregion, of which 11.0 miles have been restored and maintained.

Strategies for Inlets and Critically Eroded Beaches

Sebastian Inlet, Brevard R219 to Indian River County R1

Sebastian Inlet is a man-made tidal inlet that was constructed in its present position in 1948 and is maintained by the Sebastian Inlet District. Sebastian Inlet State Park encompasses both the north and south sides of the inlet. Maintenance dredging of the channel and sediment impoundment basin (sand trap) occurs regularly, with placement of suitable material on the downdrift beaches south of the inlet. The Department adopted the Sebastian Inlet Management Study Implementation Plan in March 2000, which prescribed a bypassing requirement of 70,000 cy per year. The Department convened a new Technical Advisory Committee (TAC) in June 2004 for Sebastian Inlet. After examining available data, reports and analyses related to Sebastian Inlet, its sediment budget, and its impact on adjacent shorelines, the TAC recommended an updated bypassing objective of 90,000 cy on an average annual basis. This objective was never established in an updated inlet management plan but was adopted within the strategies in the 2008 strategic beach management plan. In an effort to meet the bypassing objective, the District places material from dredging of the navigation channel and sand trap on the downdrift beaches. In addition to placement of maintenance dredge material, sand from upland sources has been placed on the beaches south of the inlet to meet the bypassing requirement. Most recent efforts to improve the Inlet by Sebastian Inlet District have included the construction of the 30,000 cy capacity Dredge Material Management Area (DMMA) in 2011 to allow for more efficient
processing of dredge material, re-alignment of the inlet channel to improve navigability and increase dredge maintenance intervals, and expansion of the existing sand trap to a 42-acre depression within the inlet to increase structure efficiency and capacity.

Sebastian Inlet District has also implemented a comprehensive beach and inlet monitoring and modeling program to quantify inlet processes. This effort includes biannual surveys of the inlet and adjacent beaches, collection of local wave and water level data, modeling of inlet processes, and annualized updates to the State of The Sebastian Inlet Reports. Placements within the DMMA consist of a range of material (silt/clay, sand and rock) that is not immediately beach compatible. The DMMA allows for sorting and screening of this material to recover beach compatible material, which is subsequently placed on the beach. Learn more about Sebastian Inlet projects and the inlet history from the District’s web pages.

Following the impacts of Hurricane Frances and Jeanne in 2004, a project was constructed in the spring of 2007 between R4 and R17, using approximately 85,700 cy of beach quality sand that was dredged from the sediment impoundment basin of Sebastian Inlet. Additional material from an offshore sand source was placed on the beach south of the inlet in 2007 in the amount of 204,900 cy. A newly constructed sediment impoundment basin, or Dredge Material Management Area (DMMA), was constructed in 2011 within Sebastian Inlet State Park that is capable of holding up to 30,000 cy of dredge material. Maintenance dredging of the sand trap and channel in the amount of 141,251 cy and 119,851 cy was placed on the beach and the remainder (21,400 cy) was placed in the DMMA in 2012 for phase I of the project. The beach quality material was placed along the beaches south of the inlet between R4 – R8.5. Additional material of 34,600 cy was placed on the beach between R8.5 and R17 in 2013.

The Sebastian Inlet District removed 160,539 cubic yards of material from the Sebastian Inlet interior sand trap in 2014 through hydraulic excavation. Of this volume, 111,242 cubic yards of beach compatible material and was placed on the beach between R3 and R7. The remaining 49,297 cubic yards was placed in the DMMA. The Sebastian Inlet District performed a Screening and Truck Haul Beach Placement Project in February 2015 using material stored in the DMMA, which resulted in approximately 55,818 cubic yards of material being placed on the downdrift beaches between R11 and R17. The Sebastian Inlet District later placed 30,742 cy of material from the DMMA between R10 and R17 in 2017 in response to Hurricane Matthew. In 2019 the Sebastian Inlet District removed approximately 150,000 cubic yards of material from the inlet sand trap and channel through hydraulic
excavation. Of this volume, 120,000 cubic yards of sand was placed on the down drift beach between R10 and R17. The remaining 30,000 cy of material was stockpiled in the DMMA to be available for future emergency dune restoration or beach placement.

Strategy: Continue to bypass suitable sediment to the beaches south of the inlet from dredging of the inlet sand trap and from alternative sources as needed, to meet or exceed an average annual placement objective of 90,000 cy; maintain beaches south of the inlet that have been restored; implement a comprehensive beach and inlet monitoring program and based on the data, update the sediment budget and inlet management plan.

Countywide Studies and Projects, Indian River County

In 1986, the federal Indian River County Shore Protection Project was authorized for the Atlantic shoreline of Sebastian Inlet State Park (1.7 miles) and the City of Vero Beach (1.7 miles), with periodic nourishment. Studies completed in 1987 showed that it was economically feasible to extend the Vero Beach segment northward 0.9 miles to Tracking Station County Park. The project has not been implemented to date. A limited re-evaluation report of the Vero Beach segment was completed in 2000 by the USACE.

In 1988, the Indian River County Board of County Commissioners adopted a Beach Preservation Plan, which has been updated in 1998, 2008, and 2015. This plan divided the county into eight sectors. The updated plan proposed restoration and maintenance of beaches that have been impacted by the presence of Sebastian Inlet, and beach restoration and maintenance of critically eroded beaches within the remainder of the county. The Indian River County Beach Preservation plan is expected to be updated again in 2020/2021. A feasibility study of beach management alternatives was performed in 1999, along with preliminary engineering and design for beach and dune restoration. As of 2016, most of the alternatives contained in this plan have been implemented. Based upon available records from 1978 to present, the county, Sebastian Inlet District, City of Vero Beach and private residents have placed approximately 3.6 million cy along the county’s shoreline. Of this volume, approximately 2.2 million cy have been placed since 2002. After Hurricane Matthew (2016), Indian River County placed a total of 112,500 cy of upland material for emergency dune and beach repair between R10 and R105.4. The strategy for each segment of shoreline in Indian River County is presented below.

Ambersand Beach, Indian River County, R1–R17

This is a 3.1-mile segment of critically eroded beach immediately south of Sebastian Inlet that
includes Sebastian Inlet State Park (R1-R4) and unincorporated Ambersand Beach (R4-R17). This segment of beach includes Sector 1 (R1-R11) and Sector 2 (R11-R17) in the county’s Beach Preservation Plan.

Sand from inlet bypassing is placed within the area from R4 to R17. The non-federal Ambersand Beach Nourishment Project was initially constructed from February to April of 2003 by Indian River County using an offshore sand source. The project design consisted of a beach berm at elevation +9 ft NGVD, and a dune crest elevation at +14 ft NGVD that constitutes six years of advance nourishment to protect the existing dune and upland development. During this 2003 project, approximately 536,600 cy of beach quality sand was placed between R3.5 and R17. The project constructed 6.6 acres of artificial reef to mitigate for adverse impacts to 3.8 acres of nearshore hardbottom. A physical and environmental monitoring program was implemented in conjunction with project construction.

Following the impacts of Hurricane Frances and Jeanne in 2004, FEMA funded the construction of emergency protective berms. The project was constructed in the spring of 2007 between R4 and R12, using approximately 85,700 cy of beach quality sand that was dredged from the sediment impoundment basin of Sebastian Inlet. Additional material in the amount of 204,900 cy from an offshore borrow source was placed on the beach between R4 and R17 in December 2007. Maintenance dredging of the Sebastian Inlet sand trap and channel in the amount of 119,851 cy was placed on the beach in 2012 between R4 and R8.5 for phase I of the project. Additional material was placed on the beach between R8.5 and R17 in 2013 in the amount of 34,600 cy. Material in the amount of 111,200 cy was placed on the beach between R4 and R7 in 2014. Phase II maintenance dredging was completed in February 2015 to remove sand and rock from the sand trap, and beach compatible material of approximately 55,818 cy was placed in the Ambersand project area between R11 and R17. In early 2019, the Sebastian Inlet District placed 120,000 cubic yards of beach compatible material at Ambersand beach between R10 and R17. See project history in Table 6.

Table 6. Ambersand (Sectors 1 & 2) Project placement history.

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Volume (cy)</th>
<th>Sand Source</th>
<th>Project Location (by R monument)</th>
<th>Length (mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2003</td>
<td>536,600</td>
<td>Offshore</td>
<td>R3.5-R17</td>
<td>2.6</td>
</tr>
<tr>
<td>April 2007</td>
<td>85,700</td>
<td>Inlet</td>
<td>R4-R12</td>
<td>1.5</td>
</tr>
<tr>
<td>Date Completed</td>
<td>Volume (cy)</td>
<td>Sand Source</td>
<td>Project Location (by R monument)</td>
<td>Length (mi.)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>December 2007</td>
<td>204,900</td>
<td>Offshore</td>
<td>R4-R17</td>
<td>2.5</td>
</tr>
<tr>
<td>2012</td>
<td>119,851</td>
<td>Inlet</td>
<td>R4-R8.5</td>
<td>0.9</td>
</tr>
<tr>
<td>2013</td>
<td>34,600</td>
<td>Inlet</td>
<td>R8.5-R17</td>
<td>1.6</td>
</tr>
<tr>
<td>2014</td>
<td>111,242</td>
<td>Inlet</td>
<td>R3-R7</td>
<td>0.8</td>
</tr>
<tr>
<td>February 2015</td>
<td>55,818</td>
<td>Inlet</td>
<td>R11-R17</td>
<td>1.1</td>
</tr>
<tr>
<td>2019</td>
<td>120,000</td>
<td>Inlet</td>
<td>R10-R17</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Strategy: Maintain the project through monitoring and nourishment using sand from inlet bypassing and alternate sources.

Orchid Island and Wabasso Beach, Indian River County, R17-R51.3

This area includes 6.4 miles of critically eroded beaches in northern Indian River County. This segment includes Sector 3 (R17-R55) in the county’s Beach Preservation Plan. This area was severely impacted by Hurricanes Floyd and Irene (1999), Hurricanes Frances and Jeanne (2004), and Hurricane Sandy (2012), Hurricane Matthew (2016), and Hurricane Irma (2017). Dune restoration projects were constructed at the county parks of Treasure Shores (R25), Golden Sands (R32), and Wabasso Beach County Park (R39) in 2005, following each major storm to supplement the emergency protective berms funded by FEMA. The County later constructed a beach restoration project titled the Indian River County Sector 3 Beach and Dune Restoration Project, that was constructed in three separate phases. The first phase was completed in 2010, which placed 267,182 cy; the second phase was completed in 2011, which placed 207,491 cy; and the third phase was completed in 2012, which placed 85,919 cy. The Sector 3 Project spans 6.6 miles of shoreline between R20 and R55 that had a total placement of approximately 560,592 cy of beach quality sand from upland sand mines. R51.3 through R55 is outside the state’s designated critically eroded area, and this portion of the restoration project was not cost-shared by the state. The dune crest elevation from R25 to R27 was +12ft NAVD, and the dune crest elevation from R28 to R55 was +15ft NAVD.

The project sustained damages during Hurricane Sandy. Emergency dune repairs were constructed in Orchid Beach, Wabasso Beach Park, and Golden Sands Park under the Department’s Emergency Order, with placement of 15,000 cy in 2013. An additional amount of 10,000 cy of sand was placed in the southern Sector 3 private project area (R51.3 –R55) through the Emergency Order. The repair
project was constructed in winter 2014/2015, which placed a total of 173,068 cy of upland sand within the fill the template (R24 to R55) landward of the mean high water (MHW), and another 9,363 cy of sand seaward of the MHW between T38 and R40. The county is pursuing a permit to construct a beach nourishment project again in 2020/2021 using an anticipated placement of approximately 450,000 cy from either an upland sand source or an offshore borrow site.

Strategy: Maintain the dune and beach restoration project through monitoring and nourishment.

Vero Beach, Indian River County, R70–R86

This is a 3.1-mile segment of critically eroded beach along the City of Vero Beach that includes a portion of Sector 4 (R55-R72) and all of Sector 5 (R72-R86) in the county’s Beach Preservation Plan. Seawalls have been constructed throughout much of the sector. This area was severely impacted by Hurricanes Frances and Jeanne (2004), Hurricane Matthew (2016) and Hurricane Irma (2017). Following the effects of the 2004 hurricane season, emergency protective berms were constructed using funds from FEMA. A dune restoration project consisting of additional sand and vegetation was constructed in 2005 to supplement the emergency protective berms funded by FEMA. Another dune restoration project was conducted at the Conn Beach Access in March 2008. The County’s Beach Preservation Plan recommends beach nourishment for the Sector 5 segment. The County completed a feasibility study and environmental assessment in 2017, and it will be constructing the first beach restoration project in Sector 5 during winter 2019/2020. The project will use approximately 200,000 cy of beach compatible sand from an upland sand source to restore damages from both Hurricane Matthew and Irma, providing a protective berm and dune for the County’s most developed section of beach using funds from FEMA. The beach restoration is expected to be completed by April 2020.

Strategy: Construct and maintain the beach restoration project; monitor.

South County Beach, Indian River County, R99–R115.7

This is a 3.1-mile segment of critically eroded beach in southern Indian River County. This segment of beach includes most of Sector 7 (R97-R108) and a portion of Sector 8 (R108-R119) in the county’s Beach Preservation Plan. Seawalls have been constructed along much of the area. This area was severely impacted by Hurricanes Floyd and Irene (1999), Hurricanes Frances and Jeanne (2004), Hurricane Matthew (2016), and Hurricane Irma (2017). Following the effects of the 2004, 2016 and 2017 hurricane seasons, emergency protective berms were constructed using funds from FEMA. A
dune restoration project consisting of additional sand and vegetation was constructed in 2005 to supplement the emergency protective berms funded by FEMA. The Indian River County Sector 7 Beach Restoration Project was completed in the spring of 2007, which placed approximately 348,500 cy of beach quality sand between R97 and R108 using an offshore borrow site. Sixty-three percent of the total volume of sand was placed at the northern portion (R97-R102) of the project area, and the project was designed to be wider than the southern portion (R102-R108) to serve as a feeder beach. The northern portion (42 percent of total length) of the project has shown significant loss of material that was placed, while the southern portion has shown gain due to the feeder beach effect. The county is pursuing a permit to construct a beach nourishment project in Sector 7 and is scheduled for the winter of 2020/2021 with an anticipated placement of approximately 400,000 cy.

Strategy: Maintain the beach restoration project through monitoring and nourishment.

Regional Strategies for Beach and Inlet Management

Sponsors and Funding

This subregion contains the governmental entities of [Indian River County](#), the City of Vero Beach, the [Sebastian Inlet District](#) and the [Florida Inland Navigation District](#), all of which are participants with the Department as sponsors of beach management projects, except the City of Vero Beach. [Indian River County’s beach preservation plan](#), dated February 2015, highlights the county’s initiatives to preserve and manage their coastline. The [Division of Recreation and Parks](#) manages the Sebastian Inlet State Park and McLarty State Museum (R1-R11). Project cost estimates and schedules may be found in the [Beach Management Funding Assistance Program - Long Range Budget Plan](#).

Project Coordination

Regionalization is the funding and coordination of multiple beach nourishment and inlet management activities to take advantage of identifiable cost savings through economies of scale, reduced equipment mobilization and demobilization costs, and elimination of duplicative administrative tasks. Opportunities in this subregion include the coordination of placement of sand from bypassing activities at Sebastian Inlet with construction and maintenance of beach and dune restoration and nourishment projects.

Previous Intracoastal Waterway maintenance dredging activities near Sebastian Inlet have not placed sand on the beaches, and neither does FIND’s Long-Range Dredge Material Management Plan specifically identify the future beach placement of dredged material; however, further
coordination of future projects may provide the opportunity for beach placement of dredged material

Environmental Protection

The protection of marine turtles, right whales, shorebirds, beach mice, and the nearshore hardbottom and sabellariid worm reef communities are primary environmental concerns within this subregion. Sensitive areas for beach mice include Sebastian Inlet State Park (south), Archie Carr National Wildlife Refuge, Pelican Island National Wildlife Refuge, and Treasure Shores Park. Within those sensitive areas, natural communities identified as primary and secondary dunes as well as scrub dunes, back dunes, coastal scrub and or coastal strand all provide essential habitat for beach mouse populations. Additionally, primary dunes and secondary dunes that occur on private lands are important for resilience of those developed lands and sustaining wildlife populations and should be maintained or restored. These areas can be subject to change as conditions change, and coordination with the FWC Regional Species Conservation Biologist for the FWC region where your project is occurring is encouraged during project development. Construction activities are not permitted during marine turtle nesting season (May 1 – October 31), and they must adhere to specific permit conditions during the beginning and end of season from March 1 to April 30 and November 1 to November 30. The **Archie Carr National Wildlife Refuge** is in close proximity to the beach projects of this subregion. Project design and method of construction are restricted to avoid or minimize adverse impacts to the federal and state listed species and their habitat, as well as hardbottom communities. The Sebastian Inlet sediment impoundment basin is located within the boundaries of the **Indian River – Malabar to Vero Beach Aquatic Preserve**. Projects located within and near the Aquatic Preserve boundaries require additional protection, including more stringent water quality standards than outside the Aquatic Preserve’s water boundaries during permitting and construction, to ensure preservation of the existing conditions.

Sand Sources

Sand sources to meet the needs of future projects in this subregion over the next 15 years have not been updated. An updated regional sand search and inventory should be performed to locate and characterize beach compatible sand. Sebastian Inlet District places material from an upland source on the downdrift beaches when sufficient material is not available from the channel and sediment impoundment basin (sand trap) for bypassing. There are the North, Central, and South borrow areas offshore that contain sand for nourishment. The South borrow area has been used before, in 2003.
Ambersand Project) and 2007 (Sector 7). Both the North and Central borrow areas need additional geotechnical investigation to consider their use. The proposed sand source for the Indian River Sector 7 project is the South Borrow Site which is located roughly 2 miles offshore between R-105 and R-119 near the southern Indian River County Line. The borrow site is composed of three sub-areas named Sub-areas 1, 2, and 3. The primary borrow area will be Sub-area 2 while Sub-area 3 will be used as a secondary borrow site.

There is continued coordination between the Department, the USACE, BOEM, and local governments to use best management practices with these offshore resources, and also to determine where sand borrow sites are located offshore along the Atlantic shoreline. For additional information on sand sources, the Department manages the Regional Offshore Sand Source Inventory (ROSSI) database.

Innovative Projects

In 1996, PEP Reef™ experimental submerged breakwaters were installed along a segment of shoreline in Vero Beach (R80-R83). An evaluation report of the structures’ performance, based upon a physical monitoring program, was published in 2003 by an independent third-party reviewer. The reviewer concluded that the PEP Reef™'s effect on attenuating wave energy was comparable to the effect of the natural hardbottom. After 34 months of monitoring, the beach in the vicinity of the PEP Reef™ lost volume. Based on the Department’s assessment, the beneficial effects of the PEP Reef™ were not proven. The PEP Reef™ remains in place.

Additional Information

The introduction of the state’s Strategic Beach Management Plan provides additional background information on the Department’s Beach Management Programs and includes overviews of:

- The principles and statutes followed to help guide the state’s management strategies
- Comprehensive list of Florida’s inlets
- The miles of critically eroded beaches under active management
- Statewide sand source studies
- Statewide monitoring programs
- Innovative technologies examined
- Basic suggestions for emergency response plans
Figure 2. Map of Indian River County within the Central Atlantic Coast. View an interactive map or COASTS imagery.
References

CB&I Coastal Planning and Engineering, Inc. (CB&I), Indian River County Beach Preservation Plan Update, 72 p (February 2015).

St. Lucie Beaches

There are 14.8 miles of beaches in the **St. Lucie Beaches** subregion, which extends from the Indian River–St. Lucie County line to R80 in St. Lucie County, as shown on Figure 3. There are 2.3 miles of critically eroded beaches in this subregion, of which 2.3 miles are maintained.

Erosion is attributed to frequent northeasters, occasional tropical storms and hurricanes, and the effects of Fort Pierce Inlet. The most erosive storms in recent years were Hurricane David (1979), the Thanksgiving Day Northeaster of 1984, Hurricane Irene (1999), Hurricanes Frances and Jeanne (2004), Hurricane Wilma (2005), Subtropical Storm Andrea (2007), October northeasters (2007), Tropical Storm Noel (2007), Tropical Storm Fay (2008), Hurricane Sandy (2012), Hurricane Matthew (2016), Hurricane Irma (2017) and Hurricane Dorian (2019).

Strategies for Inlets and Critically Eroded Beaches

Fort Pierce Inlet, St. Lucie County, R33-R34

Fort Pierce Inlet, part of the federal Fort Pierce Harbor Navigation Project, was constructed in 1920-1921, initially dredged in 1938, and deepened in 1995. Maintenance dredging of the entrance channel has been conducted, with disposal of the beach compatible dredged material on the adjacent downdrift beach south of the inlet for the following years: 1978, 1987, 1989, 1990, 1994, 1995, 1998, and 2014. Construction of a spur jetty attached to the south jetty was completed in 1997. The **Fort Pierce Inlet Management Study Implementation Plan** was adopted by the Department in 1997. A feasibility study was conducted in 2005 to evaluate potential sand bypassing at Ft Pierce Inlet. Feasibility study and design alternatives for the Ft Pierce Inlet sand trap have been considered by St. Lucie County, and the design of a sand trap was considered (alternative 2) with a capacity of 180,000 cy. The Department issued a Joint Coastal Permit in May 2016 for the construction (Phase 1) of a 60,000-cy sediment impoundment basin to periodically bypass the beach compatible material from the basin to the south side of Ft. Pierce inlet. In addition, the USACE issued Standard Permit No. SAJ -2014-02065 (SP-KDS) on August 8, 2019 authorizing Phase I construction. The county conducted a sand tracer study in 2016/2017 that used benign fluorescent sand tracers to evaluate the patterns of deposition over time, and spatially, to determine the transport pathways and quantities. The tracer work was intended to support the impoundment basin project, and provided valuable data in updating the sediment budget for Ft. Pierce Inlet. The tasks for updating the sediment budget included collection of topographic and hydrographic beach profile surveys and inlet bathymetry, along with analysis of historical inlet
shoreline changes. The updated sediment budget was submitted to the Department in September 2018 and is under review to develop an updated inlet management plan.

Strategy: Coordinate with the USACE to bypass all beach compatible navigation channel maintenance dredging material to downdrift beaches south of the inlet; place supplemental material (from upland sources or offshore sources) on the downdrift beaches south of the inlet, such that the combined total of material from all sources equals or exceeds 130,000 cy on an average annual basis; construct a sediment impoundment basin (sand trap) within the inlet to facilitate bypassing of sand from the inlet to the downdrift beaches; implement a comprehensive beach and inlet monitoring program; and, update the inlet management plan.

Fort Pierce, St. Lucie County, R34–R46

This is a 2.3-mile segment of critically eroded beach at Fort Pierce extending south of the inlet, and the project history for this segment of shoreline is described in Table 7. In 1971, the federal Fort Pierce Shore Protection Project restored 1.3 miles of shoreline immediately south of the inlet (R34-R41), using sand from a borrow area located 2,000 feet offshore of the project area. The initial project design consists of a beach berm at elevation +8.9 ft NGVD that constitutes ten years of advanced nourishment to protect the existing dune and upland development. Section 934 Reauthorization Report, approved by USACE in 1996, updated the nourishment cycle to seven years. Subsequently, a Limited Reevaluation Report (LRR) was approved by the USACE in 2007, which changed the frequency of future nourishments from a seven-year to a two-year nourishment cycle. Although the project is authorized until 2020, the 2018 WRDA Bill included language providing for a six-year extension to the federally authorized project. The local government is conducting a Section 203 Study which is intended to provide justification for 1) a new 50-year federal project life (beyond the year 2020) and 2) shoreline structures along the northernmost segment to combat the recurring high erosion rate and lengthen the nourishment cycle. The final Section 203 Report was submitted to the Assistant Secretary of the Army (Civil Works) in June 2018, where it currently awaits Congressional authorization in the next WRDA Bill (anticipated 2020).

Nourishment has been conducted using dredged material from maintenance of the Fort Pierce Inlet navigation channel. Additionally, nourishment was conducted in 1980 using sand from a borrow area located 2,500 feet offshore of the project area. Three sand-filled geotextile fabric tubes were placed as groins within 1,000 feet of the south jetty in 1994 to address the ongoing erosion problem. In 1997, a jetty spur was constructed on the south jetty to accumulate sand south of the south jetty. The
geotextile groins began to deteriorate and were eventually removed. In 1999, the shoreline was nourished using sand from a borrow area located three miles offshore at Capron Shoal, with subsequent nourishment utilizing the same source in 2003, 2004, 2005, 2007, 2009, 2012, 2013, 2015, and 2018. The 1999 project included construction of 5.0 acres of artificial reef, sea oat planting, and exotic vegetation removal from Coon Island, as a multi-component mitigation to offset adverse impacts to 8.9 acres of nearshore hardbottom. The nourishment project acts as a feeder beach for an additional one mile beyond the 1.3-mile placement area. Performance monitoring of the beach has demonstrated that the placement of sand within the 1.3-mile project area maintains the entire critically eroded area.

Following the effects of the 2004 hurricane season, maintenance nourishment was conducted from April to June of 2005. The 2005 nourishment event placed approximately 616,000 cy of beach quality sand from R34 to R41. Nourishment from 2007 through 2013 used material from the offshore borrow site (Capron Shoal), except in 2011 when an upland sand source was used for emergency response. Material was also placed in the project template in 2014 as a part of the FCCE inlet dredging project. Additional material in the amount of 319,091 cy was placed on the beach in 2015, between R34 to R38. The Atlantic Intracoastal Waterway was dredged in 2017 and 74,326 cy of material was placed on the beach between R34 and R35. The nourishment in May 2018 was completed with an approximate volume of 501,284 cy of material from the offshore Capron Shoal and placed between the South Jetty (R34) and R38.2. The next federal nourishment is expected in spring 2021.

Table 7. Fort Pierce Shore Protection Project history.

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Volume (cy)</th>
<th>Sand Source</th>
<th>Project Location (by R monument)</th>
<th>Length (mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1971</td>
<td>718,000</td>
<td>Offshore</td>
<td>R34 - R41</td>
<td>1.3</td>
</tr>
<tr>
<td>1981</td>
<td>346,000</td>
<td>Offshore</td>
<td>R34 - R41</td>
<td>1.3</td>
</tr>
<tr>
<td>March 1999</td>
<td>830,000</td>
<td>Capron Shoal</td>
<td>R34 - R41</td>
<td>1.3</td>
</tr>
<tr>
<td>April 2003</td>
<td>336,000</td>
<td>Capron Shoal</td>
<td>South Jetty - R36</td>
<td>0.42</td>
</tr>
<tr>
<td>April 2004</td>
<td>406,000</td>
<td>Capron Shoal</td>
<td>S. Jetty - R36.5</td>
<td>0.51</td>
</tr>
<tr>
<td>May 2005</td>
<td>616,000</td>
<td>Capron Shoal</td>
<td>R34 - R41</td>
<td>1.3</td>
</tr>
<tr>
<td>April 2007</td>
<td>503,800</td>
<td>Capron Shoal</td>
<td>R34 - R41</td>
<td>1.3</td>
</tr>
<tr>
<td>May 2009</td>
<td>189,600</td>
<td>Capron Shoal</td>
<td>R34 - R35.4</td>
<td>0.27</td>
</tr>
<tr>
<td>April 2011</td>
<td>62,700*</td>
<td>Upland Sand</td>
<td>R34 - R35</td>
<td>0.20</td>
</tr>
<tr>
<td>Date Completed</td>
<td>Volume (cy)</td>
<td>Sand Source</td>
<td>Project Location (by R monument)</td>
<td>Length (mi.)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>March 2012</td>
<td>499,800</td>
<td>Capron Shoal</td>
<td>R34 - R38</td>
<td>0.82</td>
</tr>
<tr>
<td>May 2013</td>
<td>431,301</td>
<td>Capron Shoal</td>
<td>R34 - R38</td>
<td>0.82</td>
</tr>
<tr>
<td>April 2014</td>
<td>164,100</td>
<td>Inlet and IWW</td>
<td>R34 - R35.5</td>
<td>0.28</td>
</tr>
<tr>
<td>May 2015</td>
<td>319,091</td>
<td>Offshore</td>
<td>R34 - R38</td>
<td>0.82</td>
</tr>
<tr>
<td>2017</td>
<td>74,326</td>
<td>IWW</td>
<td>R34-R35*</td>
<td>0.20*</td>
</tr>
<tr>
<td>May 2018</td>
<td>501,284</td>
<td>Capron Shoal</td>
<td>S. Jetty - R38.2</td>
<td>0.82</td>
</tr>
</tbody>
</table>

*Emergency Response for 2011 project and approximate location for 2017 project.

Strategy: Maintain the project through monitoring and nourishment using sand from inlet bypassing and from offshore sources. Continue to evaluate alternatives, such as coastal structures, to address the recurring erosional hot spot along the northernmost shoreline segment (R34-R36) of this beach, for implementation concurrent with a program of inlet sand bypassing.

Regional Strategies for Beach and Inlet Management

Sponsors and Funding

This subregion contains the governmental entities of [St. Lucie County](#), the City of Fort Pierce, the [Florida Inland Navigation District](#), and the [USACE](#), which are all participants with the Department as sponsors of beach management projects, except the City of Fort Pierce. Project cost estimates and schedules may be found in the [Beach Management Funding Assistance Program – Long Range Budget Plan](#).

Project Coordination

Regionalization is the funding and coordination of multiple beach nourishment and inlet management activities to take advantage of identifiable cost savings through economies of scale, reduced equipment mobilization and demobilization costs, and elimination of duplicative administrative tasks.

Opportunities in this subregion include coordinating the placement of sand from bypassing activities at Fort Pierce Inlet, with construction and maintenance of the beach and dune restoration project.

Environmental Protection

The protection of marine turtles, right whales, shorebirds, beach mice, and the nearshore hardbottom...
and sabellariid worm reef communities and their habitat are primary environmental concerns within this subregion.

Sensitive areas for beach mice include Avalon State Park, Queens Island Park, Pepper Park, Fort Pierce Inlet State Park, Frederick Douglass Park, John Brooks Park, Blind Creek Natural Area, and Jane Brooks Park. Within those sensitive areas, natural communities identified as primary and secondary dunes as well as scrub dunes, back dunes, coastal scrub and or coastal strand all provide essential habitat for beach mouse populations. Additionally, primary dunes and secondary dunes that occur on private lands are important for resilience of those developed lands and sustaining wildlife populations and should be maintained or restored. These areas can be subject to change as conditions change, and coordination with the FWC Regional Species Conservation Biologist for the FWC region where your project is occurring is encouraged during project development. The timing of construction activities has been restricted during the marine turtle nesting season of May 30 through October 31 in the northern portion (R34-R37) and May 15 through October 31 through the southern portion (R37-R41). Project design and method of construction are restricted to avoid or minimize adverse impacts to the federal and state listed species and their habitat. The boundaries of project activities are limited to avoid impacts to hardbottom and worm reef communities.

Sand Sources

During planning and design of the Fort Pierce Shore Protection Project, a sufficient quantity of sand for completion of initial restoration and nourishment for the next 15 years was identified in Capron Shoal. A regional sediment management strategy that uses beach quality sand from upland dredged material management areas and the maintenance dredging of the navigation project has been developed through the utilization of long term state and federal permits for the maintenance of the beach restoration project. Since there are limited sand resources existing in state waters in Southeast Florida, the Department and the USACE completed the Sediment Assessment and Needs Determination (SAND) study. This study was conducted in a collaborative manner, and it was reviewed by and vetted through all the participating stakeholders. The SAND study indicates that the regional offshore supply of sand in state and federal waters is more than adequate to meet the volumetric needs of all the beach nourishment projects in the five southeastern coastal counties (St. Lucie, Martin, Palm Beach, Broward, and Miami-Dade) for the next 50 years (year 2062), according to Ousley et al. (2014). Subsequently, the Department analyzed the need for sand over the next 10 to 20 years for the five southeastern counties and determined that approximately 20 to 30 million cy will
be needed for beach nourishment projects. Due to the narrow continental shelf adjacent to Florida’s southeastern shoreline, it is expected that some counties may need to look for sand resources in upland sand mines and/or offshore borrow sites in neighboring counties; Miami-Dade County has already initiated this process.

Coordination is recommended between the Department, the USACE, BOEM and local governments to use best management practices with these offshore resources. For additional information on sand sources, the Department manages the Regional Offshore Sand Source Inventory (ROSSI) database.

Additional Information

The introduction of the state’s Strategic Beach Management Plan provides additional background information on the Department’s Beach Management Programs and includes overviews of:

- The principles and statutes followed to help guide the state’s management strategies
- Comprehensive list of Florida’s inlets
- The miles of critically eroded beaches under active management
- Statewide sand source studies
- Statewide monitoring programs
- Innovative technologies examined
- Basic suggestions for emergency response plans
Figure 3. Map of St. Lucie County beaches. View an interactive map or COASTS imagery.
References

Treasure Coast

There are 27.8 miles of beaches in the Treasure Coast subregion, which extends from R80 in St. Lucie County to the Martin–Palm Beach County line, as shown on Figure 4. There are 23.3 miles of critically eroded beaches in this subregion, of which 14.9 have been restored and maintained.

Erosion is attributed to frequent northeasters, occasional tropical storms and hurricanes, and the effects of St. Lucie Inlet. The most erosive storms occurring in recent past years were Hurricane David (1979), the Thanksgiving Day Northeaster of 1984, Hurricane Irene (1999), Hurricanes Frances and Jeanne (2004), Hurricane Wilma (2005), Subtropical Storm Andrea (2007), October northeasters (2007), and Tropical Storm Noel (2007), Tropical Storm Fay (2008), Hurricane Sandy (2012), Hurricane Matthew (2016) and Hurricane Irma (2017).

Strategies for Inlets and Critically Eroded Beaches

Walton Rocks, St. Lucie County, R80-R90.3

This segment includes 1.9 miles of critically eroded beaches on Hutchinson Island in southern St. Lucie County, where the St. Lucie Nuclear Power Plant facilities, Walton Rocks County Park, and private condominium developments are located. This segment is predominantly within the U.S. Fish and Wildlife Service – Coastal Barrier Resources Act – Unit P11, in which the Power Plant Facilities and the Sand Dollar Shores and Dune Walk Condominiums are excluded. This area was severely impacted by Hurricanes Frances and Jeanne (2004). In 2004, the U.S Army Corps of Engineers initiated a feasibility study to evaluate a beach restoration project from R77 to just south of R115 (the Martin County line). In 2007, dune restoration was conducted from R88 to R90. In 2012, at the St. Lucie Nuclear Power Plant facilities, a steel sheet-pile seawall along 350 ft. of coast at R81 was constructed to protect the nuclear power plant’s cooling water intake canal.

Strategy: Monitor and maintain the dune restoration.

South St. Lucie County Beaches, St. Lucie County, R98-R115+1000 (County Line)

This is a 3.4-mile segment of critically eroded beach on Hutchinson Island in southern St. Lucie County along private residential condominium developments. This area was severely impacted by Hurricane Irene (1999) and Hurricanes Frances and Jeanne (2004). In 2004, the USACE initiated a feasibility study, which encompasses R77 to just south of R115 (the Martin County line). An Environmental Impact Statement and sand search were completed by the County in conjunction with
the planning and design for a non-federal project on South St. Lucie County Beaches, completed in 2013. The county identified the St. Lucie Shoal as a sand source for the 2013 non-federal restoration project area and any future federal projects. Work by St. Lucie County was applied as a credit against an ongoing federal feasibility study for the proposed future federal project. In 2005 and 2006, an emergency dune restoration project was constructed from R97.7 to R114, using 160,000 cy of sand. The dune project was impacted by the passage of Hurricane Sandy shortly before the full beach restoration project was scheduled to begin, so storm repairs were designed to be completed in conjunction with the restoration. Restoration was completed in May 2013 between R98 through R115 + 1000 (County Line), with 635,164 cy of sandy material from an offshore borrow site placed along 3.4 miles of critically eroded beach. Construction of a 1.89-acre mitigation reef was initiated in 2013 to mitigate for hardbottom impacts. Construction of the mitigation reef was completed in 2015. The project has a ten-year nourishment interval, and the next nourishment is expected to occur by 2023 as a federal project.

St. Lucie County pursued a federally authorized project for this segment of shoreline, in coordination with the federally authorized Martin County Shore Protection Project just south of the South St. Lucie Project area. The USACE completed the Draft Integrated Feasibility Study and Environmental Assessment in April 2016 of St. Lucie County’s southern 7.4-mile shoreline between R77 and R115/County Line. The study determined the final alternatives or tentatively selected plan (TSP) for the project area and was approved by the USACE review board and chief in July 2017. The project was federally authorized in the Water Resources Development Act (WRDA) bill of 2018.

Strategy: Maintain and monitor the beach restoration project.

Hutchinson Island, Martin County, R1-R34.3

This is a 5.7-mile segment of critically eroded beach along southern Hutchinson Island fronting private residential development and county beach access parks. The federal Martin County Shore Protection Project provides for beach restoration and periodic nourishment along the northernmost 4.2 miles of the county shoreline (R1-R23). The local sponsor is Martin County. The federal project design consists of a beach berm at elevation +8.0 ft NGVD to protect the existing dune and upland development, and the project history for this segment of shoreline is described in Table 8. The project is authorized until 2046. Beach restoration was completed in April 1996, including an extension of the beach fill from R23 to R25 as a non-federal (locally preferred) project feature.
South of the federal project template, this critically eroded area was severely impacted by Hurricanes Frances and Jeanne (2004), as the eye of both storms made landfall near the House of Refuge (R29.5). From R25 to R26, emergency protective berms were constructed using funds from FEMA. A dune restoration project with vegetation was constructed in 2005 to supplement the emergency protective berms funded by FEMA, with approximately 94,000 cy of upland sand by way of a truck haul between R25 and R34. The County monitors this project and will maintain as the conditions dictate. Hutchinson Island beaches were nourished again with approximately 427,763 cy of material between R1 to R20 from an offshore borrow area site (B) and the project was completed in April 2018.

Table 8. Martin County Shore Protection Project history.

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Volume (cy)</th>
<th>Sand Source</th>
<th>Project Location (by R monument)</th>
<th>Length (mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 1996</td>
<td>1,340,000</td>
<td>Offshore</td>
<td>R1-R25</td>
<td>4.0</td>
</tr>
<tr>
<td>January 2001</td>
<td>178,000</td>
<td>Offshore</td>
<td>R16.2-R22.3</td>
<td>1.2</td>
</tr>
<tr>
<td>February 2002</td>
<td>126,000</td>
<td>Offshore</td>
<td>R13.5-R16.2</td>
<td>0.5</td>
</tr>
<tr>
<td>April 2005</td>
<td>885,000*</td>
<td>Offshore</td>
<td>R1-R25.6</td>
<td>4.2</td>
</tr>
<tr>
<td>May 2013</td>
<td>613,017</td>
<td>Offshore</td>
<td>R1-R25</td>
<td>4.0</td>
</tr>
<tr>
<td>April 2018</td>
<td>427,763</td>
<td>Offshore</td>
<td>R1-R19</td>
<td>3.0</td>
</tr>
</tbody>
</table>

*The 2005 volume combines the beach nourishment (R1–R25.6) and dune restoration volumes (R25 – R25.6).

Strategy: Maintain the project through monitoring and nourishment; determine environmentally acceptable alternatives for beach management for the area between R25 and R34.3.

Bathtub Beach and Sailfish Point, Martin County, R34.3-R40

Bathtub Beach and Sailfish Point (R34.3-R42.3) are south of the federal shore protection project area on Hutchinson Island, with a 1.0-mile segment (R34.3 to R40) of critically eroded beach at both Bathtub Beach and Sailfish Point. This critical erosion area added a 0.4-mile segment to their critical erosion area in 2015, which now reaches down to R40 for design integrity of the beach nourishment project.

Both Bathtub and Sailfish Point encountered severe erosion from the 2004 hurricane season. The county and the community of Sailfish Point obtained a permit in October 2015 to construct a beach
nourishment project between R34.3 and R37.8 (Bathtub Beach), and a restoration project between R37.9 and R40 (Sailfish Point). The beach restoration project was completed in May 2016 and placed 325,400 cy of material on the 1,350-foot segment of Bathtub Beach and the 3,550-foot segment of Sailfish Point. Due to erosion from Hurricane Matthew, beach nourishment occurred again and was partially completed in May 2017 between R34.5 to R38 in the amount of 72,106 cy. The material came from inlet borrow area A and the Sailfish Point Navigation and Entrance Channel for the 2017 activities. Due to erosion from Hurricane Irma, the volume required to finish the project was increased and the final phase of the project was completed in April 2018, which placed a total of 142,843 cy between R34.5 and R37.4. The material for this second phase came from Borrow Area A, the Sailfish Point Navigation Channel and the Impoundment Basin. The next beach nourishment is scheduled for 2020/2021. See project history in Table 9 (truck haul) and Table 10 (dredge).

Table 9. Bathtub Beach and Dune Project history (truck haul).

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Volume (cy)</th>
<th>Sand Source</th>
<th>Project Location (by R monument)</th>
<th>Length (mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>2,855</td>
<td>Upland</td>
<td>R34-R36</td>
<td>0.4</td>
</tr>
<tr>
<td>2010</td>
<td>6,544</td>
<td>Upland</td>
<td>R34-R36</td>
<td>0.4</td>
</tr>
<tr>
<td>2011</td>
<td>6,664</td>
<td>Upland</td>
<td>R34-R36</td>
<td>0.4</td>
</tr>
<tr>
<td>2012</td>
<td>22,617</td>
<td>Upland</td>
<td>R34-R36</td>
<td>0.4</td>
</tr>
<tr>
<td>2013</td>
<td>2,554</td>
<td>Upland</td>
<td>R34-R36</td>
<td>0.4</td>
</tr>
<tr>
<td>2014</td>
<td>1,295</td>
<td>Upland</td>
<td>R34-R36</td>
<td>0.4</td>
</tr>
<tr>
<td>2017</td>
<td>27,477</td>
<td>Upland</td>
<td>R34-R36</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 10. Bathtub Beach and Sailfish Point Beach Nourishment Project history (dredge).

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Volume (cy)</th>
<th>Sand Source</th>
<th>Project Location (by R monument)</th>
<th>Length (mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>35,012</td>
<td>Inlet</td>
<td>R34-R36</td>
<td>0.4</td>
</tr>
<tr>
<td>May 2016</td>
<td>325,400</td>
<td>Inlet</td>
<td>R34.4-R40</td>
<td>1.1</td>
</tr>
<tr>
<td>May 2017</td>
<td>72,106</td>
<td>Inlet</td>
<td>R34.5-R38</td>
<td>0.7</td>
</tr>
<tr>
<td>April 2018</td>
<td>142,843</td>
<td>Inlet</td>
<td>R34.5-R37.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Strategy: Maintain the project through monitoring and nourishment; bypass material in accordance with the updated IMP; conduct a feasibility study on erosion control alternatives.

St. Lucie Inlet, Martin County, R44-R45

St. Lucie Inlet was originally cut by local interests in 1892, and the inlet federal navigation project has been maintained since 1916. Between 1980 and 1982, construction of the south dog leg section of the north jetty, the sand impoundment basin, the detached breakwater south of the channel, and the south jetty were completed, which essentially established the current configuration of the St. Lucie Inlet.

Following the 1982 improvements, maintenance dredging of the entrance channel was conducted at approximately four-year intervals, with placement along the one-mile segment of shoreline immediately south of the inlet. The exception occurred in 1996, when dredged material was placed within a nearshore disposal area.

The St. Lucie Inlet Management Study Implementation Plan was adopted by the Department in 1995. Inlet sand bypassing in 1997 included the transfer of beach compatible dredged material from the FIND's M-5 Dredged Material Management Area and from the adjacent Intracoastal Waterway channels to the beaches south of the inlet (R59-R65, R75-R82). Sand from a portion of the inlet flood shoal was transferred to the beaches south of the inlet (R78-R84, R92-R100) within the Town of Jupiter Island in 1999.

The USACE’s St. Lucie Inlet Design Memorandum and Final Environmental Assessment (2000) identified both navigation and sand bypassing improvements. The project modifications include elevating the crest height of the north jetty beginning seaward of the weir section and ending at the southeasterly jetty extension, constructing a modified sediment impoundment basin, and disposing of maintenance dredge material in the following order of priority: on the beach beginning 5,000 feet south of the inlet or into the nearshore south of the inlet at a depth no greater than -16 feet NGVD. The nearshore disposal option is normally used in emergency dredging situations. The construction of the sediment impoundment basin was completed in August of 2002. The north jetty rehabilitation, completed in 2009, increased the height of the jetty to +8ft MLW. An updated sediment budget for St. Lucie Inlet was prepared for Martin County in 2014. Several local stakeholders and the Department have reviewed and analyzed the 2014 sediment budget, with the intent of adopting an updated IMP. Maintenance dredging of shoal material in the entrance channel cut-1, transition area, and impoundment basin was completed in August 2018 with placement of 512,411 cy placed in the...
The updated **St. Lucie Inlet Management Plan** was adopted by the Department in January of 2016, and provides new strategies and new bypass objectives. A brief summary of the five strategies is listed below.

Strategy: Continue the existing comprehensive beach and inlet hydrographic monitoring program to evaluate performance and impact of existing bypassing and nourishment projects, and to update and define the inlet sediment budget; modify the inlet sand transfer protocol to permit the placement of inlet dredge material along the Atlantic beaches, both to the north and to the south of the inlet, within designated critically eroded areas between R34.5 and R111; the initial target bypassing quantities shall be the average annual placement of 161,000 cubic yards to the south and 34,000 cubic yards to the north; material excavated from the inlet system, including the sediment impoundment basin, the federal navigation channel and transition area, the Sailfish Point Marina channel and the inlet’s ebb, flood and interior shoals, shall generally be the source of sediment for meeting the target bypassing quantities in Strategy 3; the nearshore placement of inlet dredge material shall generally not be conducted except for emergency dredging in the federal navigation channel only, and when placed in nearshore water depths less than -12 feet (MLW).

Jupiter Island, Martin County, R45–R111

This is an 11.5-mile segment of critically eroded beach south of St. Lucie Inlet along Jupiter Island, which includes the St. Lucie Inlet State Park and the Hobe Sound National Wildlife Refuge (NWF). The project history for this segment of shoreline is described in Table 11. The non-federal Jupiter Island Beach Nourishment Project (R75-R117) placed sand along a portion of the Town of Jupiter Island's shoreline using an offshore borrow source in 1973-74. The project design consists of a beach berm at elevation +9.9 ft NGVD to protect the existing dune and upland development. Nourishment of discrete segments of the Town's shoreline using offshore borrow areas was conducted on a three to four-year basis through 1996. In 1999, the St. Lucie Inlet flood shoal sand transfer project bypassed material to the Hobe Sound NWR segment of shoreline north of the Town of Jupiter Island. This area has sustained historic erosion, overwash, and breakthrough threats to the environmentally sensitive Peck’s Lake and the culturally significant Joseph Reed Mound archeological site. Nourishment was initiated in the spring of 2006 and completed in 2007, due to damages sustained from the 2004 hurricane season. A summary of dredging events on Jupiter Island are presented below. Due to Hurricane Matthew (2016), the Town received a grant from FEMA to
assist with the nourishment event of 2019 that placed 1,173,000 cy sandy material on Jupiter Island between R73 and R115. Of the total 2019 volume, 531,592 cy was considered inlet bypassing.

Table 11. Jupiter Island Beach Nourishment Project history.

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Volume (cy)</th>
<th>Sand Source</th>
<th>Project Location (by R monument)</th>
<th>Length (mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973-1974</td>
<td>3,488,759</td>
<td>Nearshore borrow area</td>
<td>R82-R111</td>
<td>4.9</td>
</tr>
<tr>
<td>1977-1978</td>
<td>1,327,289</td>
<td>Nearshore borrow area</td>
<td>R87-R110</td>
<td>2.5</td>
</tr>
<tr>
<td>1983</td>
<td>1,000,000</td>
<td>Nearshore borrow area</td>
<td>R89-R95 and R102-R106</td>
<td>1.7</td>
</tr>
<tr>
<td>1987</td>
<td>2,234,869</td>
<td>Nearshore borrow area</td>
<td>R76-R81 and R87-R100 and R105-R111</td>
<td>3.1</td>
</tr>
<tr>
<td>1990</td>
<td>585,308</td>
<td>Offshore</td>
<td>R96-R102 and R106-R111</td>
<td>1.8</td>
</tr>
<tr>
<td>1991</td>
<td>414,812</td>
<td>Offshore</td>
<td>R77-R81 and R91-R98</td>
<td>1.7</td>
</tr>
<tr>
<td>1993</td>
<td>203,736</td>
<td>Offshore</td>
<td>R106-R111</td>
<td>0.8</td>
</tr>
<tr>
<td>1995-1996</td>
<td>1,741,134</td>
<td>Offshore</td>
<td>R76-R105</td>
<td>4.9</td>
</tr>
<tr>
<td>2002-2003</td>
<td>1,519,561</td>
<td>Offshore</td>
<td>R75-R84 and R88-R113 and Nearshore</td>
<td>5.8</td>
</tr>
<tr>
<td>2006-2007</td>
<td>1,706,711</td>
<td>Offshore</td>
<td>R76-R84 and R89-R111</td>
<td>5.1</td>
</tr>
<tr>
<td>2012</td>
<td>1,150,858</td>
<td>Offshore</td>
<td>R76-R84 and R91-R108</td>
<td>4.3</td>
</tr>
<tr>
<td>April 2016</td>
<td>1,670,455</td>
<td>Offshore</td>
<td>R76-R84 and R91-R113</td>
<td>4.9</td>
</tr>
<tr>
<td>2019</td>
<td>1,173,000</td>
<td>Offshore</td>
<td>R73-R115</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Source: Gahagan & Bryant Associates and ATM for year 2016.

Strategy: Maintain the project through monitoring and nourishment; continue inlet sand bypassing
in accordance with the updated IMP.

Regional Strategies for Beach and Inlet Management

Sponsors and Funding

This subregion contains the governmental entities of St. Lucie County, Martin County, the Town of Jupiter Island, the Florida Inland Navigation District, and the USACE, which are all participants with the Department as sponsors of beach management projects. St. Lucie Inlet State Park and Hobe Sound National Wildlife Refuge are located on northern Jupiter Island. Project cost estimates may be found in the Beach Management Funding Assistance Program - Long Range Budget Plan.

Project Coordination

Regionalization is the funding and coordination of multiple nourishment and inlet management activities to take advantage of identifiable cost savings through economies of scale, reduced equipment mobilization and demobilization costs, and elimination of duplicative administrative tasks.

Opportunities in this subregion include potential coordination to provide for future concurrent nourishment of the South St. Lucie County Beaches with Martin County’s Shore Protection Project that could provide an opportunity for future cost savings. In addition, coordination of maintenance dredging activities at St. Lucie Inlet and the Intracoastal Waterway with the inlet sand bypassing activities to enhance the eroded adjacent beaches and optimize the maintenance of the Jupiter Island beach restoration project.

Environmental Protection

The protection of marine turtles, right whales, shorebirds, beach mice, and hardbottom/reef communities and their habitats are primary environmental concerns within this subregion. Sensitive areas for shorebirds include Sailfish Point, emergent shoals within and near the St. Lucie Inlet, the Hobe Sound National Wildlife Refuge, and Jupiter Island. Additionally, emergent shoals are utilized by resident and migrating birds. Sensitive areas for beach mice include Jensen Beach Park, Bob Graham Beach Park, St. Lucie Inlet Preserve State Park, Hobe Sound National Wildlife Refuge, and Blowing Rocks Preserve. Within those sensitive areas, natural communities identified as primary and secondary dunes as well as scrub dunes, back dunes, coastal scrub and or coastal strand all provide essential habitat for beach mouse populations. Additionally, primary dunes and secondary dunes that occur on private lands are important for resilience of those developed lands and sustaining wildlife.
populations and should be maintained or restored. These areas can be subject to change as conditions change, and coordination with the FWC Regional Species Conservation Biologist for the FWC region where your project is occurring is encouraged during project development. Project design and method of construction are restricted to avoid or minimize adverse impacts to the federal and state listed species and their habitat. The westward portion of the federal navigation channel at St. Lucie Inlet is surrounded by the boundaries of the Jensen Beach to Jupiter Inlet Aquatic Preserve. While the federally authorized navigation channel is not classified as part of the Aquatic Preserve, projects located within and near the Aquatic Preserve boundaries require additional protection, including more stringent water quality standards than outside the Aquatic Preserve’s water boundaries, during permitting and construction to ensure preservation of the existing conditions.

Sand Sources

The sand source for nourishment of the South St. Lucie County Beach Restoration project has been the St. Lucie Shoal, located offshore of St. Lucie and Martin County line. The sand source for nourishment of the federal Martin County Shore Protection project has been the Gilbert Shoal, located offshore of northern Martin County and the St. Lucie Shoal (borrow area B) offshore of the St. Lucie County/Martin County Line. Additional borrow area sites A and B are located offshore of Jupiter Island. Since there are limited sand resources existing in state waters in Southeast Florida, the Department and the USACE completed the *Sediment Assessment and Needs Determination (SAND) study*. This study was conducted in a collaborative manner, and it was reviewed by and vetted through all the participating stakeholders. The SAND study indicates that the regional offshore supply of sand in state and federal waters is more than adequate to meet the volumetric needs of all the beach nourishment projects in the five southeastern coastal counties (St. Lucie, Martin, Palm Beach, Broward, and Miami-Dade) for the next 50 years (year 2062), according to Ousley et al. (2014). Subsequently, the Department analyzed the need for sand over the next 10 to 20 years for the five southeastern counties, and determined that approximately 20 to 30 million cy will be needed for beach nourishment projects. Due to the narrow continental shelf adjacent to Florida’s southeastern shoreline, it is expected that some counties may need to look for sand resources in upland sand mines and/or offshore borrow sites in neighboring counties; Miami-Dade County has already initiated this process.

Coordination is recommended between the Department, the USACE, BOEM, and local governments to use best management practices with these offshore resources. For additional information on sand sources, the Department manages a database named the *Regional Offshore Sand Source Inventory*.
Additional Information

The introduction of the State’s Strategic Beach Management Plan provides additional background information on the Department’s Beach Management Programs, and includes overviews of:

- The principles and statutes followed to help guide the state’s management strategies
- Comprehensive list of Florida’s inlets
- The miles of critically eroded beaches under active management
- Statewide sand source studies
- Statewide monitoring programs
- Innovative technologies examined
- Basic suggestions for emergency response plans
Figure 4. Map of the beaches located within the Treasure Coast in St. Lucie and Martin Counties. View an interactive map or COASTS imagery.
References

Coastal Planning and Engineering, Inc., 2002. *St. Lucie County, South County Post-Storm Beach Condition Study - Tasks 3, 4, and 52: Future Threats to Existing Development and Solutions to Mitigate Erosion,* 64 p.

Gahagan & Bryant Associates, 1976. *Jupiter Island Beach Renourishment Program*

Appendix - Acronyms

Acronyms associated with the Florida Department of Environmental Protection’s Strategic Beach Management Plan:

Coastal Associations Acronyms:

- ASBPA – American Shore & Beach Preservation Association
- FSBPA – Florida Shore & Beach Preservation Association
- DCA – Dredging Contractors of America

Federal Agencies Acronyms:

- BOEM – Bureau of Ocean Energy Management
- CBRA – Coastal Barrier Resources Act
- CHL – Coastal and Hydraulics Laboratory
- CIRP – Coastal Inlets Research Program
- CMS – Coastal Modeling System
- CSRM – Coastal Storm Risk Management
- CZMA – Coastal Zone Management Act
- EA – Environmental Assessment
- EIS – Environmental Impact Statement
- ERDC - Engineer Research and Development Center
- FCCE – Flood Control and Coastal Emergency
- FEMA – Federal Emergency Management Agency
- FRF – Field Research Facility
- GRR – General Reevaluation Report
- HSDR – Hurricane and Storm Damage Reduction
- LPP – Locally Preferred Plan
- LRR – Limited Reevaluation Report
- MMP – Marine Minerals Program
- NGVD 29 – National Geodetic Vertical Datum of 1929
- NAVD 88 – National American Vertical Datum of 1988
- NPS – National Park Service
- NWF – National Wildlife Refuge
• NEPA – National Environmental Policy Act
• NOAA – National Oceanic and Atmospheric Administration
• NHC – National Hurricane Center
• NWF – National Wildlife Refuge
• ODMDS - Ocean Dredge Material Disposal Site
• OCS – Outer Continental Shelf
• RSM – Regional Sediment Management
• SAJ – South Atlantic District, Jacksonville
• SPP – Shore Protection Project
• SLC – Sea Level Change
• SLR – Sea Level Rise
• TSP – Tentatively Selected Plan
• USACE – United States Army Corps of Engineers
• USFWS – United States Fish and Wildlife Service
• WRDA – Water Resources Development Act

State Agencies Acronyms:

• AIWW - Atlantic Intracoastal Waterway
• BCS – Beaches and Coastal Systems
• BIPP – Beaches, Inlets and Ports Program
• BMA – Beach Management Agreement
• BMFA – Beaches and Mines Funding Assistance Program
• BMP – Best Management Practices
• BSM – Bureau of Survey and Mapping
• CCCL – Coastal Construction Control Line
• COASTS – Collection of Aerials and Shoreline Trends Systems
• DEP – Department of Environmental Protection
• DMMA – Dredge Material Management Area
• DSL – Division of State Lands
• DWRM – Division of Water Resource Management
• ECL – Erosion Control Line
• EOC – Emergency Operation Center
• FAC – Florida Administrative Code
• FAR – Florida Administrative Register
• FDEM – Florida Department of Emergency Management
• FDFS – Florida Department of Financial Services
• FDOT – Florida Department of Transportation
• FHCF - Florida Hurricane Catastrophe Fund
• FIND – Florida Inland Navigation District
• FPS – Florida Park Service
• FS – Florida Statutes
• FWC – Florida Wildlife Commission
• IMP – Inlet Management Plan
• IWW – Intracoastal Waterway
• JCP – Joint Coastal Permit
• LABINS – Land Boundary Information System
• LGFR – Local Government Funding Request
• LRPB – Long Range Budget Plans
• MHWL – Mean High Water Line
• MLLW – Mean Lower Low Water
• MLW – Mean Low Water
• MOA – Memorandum of Agreements
• MOU – Memorandum of Understandings
• OCULUS – DEP’s Electronic Document Management System
• OGC – Office of General Counsel
• R – Range or Reference Survey Monument/Survey Marker
• RCP – Resilience and Coastal Protection
• ROSSI – Regional Offshore Sand Source Inventory
• SAND – Sediment Assessment and Needs Determination Study
• SBMP – Strategic Beach Management Plan
• SOP – Standard Operating Procedures
• SOW – Scope of Work
• TAC – Technical Advisory Committee
• TIITF – Trustees of the Internal Improvement Trust Fund
• WCIND – West Coast Inland Navigation District