Southeast Florida and Florida Keys Antibiotic Resistance Study Final project report

Dale Warren Griffin¹, Kenneth Banks², Kurtis Gregg³ and Brian Walker⁴

¹U.S. Geological Survey, 600 4th Street South, St. Petersburg, Florida 33772. <u>dgriffin@usgs.gov</u>

²Broward County, Environmental Protection and Growth Management Department, 115 South Andrews Avenue, Room 329-H, Fort Lauderdale, Florida 33301. kbanks@broward.org

³ERT, Inc., NOAA-Fisheries Service, 400 North Congress Avenue, Suite 270, West Palm Beach, Florida 33401. <u>kurtis.gregg@noaa.gov</u>

⁴Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, Florida 33004. <u>walkerb@nova.edu</u>

This report was funded in part by the Florida Department of Environmental Protection, Office of Resilience and Coastal Protection, and pursuant in part to National Oceanic and Atmospheric Award No. NA15NOS4820036. The views expressed herein are those of the author(s) and do not necessarily reflect the views of the State of Florida, NOAA, or any of its sub agencies.

Table of Contents

Objective	.2
Equipment	.4
Sample sites and collection	.5
Sample storage and shipping	
Table 1. Primer and Probe Sequences	
Master mix recipes	.8
Amplification profile	.8
PCR plate layouts (wet season)	.8
PCR plate layouts (dry season)	.9
Work Flow	.9
27 June 2018	q
Florida Keys pre-treatment sample set	
6 July 2018	9
Florida Keys post-treatment sample set	9
9 July 2018	9
10 July 2018	9
24 July 2018	
Table 2. Field and laboratory sample data spreadsheet (wet season)	
7 August 2018	0
Week of 6 and 13 August 2018 1	1
27 August 2018 1	1

28 August 2018	
29 August 2018	
30 August 2018	
31 August 2018	
6 September 2018	
13 September 2018	
12 March 2019	
Table 3. Field and laboratory sample data spreadsheet (dry season)	
20 March 2019	
22 March 2019	12
4 April 2019	
15 April 2019	12
16 April 2019	
17 April 2019	12
Results	13
Wet season	
Florida Keys sample sets	
Table 4. Florida Keys PCR data	
Southeast Florida sample set	
Table 4. Southeast wet season PCR data	
Figure 1. Wet season heatmap (not to scale)	
Figure 2. Wet season map of sampling locations and habitat type	
Dry season	
Table 5. Dry season PCR data	
Figure 3. Dry season heatmap (not to scale)	
Figure 4. Dry season map of sampling locations and habitat type	
Conclusion	
Recommendations	19
References:	20

Objective

Antibiotic resistance has recently been recognized as an emerging contaminant and has molecular methods that identify these genes in microbial populations that have proven to be useful tools in assessing anthropogenic impacts on terrestrial and aquatic environments (1). Analyzing microbial communities for the presence of antibiotics enable researchers to demonstrate at the genetic level, the influences of antibiotic laden sources such as septic systems, shallow injection wells, storm sewer overflows and outfalls on regional ecosystems. As antibiotic resistance can affect pathogen virulence, these sources of antibiotic laden pollutants can sustain the presence of these pathogens that can in turn present human recreational and ecosystem health risks.

The objective of this project is to determine the prevalence of antibiotic resistance genes in bacterial populations in impacted (close to and alongside outfall pipes and within the wastewater stream) and reference (along transect extending away from the outfalls) sediment samples around the Hollywood, FL wastewater treatment plant's ocean outfall. Two sample sets of coral mucus, the water column and reef sediment were also collected from a Florida Keys coral reef, pre, and

post treatment with amoxicillin, and were also analyzed for the presence of antibiotic resistance genes. Sediment and wastewater samples were analyzed for 15 different antibiotic resistant gene targets via polymerase chain reaction presence/absence assays in Southeast Florida coral reef environments. Approximately 38 samples per season (June = wet season, March = dry season) were collected by the Florida Department of Environmental Protection, Broward County and NOAA research teams and shipped to and analyzed at the USGS St. Petersburg Environmental and Public Health Microbiology Laboratory.

"This work is a follow-on to the pilot study results from 14ESFUSAFDEP3519 completed between 10/2014 & 9/2016. This project is a continuation of the SE Florida Coral Reef Initiative (SEFCRI) Technical Advisory Committee's recently concluded Outfall Biomarker Pilot Project (LBSP 28/29 Phase I) and builds upon the results and outcomes of that initial work." (current FLDEP/USGS FUSA agreement for this project)

Equipment

- 1. Applied Biosystems StepOne and StepOnePlus Real-Time PCR Systems. Life Technologies catalog #'s 4376373 and 4376598, respectively.
 - a. TaqMan Fast Advanced Master Mix, catalog # 4444556 (ABR PCR).
 - b. TaqMan Fast Virus 1-Step Master Mix, catalog # 4444432 (Viral PCR).
 - c. MicroAmp Fast 96-Well Reaction Plate (0.1ml), catalog # 4346907.
 - d. MicroAmp Fast Optical 48-Well Reaction Plate (0.1ml), catalog # 4375816.
 - e. MicroAmp Optical 8-Cap Strip, catalog # 4323032.
- 2. Eppendorf Reference Pipettes, 0.1-2.5µl, 0.5-10µl, 2-20µl, 20-100µl, 50-200µl, 100-1000µl and 500-2500µl.
- 3. Microfuge tube and 96-well microplate cold plates.
- 4. Master mix boats/Reagent Reservoir. Corning Incorporated COSTAR # 4870 or equivalent.
- 5. Sterile pipette tips and 1.8ml or 2.0ml microfuge tubes.
- 6. Fifty and 15ml conical tubes. Sterile Falcon or Fisher brand equivalent.
- 7. Tube racks for 15, 50 and 2.0ml tubes.
- 8. Ten, 25 and 50ml pipettes with autopipette and/or bulb.
- 9. IEC Centra MP4R centrifuge with swinging 250ml bucket rotor and 50ml tube adapters.
- 10. Beckman Coulter, Avanti J-E centrifuge with rotor/adaptors for 50ml conical tubes.
- 11. Eppendorf 5415 D microcentrifuge (24 place).
- 12. Incubator capable of 56°C.
- 13. Mettler Toledo AL54 scale and weigh boats.
- 14. MoBio PowerSoil DNA Isolation Kit, MoBio's catalog # 12888-100 (now owned by Qiagen).
- 15. MoBio Vortex Genie 2, catalog # 13111-V and 24 place tube holder, catalog # 13000-V1-24.
- 16. pH Meter with reference solutions at 4.0, 7.0 and 10.0 pH.
- 17. Millipore MF membrane filters, 0.45um HA. Fisher Scientific catalog # HAWP04700.
- 18. Sulfuric Acid, Fisher Scientific catalog # A300-500.
- 19. Sodium Hydroxide, Fisher Scientific catalog # S392-212.
- 20. Potassium Citrate, Fisher Scientific catalog # P218-500.
- 21. Potassium phosphate, monobasic, ACROS # 42420-5000.
- 22. Sodium Phosphate Dibasic Heptahydrate, Fisher Scientific catalog # S373-500.
- 23. Tris, Fisher Scientific catalog # T393-212.
- 24. Sodium (Tetra) Ethylenediamine Tetraacetate, Fisher Scientific catalog # S657-500.

- 25. Sodium Thiosulfate, Fisher Scientific catalog # S474-500.
- 26. Ethanol 200 proof, Decon Labs Inc. catalog # 2716.
- 27. Water, D.I.U.F., Fisher Scientific catalog # W2-20.
- 28. Qiagen AE buffer (10mM Tris-Cl, 0.5mM EDTA, pH 9.0).
- 29. Primer/probe sets and corresponding gene target clone (target sequence with ~15bp of random sequences on each end Integrated DNA Technologies (IDT) gBlock) synthesized by Eurofins, IDT or Applied Biosystems.

Sample sites and collection

Sample sites are illustrated in the wet and dry season heatmap figures (Figures 1 and 3). Samples included sediment and water column samples collected along transects centered on a regional ocean outfall and from regional wastewater treatment plants.

Sediment samples were collected by SCUBA divers who navigated to the sample site by descending an anchored center-point buoy line (centroid) and attaching a measuring tape to the anchor. Divers collected one sediment sample at the centroid of the array near the anchor (beneath the outfall pipe) and then navigated to the cardinal and ordinal directions (N, NW, W, SW, S, SE, E, NE) by dive scooter or by self-propulsion to collect samples at 25m and 50m from the centroid. One diver ran out the tape to 50m. The other diver collected sediment at 25m then the 50m site. Samples at 100, 200, 400 and 800m north and south of the centroid were collected on single dives at those intervals. Samples collected at 100, 200, and 400m, west of the centroid were collected by one diver team using scooters to move from site to site along the pipeline with anchored floats deployed from the boat marking the collection location. Samples at 800, and 1,600m from the centroid were collected on individual dives at those sites. Sediment samples were collected by divers using a 50ml centrifuge tube to scoop sediment from the seabed. Divers wore single-use nitrile gloves to prevent cross-contamination of sediment samples. Nitrile gloves were changed between samples (underwater) if more than one sample was collected on a dive. Outfall water samples were collected by opening an empty sterile 50ml centrifuge tube in the plume at the mouth of the pipe. Wastewater treatment samples were collected using sterile technique.

Sample storage and shipping

Wet Season:

Field sediment and water samples were brought to the surface where they were kept on ice on the boat and during transport to the FDEP CRCP office in Miami, FL, where they were placed in a freezer. Effluent water samples from the three wastewater treatment plants were collected while wearing Nitrile gloves. They were collected from spigots directly into sterile 50ml centrifuge tubes. Samples were placed in plastic Ziploc bags, and kept on ice during transport to the FDEP CRCP office where they were placed in a freezer with the field samples. Once all samples were collected, they were shipped frozen, on dry ice, overnight to the USGS lab in St. Petersburg, FL.

Dry Season:

Field sediment and water samples were brought to the surface where they were kept on ice on the boat and during transport to the FDEP CRCP office in Miami, FL, where they were placed in a refrigerator. Effluent and influent water samples from the three wastewater treatment plants were collected while wearing Nitrile gloves. They were taken from spigots directly into sterile 50ml centrifuge tubes. Samples were placed in Ziploc bags, and kept on ice during transport in the car to the FDEP CRCP office where they were placed in a refrigerator with the field samples. Once all samples were collected, they were shipped on ice, overnight to the USGS lab in St. Petersburg, FL.

Table 1. Primer and Probe Sequences

	Upstream Primer	Downstream Primer	Label-Probe	Reference
Antibiotic R	esistance Genes			
tetB	ACACTCAGTATTCCAAGCCTTTG	GATAGACATCACTCCCTGTAATGC	FAM- AAAGCGATCCCACCACCAGCCAAT	(2)
tetL	GGTTTTGAACGTCTCATTACCTGAT	CCAATGGAAAAGGTTAACATAAAGG	FAM- CCACCTGCGAGTACAAACTGGGTGAAC	(2)
tetM	GGTTTCTCTTGGATACTTAAATCAATCR	CCAACCATAYAATCCTTGTTCRC	VIC- ATGCAGTTATGGARGGGATACGCTATGGY	(2)
tetO	AAGAAAACAGGAGATTCCAAAACG	CGAGTCCCCAGATTGTTTTAGC	FAM- ACGTTATTTCCCGTTTATCACGG	(2)
tetQ	AGGTGCTGAACCTTGTTTGATTC	GGCCGGACGGAGGATTT	VIC- TCGCATCAGCATCCCGCTC	(2)
tetW	GCAGAGCGTGGTTCAGTCT	GACACCGTCTGCTTGATGATAAT	VIC-TTCGGGATAAGCTCTCCGCCGA	(2)
ampC	GGGAATGCTGGATGCACAA	CATGACCCAGTTCGCCATATC	VIC- CCTATGGCGTGAAAACCAACGTGCA	(2)
vanA	CTGTGAGGTCGGTTGTGCG	TTTGGTCCACCTCGCCA	VIC- CAACTAACGCGGCACTGTTTCCCAAT	(2)
ermB	GGATTCTACAAGCGTACCTTGGA	GCTGGCAGCTTAAGCAATTGCT	FAM- CACTAGGGTTGCTCTTGCACACTCAAGTC	(3)
mecA	CATTGATCGCAACGTTCAATTTAAT	TGGTCTTTCTGCATTCCTGGA	VIC- CTATGATCCCAATCTAACTTCCACATACC	(3)
blaSHV	AACAGCTGGAGCGAAAGATCCA	TGTTTTTCGCTGACCGGCGAG	FAM- TCCACCAGATCCTGCTGGCGATAG	(3)
blaPSE	GATTTGGTGCTCGGAGTATT	CATTGAAGCCTGTGTTTGAG	VIC- CTTGATGCTCACTCCA	(4)
floR	GGCAGGCGATATTCATTACT	CGAGAAGAAGACGAAGAAGG	FAM- CTAAAGCCGACAGTGTA	(4)
aadA2	CAGCCAYGATCGACATTGATCT	CCAAGGCAACGCTATGTTCTC	VIC- CTGCTTACAAAAGC	(4)
tetG	CGGTACTTCTGGCTTCTCTT	GAATCGGCAATGGTTGAG	FAM- CAGGAGCCGCAGTCGATTACACG	(4)

Positive controls were gene target sequences synthesized with ~15-25 base pair extensions beyond the 5' and 3' ends of the primer binding sequences. The controls were synthesized by Integrated DNA Technologies (gBlock double-stranded DNA fragments).

Master mix recipes

reactions – 20µl reactions - row 1 Internal Po	sitive Control (IPC) co	ntrol
		<u>13rxns</u>
2x TaqMan Fast Universal Master Mix –	10µ1	130µ1
Template –	2µ1	
Primer/probe (10µM/5µM working stock)	2µ1	26µ1
10x Exo Internal Positive Control	2µ1	26µ1
50x Exo IPC DNA	0.4µl	5.2µl
PCR grade H2O	3.6µl	46.8µl
eactions row 8 (4 reactions)		<u>5rxns</u>
2x TaqMan Fast Universal Master Mix –	10µ1	50µ1
Template –	2µ1	
10x Exo Internal Positive Control	2µ1	10µ1
50x Exo IPC DNA	0.4µ1	2µ1
PCR grade H ₂ O	5.6µl	28µl
	2x TaqMan Fast Universal Master Mix – Template – Primer/probe (10µM/5µM working stock) 10x Exo Internal Positive Control 50x Exo IPC DNA PCR grade H2O eactions row 8 (4 reactions) 2x TaqMan Fast Universal Master Mix – Template – 10x Exo Internal Positive Control 50x Exo IPC DNA	Template –2μlPrimer/probe (10μM/5μM working stock)2μl10x Exo Internal Positive Control2μl50x Exo IPC DNA0.4μlPCR grade H2O3.6μleactions row 8 (4 reactions)2x TaqMan Fast Universal Master Mix –10μl2μl10x Exo Internal Positive Control2μl50x Exo IPC DNA0.4μl

Single probe reactions (when utilized for startup testing and repeats if needed) – $20\mu l$ reactions - rows 2 - 7

a.	2x TaqMan Fast Universal Master Mix –	10µ1
b.	Template –	2µ1
c.	Primer/probe (10µM/5µM working stock)	2µ1
d.	PCR grade H ₂ O	6.0µ1

Multiplex (two primer and probe sets) – 20µl reactions

a.	2x TaqMan Fast Universal Master Mix –	10µ1	<u>13rxns</u> 130µ1
b.	Template –	2µ1	
c.	Primer/probe (10µM/5µM working stock)	2µl each	26µ1
d.	PCR grade H ₂ O	4.0µ1	52µl

Amplification profile

Sixty^oC for 0.5min, 50^oC for 2min and 95^oC for 5min, then 45 cycles of 95^oC for 0.25min and 60^oC for 1min, then a final step at 60^oC for 0.5min

PCR plate layouts (wet season)

Plate 1 multiplex duplicate sample layout (tetB/IPC, tetL/M, tetO/W, ampC/vanA, ermB/mecA, blaSHV/blaPSE, floR/aadA2) and Plate 2 (tetG/tetQ) are samples in columns x2 and rows of gene target using a 96-well plate. Use bottom right four wells for negative control (PCR grade water for template – columns 9 and 10, row 8) and IPC

negative control (2µl of IPC block – columns 11 and 12, row 8). Two dyes used, FAM and VIC. FAM labeled probes are tetB, tetL, tetO, ampC, ermB, blaSHV, floR, and tetG. VIC labeled probes are the IPC, TetM, TetW, vanA, mecA, blaPSE, aadA2, and tetQ.

PCR plate layouts (dry season)

Each combination of target/IPC or target/target were run for all the samples in duplicate on an individual 96-well plates with negative (PCR grade H_2O) and positive (gBlock) controls.

Work Flow

27 June 2018

Florida Keys pre-treatment sample set

Received samples (Florida Keys coral antibiotic treatment study, #'s 1-12. These are pretreatment samples, meaning the sample set collected prior to the diseased corals within the reef being treated with amoxicillin) and placed in the refrigerator.

6 July 2018

Centrifuged 25mls of water and mucus samples at 5900g x 30 min at 15°C and pipetted off all but ~500µl of supernatant. Vortexed the samples and transferred 250µl to Qiagen's PowerSoil bead beating tubes. Also transferred ~0.25g of sediment from each sediment sample to bead beating tubes. Extracted DNA from the samples using the PowerSoil protocol and eluted DNA in 100µl of Qiagen's AE buffer. Placed the extracts in the -20°C freezer until analysis.

Florida Keys post-treatment sample set

Received samples 13 - 24 and placed in the refrigerator.

9 July 2018

Set up new primer and probe mixes for the 15 targets. Then set up a polymerase chain reaction (PCR) assay using the above single and multiplex reactions to verify the gBlock synthetic positive control templates and the new primer/probe mixes. First reaction all checked OK except tetL and floR. Remake 10^{-3} dilutions of positive controls from the 10^{-2} frozen stock and rerun both dilutions for these targets. All amplified as expected. Set up and run plate 1 for samples 1 through 6. Extract DNA from samples 13 - 24 using the same protocol as utilized for the first sample set and placed in the refrigerator.

10 July 2018

Set up and run plate 1 for samples 7-12, 13-18 and 19-24. Set up and run plate 2 for samples 1 through 24.

24 July 2018

Received 38 frozen samples from DEP and placed in -20°C freezer. Samples included 6 water and 32 sediment samples collected near three ocean outfalls and their corresponding wastewater treatment plants (WWTP) during Southeast Florida's wet

season. Three effluent water samples were taken at the North Broward, Hollywood, and North Miami-Dade WWTP. At the mouth of the ocean outfall pipes associated with each of the three WWTP a sediment sample was taken from directly underneath the pipe, and a water sample was taken from inside the mouth of the pipe. At the Hollywood outfall only, sediment samples were taken in a rosette pattern 25 and 50 m N, S, E, W, NE, NW, SE and SW from the mouth of the pipe. Sediment samples were also taken along N and S transects at 100, 200, 400 and 800 m from the mouth of the pipe, and along W transect at 100, 200, 400, 800 and 1,600 m from the mouth of the pipe. The W transect was meant to follow along the outfall pipe.

Collection Date	Site	Sample/Site ID	Site Lat	Site Long	Depth	Water Temp.	Weather	Note (where sample collected)	Divers
5/11/2018	Broward North WWTP Outfall (pipe)	BRN_Sed	26.251347	-80.062208	111'	79F	Seas 1-2'/Wind<5 mph	Sandy bottom beneath outfall pipe	AR/PQ
6/11/2018	Broward North WWTP Outfall pipe)	BRN_H2O	26.251347	-80.062208	111'	79F	Seas 1-2'/Wind<5 mph	From inide mouth of outfall pipe	AR/PQ
6/11/2018	Hollywood outfall (south transect)	HOL_S_100	26.018319	-80.086023	84'	82F	Seas<1'/Wind<5mph	Sandy bottom next to patch reef	DC/KG
6/11/2018	Hollywood outfall (south transect)	HOL_S_200	26.017518	-80.086005	84'	82F	Seas<1'/Wind<5mph	Sandy bottom next to patch reef	JW/KB
6/11/2018	Hollywood outfall (south transect)	HOL_S_400	26.015895	-80.086023	85'	80F	Seas<1'/Wind<5mph	Sandy bottom next to patch reef	DC/KG
6/11/2018	Hollywood outfall (south transect)	HOL_S_800	26.011918	-80.085936	90'	80F	Seas<1'/Wind<5mph	Sandy bottom next to patch reef	JW/KB
6/12/2018	Hollywood outfall (pipe)	HOL_Sed	26.019126	-80.08602	86'	81F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom beneath outfall pipe	KB/MV
6/12/2018	Hollywood outfall (pipe)	HOL_H2O	26.019126	-80.08602	86'	81F	Seas 2-3'/Wind SE 5-10mph	From inide mouth of outfall pipe	KB/MV
6/12/2018	Hollywood outfall (rosette)	HOL_E_25	n/a	n/a	92'	77F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom, adjacent to/next to patch reef	KG/PQ
6/12/2018	Hollywood outfall (rosette)	HOL_E_50	n/a	n/a	95'	78F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom, adjacent to/next to patch reef	KG/PQ
6/12/2018	Hollywood outfall (rosette)	HOL_SE_25	n/a	n/a	89'	77F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom, adjacent to/next to patch reef	KG/PQ
6/12/2018	Hollywood outfall (rosette)	HOL_SE_50	n/a	n/a	94'	77F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom, adjacent to/next to patch reef	KG/PQ
6/12/2018	Hollywood outfall (rosette)	HOL_N_25	n/a	n/a	85'	81F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom near minimal patch rreef	KB/MW
6/12/2018	Hollywood outfall (rosette)	HOL_N_50	n/a	n/a	86'	81F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom, open	KB/MW
6/12/2018	Hollywood outfall (rosette)	HOL_NE_25	n/a	n/a	90'	81F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom next to patch reef	KB/MW
6/12/2018	Hollywood outfall (rosette)	HOL_NE_50	n/a	n/a	94'	81F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom next to patch reef	KB/MV
6/12/2018	Hollywood outfall (rosette)	HOL_NW_25	n/a	n/a	82'	81F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom, adjacent to/next to patch reef	ND/MS
6/12/2018	Hollywood outfall (rosette)	HOL_NW_50	n/a	n/a	79'	81F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom, adjacent to/next to patch reef	ND/MS
6/12/2018	Hollywood outfall (rosette)	HOL_W_25	n/a	n/a	77'	81F	Seas 2-3'/Wind SE 5-10mph	Pipe trench, sandy spot	ND/MS
6/12/2018	Hollywood outfall (rosette)	HOL_W_50	n/a	n/a	73'	81F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom next to and on north side of pipe	ND/MS
6/12/2018	Hollywood outfall (rosette)	HOL_SW_25	n/a	n/a	78'	82F	Seas 2-3'/Wind SE 5-10mph	Sandy spot in open depression on reef ridge	DC/SW
6/12/2018	Hollywood outfall (rosette)	HOL_SW_50	n/a	n/a	70'	82F	Seas 2-3'/Wind SE 5-10mph	Sandy spot in open depression on reef ridge	DC/SW
6/12/2018	Hollywood outfall (rosette)	HOL_S_25	n/a	n/a	85'	82F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom next to reef	DC/SW
6/12/2018	Hollywood outfall (rosette)	HOL_S_50	n/a	n/a	821	82F	Seas 2-3'/Wind SE 5-10mph	Sandy bottom in channel between reef ridges	DC/SW
6/12/2018	Hollywood outfall (west transect)	HOL_W_100	26.019111	-80.086922	64'	81F	Seas 1-2'/Wind ESE<5mph	Pipe trench, sandy spot	AR/MW
6/12/2018	Hollywood outfall (west transect)	HOL_W_200	26.019094	-80.087816	60'	81F	Seas 1-2'/Wind ESE<5mph	Pipe trench, sandy spot	AR/MW
6/12/2018	Hollywood outfall (west transect)	HOL_W_400	26.019055	-80.089598	60'	81F	Seas 1-2'/Wind ESE<5mph	Pipe trench, sandy spot	AR/MV
6/12/2018	Hollywood outfall (west transect)	HOL_W_800	26.018996	-80.093201	67'	82F	Seas 1-2'/Wind ESE<5mph	Sandy bottom next to concrete mat covering pipe	KG/PQ
6/12/2018	Hollywood outfall (west transect)	HOL_W_1600	26.018778	-80.100384	25'	82F	Seas 1-2'/Wind ESE<5mph	Next to trench, sandy bottom	KG/PQ
6/12/2018	Hollywood outfall (north transect)	HOL_N_100	26.019935	-80.086031	83'	81F	Seas 1-2'/Wind ESE<5mph	Sandy bottom, next to patch reef	ND/MS
6/12/2018	Hollywood outfall (north transect)	HOL_N_200	26.020742	-80.086049	83'	81F	Seas 1-2'/Wind ESE<5mph	Sandy bottom, next to patch reef	DC/SW
6/12/2018	Hollywood outfall (north transect)	HOL_N_400	26.022358	-80.086091	82'	81F	Seas 1-2'/Wind ESE<5mph	Sandy bottom, next to patch reef	ND/MS
6/12/2018	Hollywood outfall (north transect)	HOL_N_800	26.026376	-80.086081	85'	81F	Seas 1-2'/Wind ESE<5mph	Sandy bottom, next to patch reef	DC/SW
6/19/2018	Haulover outfall (Miami-Dade North)	MDN_Sed	25.92005	-80.086467				Sandy bottom beneath outfall diffuser pipe	
6/19/2018	Haulover outfall (Miami-Dade North)	MDN_H2O	25.92005	-80.086467				From inide mouth of 1 of 12 outfall diffuser pipes	
6/20/2018	Broward North WWTP	BRN_WWTP_H20	n/a	n/a	n/a	n/a	n/a	From WWTP	DC
6/20/2018	Hollywood WWTP	HOL_WWTP_H20	n/a	n/a	n/a	n/a	n/a	From WWTP	DC
6/20/2018	Miami-Dade North WWTP	MDN WWTP H2			n/a	n/a	n/a	From WWTP	DC

7 August 2018

Thaw the water samples (Broward North, Hollywood and Miami-Dade North WWTP and matching water column samples collected from the outfall pipe labeled H2O). Start lab sample number system below. Centrifuge 12ml of each sample using Amicon Ultra 15s at 5000 x g for 30 minutes. Transfer retentate ~100 μ l to 1.5ml microfuge tube and freeze the sample at -20°C. Additionally, centrifuge 2ml at 16000 x g for 10 minutes and pipette off 1.8ml. Resuspend the pellet in the remaining 200 μ l and freeze the samples at -20°C.

- 1. Broward North WWTP
- 2. Broward North outfall H₂O
- 3. Hollywood WWTP
- 4. Hollywood outfall H₂O
- 5. Miami-Dade North WWTP
- 6. Miami-Dade North outfall H₂O

Week of 6 and 13 August 2018

Extract DNA (same DNA extraction protocol as used for the Florida Keys sample sets) from ~0.26g of each sediment sample and the 7 August concentrated wastewater samples. Elute each in 100 μ l of Qiagen's AE buffer and store at -20°C.

27 August 2018

Set up and run gBlock positive controls for each antibiotic gene primer set. All target controls amplified.

28 August 2018

Set up and run ABR plate 1 for samples 1 through 6.

29 August 2018

Set up and run ABR plate 1 for samples 7 through 12, 13 through 18 and 19 through 24.

30 August 2018

Set up and run ABR plate 1 for samples 25 through 30, 31 through 36 and 37 and 38.

31 August 2018

Set up and run ABR plate 2 for samples 1 through 38.

6 September 2018

Repeat samples 1 through 6 to see if same detects occur without using the Amicon Ultra centrifugation units with these wastewater stream samples. Extract DNA using centrifugation of 15ml at 5900 x g for 30 minutes. Discard all but ~200 μ l of the supernatant. Vortex the sample to suspend the pellet and extract DNA from the entire volume. Store the 100 μ l AE extracts in the -20°C.

13 September 2018

Set up and run ABR PCR for the 6 September 2018 samples.

12 March 2019

Received 42 samples on ice (not frozen) from DEP and placed in the refrigerator. Samples included 10 water and 32 sediment samples collected during Southeast Florida's dry season. The samples were collected in the same manner as the Southeast Florida wet season samples, except 4 influent water samples were also taken from the Hollywood and North Miami-Dade WWTP. An image of the sample data spreadsheet with our laboratory identification numbers is pasted below.

Table 3. Field and laboratory sample data spreadsheet (dry season)

Collection Date	Site	Semple/Site 10	Depth	Water Temp	s. Weather	Note (where sample collected)	Divers/Sampler	USGS Laboratory sample number	wt/volume assayed	
/4/19	Haulover outfall (Mami-Dade North)	MDN_Sed	1.0	98	75 Seas 1-2, sunny/clear skies, wind SW 10-15k	In between rubble below mouth of pipe	KK/AR	A CONTRACTOR OF A CONTRACTOR	1 0.25g	
4/19	Haulover outfall (Mami-Dade North)	MDN_H2D		98	75 Seas 1-2;sunny/clear skies;wind 5W 10-15k	From inside mouth of pipe	KK/AR		2 2504	
4/19	Hellywood outfall (south transect)	HOL_5_800		89	79 Seas 1-2 sunny/clear skies wind SW 10-15k		M5/ND		3 0.25g	
4/19	Heilywood outfall (south transect)	HOL 5 400		84	78 Seas 1-2, wnnyfclear skies, wind SW 10-15k	Sandy spot next to reef ledge	AS,KK		4 0.25g	
4/19	Hellywood outfall (south transect)	HOL 5 200		86	77 Seas 1-2 symmetriclear skies wind SW 10-15k		KK/PQ		5 0.25g	
4/19	Hellywood outfall booth transect)	HOL 5 100		82	77 Seas 1-2 sunny/clear skies wind SW 10-15k		M5/N0		6 0.25g	
4/19	Hellywood outfall (north transect)	HOL_N_200		82	75 Seas 1-2 sunny/clear skies/wind SW 10-15k		AS/KK		7 0.25g	
4/19	Hellywood outfall (north transect)	HOL N 100		87	75 Seas 1-2 sunny/clear skies wind SW 10-15k		POJAR		8 0 25g	
/4/19	Hellywood outfall (north transect)	HOL N 400		77	78 Seas 1-2 sunnulciear skies wind SW 10-15k		M5/ND		9 0 25g	
4/19	Hellywood outfull (north transect)	HOL N 800		78	77 Seas 1-2 summariclear skies wind SW 10-15k		ASJACE		10 0.25e	
/4/19	Hollywood outfall (west transect)	HOL W 800		69	Seas 1-2 summiliar skies wind SW 10-15k	Couldn't see ploe, sampled in sand next to coordinate	KK/PQ		11 0.25#	
/4/19	Hollywood outfall (west transect)	HOL W 1800		20	Sean 1-2 summaiclear skietswind SW 10-15k	Could see pipe, sampled in sand next to it	KK/PO		12 0.25g	
1/5/19	Broward North WWTP Dutfail (plot)	DRN Sed	3	DIS	73 Seat 3-2 sunna/part cloud;wind W/NW 5-50k	Below mouth of pipe	KK/KG		13 0.25g	
0.0.9	Broward North WWTP Dutful pipel	BRN H20	1	D6	78 Sea 1-2 sunne/part cloud wind W/NW 5-10k	From inside mouth of pipe	KK/KG		14 2504	
1/5/19	Hellywood outfall (pipe)	HOL_Sed		99	75 Seas 3-2;sunny/part cloud;wind W/NW 5-50k	Below mouth of pipe	AR/PQ		15 0.35g	
1/5/19	Hellywood outfall (alpe)	HOL H20		99	75 Seat 5-2 sunny/part cloud, wind W/NW 5-53k	From inside mouth of pipe	AR/PQ		16 250ul	
1/5/19	Hollywood outfall (resettal)	HOL 5.25		99	Seas 3-2 sunna/part cloud, wind W/NW 5-10k		AR/PQ		17 0.25g	
15/39	Hellywood outfail insettel	HOLE SO		99	Seas 3-2 sunna/part cloud wind W/NW 5-10k		AR/PO		18 0.25e	
6/19	Hollywood outfall (resette)	HOL 54 25		99	Seas 1-2 winne/part cloud/wind W/NW 5-50k		AR/PO		19 0.25g	
/5/19	Hollywood outfall (resette)	HOL SE SD		99	Seas 1-2 sunny/part cloud/wind W/NW 5-50k		AR/PQ		20 0.35g	
5/15	Hellywood outfall (resette)	HOL 5.25		99	Sees 3-2 sunny/part cloud wind W/NW 5-50k		AR/PO		21 0.25g	
15/14	Hollywood outfall (resette)	HOL 5.50		99	Seas 1-2, write/part cloud/wind W/NW 5-50k		AR/PO		22 0.35g	
15/19	Heilywood outfull (resette)	HOLN 25		68	Seas 3-2 swnmelpart cloud, wind W/NW 5-50k		ND/KK		23 0.25g	
6/19	Hellywood outfull (resette)	HOL N SO		68	Sees 1-2 sunnelpart cloud wind W/NW 5-50k		ND/KK		24 0.25g	
5/19	Hellywood outfall (resetted	HOL NW 25		68	Seas 3-2 sunny/part cloud wind W/NW 5-128		ND/KK		25 0.25g	
5/19	Hellywood outfull (resette)	HOL NW 50		68	Sees 1-2 sunnelpart cloud, wind W/NW 5-10k		ND/KK		26 0.25g	
5/19	Hellywood outfall (resette)	HOLSW_25		88	Sees 1-2 sunnulpart cloud, wind W/NW 5-50k		AS/EH		27 0.25e	
5/19	Hellywood outfall (resette)	HOL SW 50		88	Sees 1-2 summilizert cloud/wind W/NW 5-50k		ALOH		28 0.25e	
5/39	Hellywood outfull (resette)	HOL W 25		88	Sees 3-2 sunmilizert cloud, wind W/NW 5-32k		A5/DH		29 0.25g	
(5/19	Hellywood outfall (resette)	HOL W S0		68	Seas 3-2 sunmilizert cloud, wind W/NW 5-30k		A5/D1		30 0.25¢	
15/19	Hellywood outfall (resette)	HOL NE 25		95	Seas 1-2 submy/part cloud wind W/NW 5-10k		KK/KQ		31 0.25¢	
5/19	Hellywood outfull (resette)	HOL NE 50		95	See 1-2 summinant cloud wind W/NW 5-10k		KK/KG		32 0.25e	
5.0.9	Hellywood outfall (west transect)	HOL W 100		85	Seas 1-2 sunnulpart cloud, wind W/NW 5-50k		AR/PO		33 0.25e	
6/19	Hellywood outfall (west transect)	HOL W 200		85	Seas 3-2 sunnelpart cloud, wind W/NW 5-30k		AL/PO		34 0.254	
6/19	Hollywood outfall (west transect)	HOL W 400		65	Seas 3-2 sunny/part cloud wind W/NW 5-30k		AN/PO		35 0.234	
7/15	Broward North WWTP	DRN WWTP effluent	0/4	nia	n/a	effluent, right before goes to outfall pipe, outside tank	AS		36 250al	
003	Hellywood WWTP	HOL WWTP efficient	n/s	n/a	n/a	effuent, from spigot inside building	AS		37 2504	
0/19	Hellywood WWTP	HOL WWTP influent	n/a	n/a	n/a	influent, from spigot inside building	AS		38 2504	
/11/19	Mami-Oade North WWTP	MON WWTP efficient	0/2	n/a	n/a	effuent, from spleot inside building	AS		39 250pl	
/11/19	Mami-Dade North WWTP	MON WWTP influent high	n/a	0,0	n/a	influent, from spigot outside*	AS	*these the	40 250vl	
/11/19	Mami-Oade North WWTP	MDN WWTP influent med	n/a	n/a	n/a	influent, from spigat outside*	AS		41 250vl	
/11/19	Mami-Gade North WWTP	MDN WWTP influent low	n/a	nia	n/a	influent, from spigot outside*	AS		42 250sl	
0.455.55					- X		170			
									water samples + 250ul out of a St	004
									sediment samples = "0.25g	

20 March 2019

Weighed out ~0.25 grams of each sediment sample and placed in Qiagen bead beating tubes. Placed in the -20°C freezer. Processed the 10 water/sewage samples as described on 6 July 2018 and placed in the -20°C freezer.

22 March 2019

Extracted DNA from all the samples using Qiagen's Powersoil Kit. Eluted DNA with 100µl of Qiagen's AE buffer and placed in -20°C freezer.

4 April 2019

Set up and run positive control reactions for each primer/probe target set and its corresponding IDT gBlock target clone. aadA2 gBlock did not amplify. Reordered primers/probe and gBlock clone. All other target clones resulted in amplification.

15 April 2019

Set up and run positive control reactions aadA2. Successful amplification required new primer set. Set up and run PCR for tetB/IPC, tetL/tetM and tetO/tetW PCR assays for all 42 samples. Include negative and positive controls as well as the IPC for the tetB plate. Each target set required one 96-well plate.

16 April 2019

Set up and run PCR for ampC/vanA, ermB/mecA, blaSHV/blaPSE and floR/aadA2 PCR assays for all 42 samples. Included negative and positive controls.

17 April 2019

Set up and run PCR for tetG/tetQ PCR assays for all 42 samples. Included negative and positive controls.

Results

Wet season

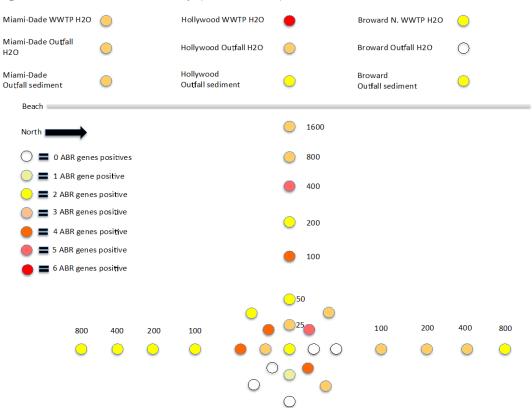
Florida Keys sample sets

The 24 Florida Keys samples were composed of two 12 sample sets (one pretreatment and one post-treatment with amoxicillin) with each set containing 4 sediment, 4 coral mucus and 4 water column samples (see the following spreadsheet – greyed area is pretreatment samples, no color is post-treatment samples). The tetB resistance target was detected in all of the water and coral mucus samples but not in the pre-treatment sediments. None of the other antibiotic resistance gene targets were detected in this pre-treatment sample set. Following treatment of the diseased corals with amoxicillin (2-weeks post-treatment) the same number and sample types were collected. In this sample set the tetB target was again detected but in only one of the mucus samples. In addition, the blaSHV target which imparts resistance to amoxicillin was detected in one water column and one coral mucus sample.

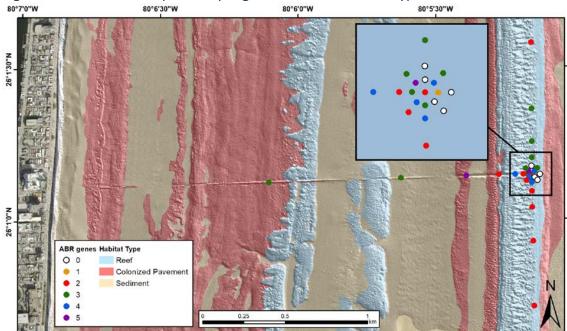
Α	В	C D	E	F	G	н	1	1	K	L	M	N	0	P	Q	R
ube #	Sample type Samp	le site tetB	teti.	tetM	tetO	tetW	ampC	vanA	ermB	mecA	blaSHV	blaPSE	floR	aadA2	tetG	tetQ
Keys 1	mucus - pret	2 (++)														
	2 water - pretr	1 (++)														
	3 sediment - r	2														
	4 water - pret	1 (++)														
	5 water - pretr	2 (++)														
	6 water - pret	2 (++)														
	7 sediment - ;	1														
	8 mucus - pre	1 (++)														
	9 mucus - pre	1 (++)														
	10 sediment - ;	2														
	11 sediment - p	1														
	12 mucus - pret	2 (++)														
	13 sediment - p	2														
	14 sediment - p	2														
	15 water - post	2														
	16 sediment - p	1														
	17 sediment - p	1														
	18 mucus - pos	2 (++)														
	19 mucus - post	2														
	20 water - post	1														
	21 water - post	2														
	22 water - post	1									(++)					
											(++)					
	23 mucus - post	1														

Table 4. Florida Keys PCR data

Blank = negative reaction, (+/+) = positive reaction.


Southeast Florida sample set

The Southeast Florida wet season sample set was composed of 6 wastewater samples (samples highlighted in yellow in the following spreadsheet) collected at three different wastewater treatment plants, their respective outfalls, and 32 sediment samples collected at those outfalls and in an array and along transects centered on the Hollywood outfall. Nine of the antibiotic resistance genes were detected in the sample set. The most prevalent antibiotic resistance genes detected in the samples were tetW and aadA2 at 68.4 and 60.5%, respectively. Seven (tetB, tetW, ampC, vanA, ermB, mecA and tetQ) of the fifteen antibiotic resistance genes were detected in the wastewater samples and six (tetO, tetW, ampC, vanA, mecA and aadA2) were detected in the sediment samples. tetB, ermB and tetQ were only detected in the wastewater samples and tetO and aadA2 were only detected in the samples. A following heatmap illustrates the occurrence of the different numbers of antibiotic resistance genes detected at each site.


Table 4. Southeast wet season PCR data

Α	В	C D	E	F	G	н	1	J	K	L	M	N	0	Р	Q	R
ube #	Sample type	Sample site tetB	tetL	tetM	tetO	tetW	ampC	vanA	ermB	mecA	blaSHV	blaPSE	floR	aadA2	tetG	tetQ
Broward 1	water	Broward Nor (+/+)														(+/+)
2	water	Broward North WW1	P outfall pipe -	H2O												
3	water	Hollywood W (+/+)					(+/+)	(+/+)	(+/+)	(+/+)						(+/+)
4	water	Hollywood WWTP ou	tfall pipe - H2O			(+/+)			(+/+)							(+/+)
5	water	Miami Dade (+/+)							(+/+)							(+/+)
6	water	Miami Dade (+/+)							(+/+)							(+/+)
7	sediment	Broward North WWT	P outfall pipe -	sed		(+/+)								(+/+)		
8	sediment	Hollywood outfall - S	(transect) sed1	100		(+/+)				(+/+)						
9	sediment	Hollywood outfall - S	(transect) sed	200		(+/+)								(+/+)		
10	sediment	Hollywood outfall - S	(transect) sed	400		(+/+)								(+/+)		
11	sediment	Hollywood outfall - S	(transect) sed	800		(+/+)								(+/+)		
12	sediment	Hollywood WWTP ou	tfall pipe - sed			(+/+)								(+/+)		
13	sediment	Hollywood outfall - E	(rosette) sed25	5						(+/+)						
14	sediment	Hollywood outfall - E	(rosette) sed50)												
15	sediment	Hollywood outfall - S	E (rosette) seda	25												
16	sediment	Hollywood outfall - S	E (rosette) sed5	50												
17	sediment	Hollywood outfall - N	(rosette) sed2	5												
18	sediment	Hollywood outfall - N	(rosette) sed5	0												
19	sediment	Hollywood outfall - N	E (rosette) sed	25		(+/+)		(+/+)		(+/+)				(+/+)		
20	sediment	Hollywood outfall - N	E (rosette) sed	50		(+/+)	(+/+)							(+/+)		
21	sediment	Hollywood outfall - N	W (rosette) see	d25	(+/+)	(+/+)	(+/+)			(+/+)				(+/+)		
22	sediment	Hollywood outfall - N	W (rosette) see	d50		(+/+)	(+/+)							(+/+)		
23	sediment	Hollywood outfall - V	V (rosette) sed2	25		(+/+)	(+/+)							(+/+)		
24	sediment	Hollywood outfall - V	V (rosette) sed5	50		(+/+)	(+/+)									
25	sediment	Hollywood outfall - S	W (rosette) sed	125	(+/+)	(+/+)	(+/+)							(+/+)		
26	sediment	Hollywood outfall - S	W (rosette) sed	150		(+/+)								(+/+)		
27	sediment	Hollywood outfall - S			(+/+)	(+/+)								(+/+)		
28	sediment	Hollywood outfall - S	(rosette) sed5	0	(+/+)	(+/+)				(+/+)				(+/+)		
29	sediment	Hollywood outfall - V	V (transect) see	d100	(+/+)	(+/+)	(+/+)							(+/+)		
30	sediment	Hollywood outfall - V	V (transect) sed	200		(+/+)				(+/+)						
31	sediment	Hollywood outfall - V	V (transect) sed	400	(+/+)	(+/+)	(+/+)			(+/+)				(+/+)		
32	sediment	Hollywood outfall - V	V (transect) sed	800	(+/+)		(+/+)							(+/+)		
33	sediment	Hollywood outfall - V	V (transect) sed	1600	(+/+)	(+/+)								(+/+)		
34	sediment	Hollywood outfall - N	(transect) sed:	100	(+/+)	(+/+)								(+/+)		
35	sediment	Hollywood outfall - N	(transect) sed	200		(+/+)	(+/+)							(+/+)		
	sediment	Hollywood outfall - N				(+/+)	(+/+)							(+/+)		
	sediment	Hollywood outfall - N				(+/+)								(+/+)		
	sediment	Miami Dade North W				(+/+)	(+/+)							(+/+)		
percent pos	tive		10.5	0	0 23.	7 6	8.4	34.2	5.2 1	0.5 21	.1	0	0 0) 6	0.5	0 1

Blank = negative reaction, (+/+) = positive reaction.

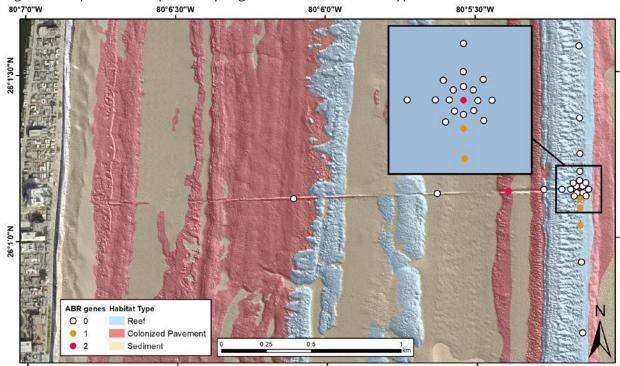
Figure 1. Wet season heatmap (not to scale)

Figure 2. Wet season map of sampling locations and habitat type

Dry season

The dry season sample set was composed of 10 wastewater samples (samples highlighted in yellow in the following spreadsheet) collected at three different wastewater treatment plants, their respective outfalls, and 32 sediment samples collected at those outfalls and in an array and along transects centered on the Hollywood outfall. Ten of the antibiotic resistance genes were detected in the sample set. The most prevalent antibiotic resistance genes detected in the samples were ermB and tetW at 35.7 and 31.0%, respectively. Ten (tetB, tetM, tetO, tetW, ampC, vanA, ermB, mecA, blaSHV and tetQ) of the fifteen antibiotic resistance genes were detected in the sediment samples. tetB, tetM, tetO, mecA, blaSHV and tetQ were only detected in the wastewater samples and all of the four antibiotic resistance genes found in the sediment samples were also detected in the wastewater samples. A following heatmap illustrates the occurrence of the different numbers of antibiotic resistance genes detected at each site.

A	8	C	D	E	F	G	н	1	1	к	1 L	M	N	0	P	Q	R 5
ample typ	e Sample site	tet8	teti.	tetM	tetO	tetW	ampC	vanA	ermB	mecA	blaSHV	blaPSE	floR	aadA2	tetG	tetQ	USGS lab sample numbe
water	Broward North WWTP - effluent	(+/+)				(+/+)	(+/+)		(+/+)							(+/+)	35
water	Broward North WWTP outfall pipe - H2D	(+/+)				(+/+)	(+/+)		(+/+)	(+/+)						(+/+)	14
water	Hollywood WWTP - influent	(+/+)		(+/+)	(+/+)	(+/+)			(+/+)	(+/+)						(+/+)	38
water	Hollywood WWTP - effluent					(+/+)	(+/+)	(+/+)	(+/+)								37
water	Hollywood WWTP outfall pipe - H2O	(+/+)			(+/+)	(+/+)	(+/+)		(+/+)	(+/+)	(+/+)					(+/+)	16
water	Miami Dade North WWTP - influent - high	(+/+)		(+/+)	(+/+)	(+/+)	(+/+)	(+/+)	(+/+)	(+/+)	(+/+)					(+/+)	40
water	Miami Dade North WWTP - Influent - medium	(+/+)			(+/+)	(+/+)	(+/+)	(+/+)	(+/+)	(+/+)						(+/+)	41
water	Miami Dade North WWTP - Influent - low	(+/+)			(+/+)	(+/+)	(+/+)	(+/+)	(+/+)	(+/+)						(+/+)	42
water	Miami Dade North WWTP - effluent	(+/+)				(+/+)			(+/+)	(+/+)						(+/+)	39
water	Miami Dade North WWTP outfall pipe - H2O	(+/+)			(+/+)	(+/+)	(+/+)		(+/+)	(+/+)	(+/+)					(+/+)	2
sedment	Broward North WWTP outfall pipe - sed					(+/+)			(+/+)								13
sedment	Hollywood outfail - 5 (transect) sed100								(+/+)								6
sediment	Hollywood outfail - 5 (transect) sed200								(+/+)								5
sediment	Hollywood outfall - S (transect) sed400																4
sediment	Hollywood outfall - S (transect) sed800																3
sediment	Hollywood WWTP outfall pipe - sed					(+/+)			(+/+)								15
sedment	Hollywood outfall - E (rosette) sed25																17
ediment	Hollywood outfall - E (rosette) sed50																18
ediment	Hollywood outfall - SE (rosette) sed25																19
sediment	Hollywood outfall - SE (rosette) sed50																20
sediment	Hollywood outfall - N (rosette) sed25																23
sediment	Hollywood outfall - N (rosette) sed50																24
sediment	Hollywood outfall - NE (rosette) sed25																31
sediment	Hollywood outfall - NE (rosette) sed50																32
sedment	Hollywood outfall - NW (rosette) sed25																25
sedment	Hollywood outfall - NW (rosette) sed50																26
sedment	Hollywood outfall - W (rosette) sed25																29
sediment	Hollywood outfall - W (rosette) sed50																30
sediment	Hollywood outfail - SW (rosette) sed25																27
sedment	Hollywood outfall - SW (rosette) sed50																28
sediment	Hollywood outfall - S (rosette) sed25																21
sediment	Hollywood outfall - S (rosette) sed50								(+/+)								22
sedment	Hollywood outfall - W (transect) sed100																33
sedment	Hollywood outfall - W (transect) sed200																34
sediment	Hollywood outfall - W (transect) sed400						(+/+)	(+/+)									35
sedment	Hollywood outfall - W (transect) sed800						1000	1000									11
sediment	Hollywood outfall - W (transect) sed1500																12
sediment	Hollywood outfall - N (transect) sed100																8
sediment	Hollywood outfall - N (transect) sed200																7
sedment	Hollywood outfall - N (transect) sed400																9
sediment	Hollywood outfall - N (transect) sed800																10
sediment	Miami Dade North WWTP outfall pipe - sed					(+/+)			(+/+)								1
percent por	sitive	2	1.4	0	4.8 1	4.3	31 2	1.4 1	1.9 3	5.7	19 3	2.4	0	0	0	0 21	A
	IPC (control) at 27 cycles to an Rn of 0.1, all IPC							500g		2004	-500 Grid		1. Sec	117	1.7.8		


Table 5. Dry season PCR data

Blank = negative reaction, (+/+) = positive reaction.

Figure 3. Dry season heatmap (not to scale)

Conclusion

The Southeast Florida data illustrates that antibiotic resistance genes are readily detectable in the wastewater stream and in sediments close to and alongside the outfall and outfall pipe. The wet season data set illustrates widespread occurrence of multiple antibiotic resistance genes with the highest occurrences occurring in the wastewater stream and alongside the Hollywood outfall pipe and in close proximity to the outfall. The dry season data illustrates concentrated occurrence in the wastewater stream but less offshore occurrence relative to the wet season data. The offshore positive samples are associated along the outfall pipe, the outfall and along the southern transit. The prevalence flip between the seasons is interesting, with the wet season showing a lower prevalence in the wastewater stream and higher prevalence in the sediment samples and the opposite trend occurring in the dry season. The Florida Keys data set illustrates little background occurrence, but it does demonstrate acquisition of resistance following a specific (amoxicillin) exposure event.

Sewage associated wastewater is well known to carry numerous antibiotics due to public health use. Microbial communities under the influence or stress of antibiotic laden wastewater will acquire resistance. Microbial communities are known to share resistant genes within and across genera when there is an exposure source, even at a heightened metabolic cost (5, 6). These data illustrate that type of microbial response. The data indicate that there is a heightened prevalence of these genes in the wet season that may be due to factors such as seasonal water temperatures, seasonal wastewater discharge rates, seasonal antibiotic usage and coastal flow dynamics. Members in these coastal microbial communities may present risks to recreational water use and to the ecosystem itself. It should be acknowledged that there are very few scientific journal articles published on the topic of antibiotic resistant bacteria in coastal environments that would allow us to contrast the outfall related data reported here. The Florida Keys sample set may illustrate a more normal profile that would be expected given a lower human population and no local outfall influences. The Florida Keys data does however illustrate the possible consequences of releasing or using antibiotics in coastal marine and coral reef environments.

Recommendations

"This work is a follow-on to the pilot study results from 14ESFUSAFDEP3519 completed between 10/2014 & 9/2016. This project is a continuation of the SE Florida Coral Reef Initiative (SEFCRI) Technical Advisory Committee's recently concluded Outfall Biomarker Pilot Project (LBSP 28/29 Phase I) and builds upon the results and outcomes of that initial work." (current FLDEP/USGS FUSA agreement for this project)

The LBSP 28/29 Phase 1 data indicated a degree of toxicity in samples collected near the outfall. This current project was undertaken to further investigate that observation and more specifically to demonstrate if genetic based changes could be observed due to association with a contaminant source.

I would recommend screening sites in the future where antibiotics may be utilized in coral disease trials. This particular approach of using antibiotic resistance genes as a marker for anthropogenic sources of pollution may also be very useful in addressing the extent of inlet influences into our coral reef communities in Southeast Florida. To contrast this current data set given the stark seasonal change, a four-season study may provide additional insight. Additionally, a heatmap of the Southeast Florida Coral Reef Ecosystem Conservation Area in peak and/or low prevalence season would be of global significance. It may also be helpful in regard to potential remediation pathways to analyze samples where wastewater is being released into the environment from a system that utilizes a more advanced level of sewage treatment (e.g., soils from the sprayfields utilized by the City of Tallahassee).

References:

- 1. Griffin DW, Benzel WM, Fisher SC, Focazio MJ, Iwanowicz LR, Loftin KA, Reilly TJ, Jones DK. 2019. The presence of antibiotic resistance genes in coastal soil and sediment samples from the eastern seaboard of the United States. Environmental Monitoring and Assessment:Accepted/In Press.
- 2. Knapp CW, Dolfing J, Ehlert PAI, Graham DW. 2010. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environmental Science & Technology 44:580-587.
- Bockelmann U, Dorries HH, Ayuso-Gabella MN, de Marcay MS, Tandoi V, Levantesi C, Masciopinto C, Van Houtte E, Szewzyk U, Wintgens T, Grohmann E. 2009. Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems. Applied and Environmental Microbiology 75:154-163.
- 4. Singh P, Mustapha A. 2013. Multiplex TaqMan (R) detection of pathogenic and multi-drug resistant *Salmonella*. International Journal of Food Microbiology 166:213-218.
- 5. Handel N, Schuurmans JM, Brul S, ter Kuile BH. 2013. Compensation of the metabolic costs of antibiotic resistance by physiological adaptation in *Escherichia coli*. Antimicrob Agents Chemother 57:3752-62.
- 6. Sengupta M, Austin S. 2011. Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infect Immun 79:2502-9.