SEACAR Southeast Meeting Summary and Outcomes April 11–12, 2017 Fern Forest Nature Center

Prepared For

Cheryl Parrott Clark Coastal Projects Manager Florida Coastal Office Department of Environment Protection 3900 Commonwealth Boulevard M.S. 235 Tallahassee, FL 32399

Prepared By

Normandeau Associates, Inc. 4581 NW 6th Street, Suite A Gainesville, FL 32609 (352) 372-4747 www.normandeau.com

2 June 2017

Table of Contents

List	of Ta	ablesiii	
Acr	onym	s and Abbreviationsiv	,
1	SEA	CAR Facilitation Overview1	
	1.1	SEACAR Meeting Goals1	
	1.2	SEACAR Indicator Selection Criteria1	
	1.3	SE Region Potential Habitats and Indicators1	
2	Day	1 Meeting	
	2.1	Day 1 Collaborative Agreement on Regional Indicators22.1.1Data Team Initial List of Top Indicators for Each Habitat Index32.1.2Data Team List of Indicator Pros and Cons for Each Habitat Index52.1.3Data Team List of Top 5 Indicators for Each Habitat Index9	
	2.2	Measurement Units and Analyses for Indicators10	I
	2.3	Existing Data Sources for Priority Indicators14	
	2.4	Data Gaps17	
3 Day 2 Meeting		2 Meeting	,
	3.1	Partner Team Review of Data Team List of Top 5 Indicators183.1.1Partner Team List of Indicator Pros and Cons for Each Habitat Index183.1.2Partner Team List of Top 3 Indicators for Each Habitat Index21	
	3.2	Product Formats	

Cover photo by FDEP

List of Tables

Table 1-1. Habitats and Potential Indicators Determined in Previous Webinars
Table 2-1. Data Team Initial List of Top Indicators for SAV 3
Table 2-2. Data Team Initial List of Top Indicators for Water Column
Table 2-3. Data Team Initial List of Top Indicators for Coral/Coral Reef
Table 2-4. Data Team Initial List of Top Indicators for Coastal Wetlands 4
Table 2-5. Data Team Initial List of Top Indicators for Hardbottom5
Table 2-6. Data Team Pros and Cons for SAV
Table 2-7. Data Team Pros and Cons for Water Column 6
Table 2-8. Data Team Pros and Cons for Coral/Coral Reef 7
Table 2-9. Data Team Pros and Cons for Coastal Wetlands
Table 2-10. Data Team Pros and Cons for Hardbottom
Table 2-11. Data Team Units of Measure and Analyses for SAV
Table 2-12. Data Team Units of Measure and Analyses for Water Column 11
Table 2-13. Data Team Units of Measure and Analyses for Coral/Coral Reef12
Table 2-14. Data Team Units of Measure and Analyses for Coastal Wetlands 13
Table 2-15. Data Team Units of Measure and Analyses for Hardbottom 13
Table 2-16. Additional Data Sources for Priority Indicators 15
Table 3-1. Partner Team Pros and Cons for SAV
Table 3-2. Partner Team Pros and Cons for Water Column 19
Table 3-3. Partner Team Pros and Cons for Coral/Coral Reef 19
Table 3-4. Partner Team Pros and Cons for Coastal Wetlands
Table 3-5. Partner Team Pros and Cons for Hardbottom 20

Acronyms and Abbreviations

AP	Aquatic Preserve
BGA	Blue-green Algae
CERP	Comprehensive Everglades Restoration Plan
Chl a	Chlorophyll a
CRCP	Coral Reef Conservation Program
CREMP	Coral Reef Evaluation and Monitoring Project
DERM	Department of Environmental Resources Management
DO	Dissolved Oxygen
DRM	Disturbance Response Monitoring
EEL	Environmentally Endangered Lands
ESA	Endangered Species Act
FDEP	Florida Department of Environmental Protection
FCO	Florida Coastal Office
FKNMS	Florida Keys National Marine Sanctuary
FKWW	Florida Keys Water Watch
FIU	Florida International University
FNAI	Florida Natural Areas Inventory
FRRP	Florida Reef Resilience Program
FWC	Florida Fish and Wildlife Conservation Commission
FWRI	Fish and Wildlife Research Institute
HAB	Harmful Algal Bloom
IFAS	Institute of Food and Agricultural Sciences
NCRMP	National Coral Reef Monitoring Program
NERR	National Estuarine Research Reserve
NOAA	National Oceanic and Atmospheric Administration
NSEFSC	NOAA - Southeast Fisheries Science Center
PFLCC	Peninsular Florida Landscape Conservation Cooperative
RIOS	Resource Investment Optimization System
SAV	Submerged Aquatic Vegetation
SEACAR	Statewide Ecosystem Assessment of Coastal and Aquatic Resources
SIMM	Seagrass Integrated Mapping and Monitoring Program
SFRL	Sport Fish Restoration Program
SWAP	State Wildlife Action Plan
TNC	The Nature Conservancy
TSS	Total Suspended Solids
UF	University of Florida
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geological Survey
WQ	Water Quality
WQPP	Water Quality Protection Program

1 SEACAR Facilitation Overview

SEACAR (Statewide Ecosystem Assessment of Coastal Aquatic Resources) meetings were facilitated by Normandeau Associates, Inc. during the months of March and April 2017. The SEACAR Southeast Region meetings were held on 11 and 12 April 2017 at the Fern Forest Nature Center, 201 Lyons Rd. South, Coconut Creek, FL 33063. On 11 April, the meeting times were 9:10 a.m. to 4:30 p.m. On 12 April, the meeting times were 9:10 a.m. to 12:30 p.m. A list of meeting participants for both days is provided in Appendix A.

At the start of both days, the project lead, Cheryl Parrott Clark, provided an overview of the SEACAR pilot study to give the project background. This was followed by presentations by regional Florida Coastal Office (FCO) staff describing resources at each FCO-managed area in the region. Finally, Mrs. Clark provided a description of the indicator selection process.

1.1 SEACAR Meeting Goals

- 1. Resource Assessment Teams will establish ecological indicators, using current knowledge, for habitats in the Florida Coastal Office's managed areas (including AP, NERRs, FKNMS, CRCP)
- 2. Resource Assessment Teams will work cooperatively to provide consensus on indicators and product format
- 3. An analysis of the statuses and trends of coastal resources will be conducted at a locally relevant scale, to support state and local programs, planning and decision making
- 4. Relevant statuses and trends will be communicated to local and state decision makers and provide the best available science
- 5. Data will be integrated into a Decision Support Tool that promotes resource management

1.2 SEACAR Indicator Selection Criteria

- 1. Show statewide and site specific trends over time
- 2. Allow comparisons between sites and across the state
- 3. Illustrate habitat change over time driven by biotic and abiotic factors which define community structure
- 4. Allow data/results to directly inform and/or be utilized in local and state natural resource management decisions, submerged land planning and/or restoration
- 5. Allow for site and/or regional specific environments and conditions (while being comparable statewide)

1.3 SE Region Potential Habitats and Indicators

The following list of potential indicators was compiled based on indicators identified by the Resource Assessment Data Teams from all regions statewide prior to the in-person SEACAR meetings.

Submerged Aquatic Vegetation	Water Column	Coral/Coral Reef	Coastal Wetlands
 Acreage % Cover Species Composition Shoot Count Algae (Macro, Epiphytes, HAB, etc.) Dissolved Oxygen Temperature Salinity Clarity 	 Nekton Algae (Macro, Epiphytes, HAB, etc.) Dissolved Oxygen Temperature Salinity pH Clarity Nutrients Plankton Fecal coliform 	 % Live Tissue Health Dissolved Oxygen Temperature Salinity pH Clarity 	 Acreage Biomass % Cover Species Composition Clarity Nutrients

Table 1-1. Habitats and Potential Indicators Determined in Previous Webinars

o % Cover/Live Tissue: Measured in the field using quadrat sampling methods

o Acreage: Calculated remotely through aerial imagery

o Algae: BGA, Chl a, Macro Algae, HAB, Epiphytes, etc

o Ambient Water Quality: Dissolved Oxygen, Temperature, Salinity, pH

o Clarity: (turbidity, color, TSS, sediment, Chl a, light attenuation, Secchi)

o Species Composition: identity of organisms that make up a community within the defined habitat

2 Day 1 Meeting

The purpose of the Day 1 meeting was to collect Data Team recommendations for priority indicators to be considered for inclusion in the SE Region Habitat index.

The following goals were accomplished during the meeting:

- 1. Get collaborative agreement on regional indicators
- 2. Confirm the best measurement units for the indicators
- 3. Identify existing data sources for priority indicators
- 4. Confirm which indicators have already been analyzed
- 5. Assess data gaps

2.1 Day 1 Collaborative Agreement on Regional Indicators

The following process was followed to reach collaborative agreement on indicators for the SE Region:

- 1. Data Team members listed their top 5 indicators for each habitat index
- 2. Data Team members discussed the list resulting from the previous activity in order to clarify and condense the indicator list
- 3. Data Team members listed pros and cons of the refined indicators from the previous activity
- 4. Data Team members discussed pros and cons of the refined indicators so they would be able to make a more informed vote on their top indicators
- 5. Data Team members voted on their top 5 indicators

2.1.1 Data Team Initial List of Top Indicators for Each Habitat Index

Tables 2-2 through 2-6 list the indicators provided by the Data Team for each habitat index. The first column is a list of all indicators originally presented by the Data Team, and the second column is the revised list of indicators after discussion to clarify, condense, or add to the list.

Submerged Aquatic Vegetation Preliminary Indicators	Submerged Aquatic Vegetation Revised Indicators	
% Cover	% Cover	
Acreage	Acreage	
Algae		
Algae (Epiphytes)	Algae (epiphytic, free-standing)	
Algae (Epiphytic, Free Standing)		
Ambient Water Quality	Ambient Water Quality	
Clarity	Clarity	
Density	Danaita/Shaat Carant	
Shoot Count	Density/Shoot Count	
Juvenile Green Sea Turtle (Health)	Juvenile Green Sea Turtle (turtle health)	
Scarring	Scarring	
Species Composition	Species Composition	
Spotted Sea Trout	Spotted Sea Trout	

Table 2-1.	Data Team	Initial List	of Top	Indicators	for SAV
-------------------	-----------	---------------------	--------	------------	---------

Table 2-2. Data Team Initial List of Top Indicators for Water Column

Water Column Preliminary Indicators	Water Column Revised Indicators
Algae	Algae
Phytoplankton (abundance and composition)	
Ambient Water Quality	Ambient Water Quality
Clarity	Clarity
Nekton	- Nekton
Species Composition	
Nutrients	Nutrients
Plankton	Plankton
Pollutants	Non-nutrient Pollutants
	HAB*

*HAB added as separate indicator from Algae

Coral/Coral Reef Preliminary Indicators	Coral/Coral Reef Revised Indicators	
% Algae Cover	9/ Algae Cover (over charterie/maare algee)	
Algae Cyanobacteria/macro algae	% Algae Cover (cyanobacteria/macro algae)	
% Cover		
Coral Cover change	78 COVEI	
% Diseased Coral Colonies	9/ Live Tissue	
% Live Tissue	76 LIVE TISSUE	
Ambient Water Quality	Ambient Water Quality (DO, pH, salinity,	
Temperature	temperature)	
Change in fish assemblages (grouper and	Change in fish assemblages (grouper and	
snapper complex)	snapper complex)	
Clarity	Clarity	
Community Composition	Community Composition (benthic, coral, sponge, algae, gorgonians)	
Species Composition	Coral Species Composition	
Grazer biomass & distribution	Grazer biomass & distribution	
Health		
Health (Disease, Bleaching, Mortality)	Health (hlagshing and disaasa)	
Health (Disease, Fecundity, Positive Growth)	Health (bleaching and disease)	
Health (Disease Prevalence)		
	Recruitment*	
Indicator Species	Targeted Species (ESA listed)	
Sea Turtles	Sea Turtles	

Table 2-3. Data Team Initial List of Top Indicators for Coral/Coral Reef

*Recruitment added in discussion of Health and Fecundity

Table 2-4. Data Team Initial List of Top Indicators for Coastal Wetlands

Coastal Wetlands Preliminary Indicators	Coastal Wetlands Revised Indicators	
% Cover	% Cover	
Acreage	Acreage	
Ambient Water Quality	Ambient Water Quality	
Biomass	Biomoso (planta)	
Biomass/Leaf Area Index	Biomass (plants)	
Change in land cover	Change in Neighboring Land Use	
Species Composition	Species Composition (plants and animals)	
Nutrients	Nutrients	

Hardbottom Preliminary Indicators	Hardbottom Revised Indicators	
% Cover Algae	% Cover Algae	
Sponge Density	Sponge Density	
Sponge Species Composition	Sponge Species Composition	

Table 2-5. Data Team Initial List of Top Indicators for Hardbottom

2.1.2 Data Team List of Indicator Pros and Cons for Each Habitat Index

To inform indicator prioritization, the Data Team provided pros and cons for the list of revised indicators.

Submerged Aquatic Vegetation			
General Pros	General Cons		
• % Cover captures changes over time in	•		
species composition			
% Cover Pros	% Cover Cons		
• Captures important metrics for the	•		
habitat			
Regional data available			
Acreage Pros	Acreage Cons		
• Easy to measure and track over broad	• May not capture species composition,		
spatial scales remotely	scarring, and % cover related changes		
Algae (epiphytic, free-standing) Pros	Algae (epiphytic, free-standing) Cons		
• Algae can be an indicator of not only	• Data gap for BBAP		
poor conditions but also reflect a healthy	Labor intensive		
habitat based on the composition and			
density			
Ambient Water Quality Pros	Ambient Water Quality Cons		
• DO/salinity/temp combo is important to	• Hard to make a decision from the data		
overall health (e.g. FL Bay die off)			
Clarity Pros	Clarity Cons		
•	•		
Density/Shoot Count Pros	Density/Shoot Count Cons		
• Captures important metrics for the	 Labor intensive to collect 		
habitat			
Juv. Green Sea Turtle (turtle health)Pros	Juv. Green Sea Turtle (turtle health) Cons		
 Good system health indicator 	Data gap		
	• Limited data in order to correlate as an		
	indicator		

Table 2-6. Data Team Pros and Cons for SAV

Submerged Aquatic Vegetation		
Scarring Pros	Scarring Cons	
• Good for making management decisions	Limited long-term data	
Regional data available	• Only one person has completed this	
• Captures important metrics for the	study on the larger scale	
habitat		
Species Composition Pros	Species Composition Cons	
• This is critical – often the most obvious	•	
change happening in this habitat (per		
long-term data)		
Spotted Sea Trout Pros	Spotted Sea Trout Cons	
• Good multiple evidence line for how the	• Data gap	
system is doing	Data deficient	

Table 2-7. Data	Team Pros	and Cons for	Water Column
-----------------	-----------	--------------	--------------

Water Column			
Algae Pros	Algae Cons		
•	•		
Ambient Water Quality Pros	Ambient Water Quality Cons		
•	•		
Clarity Pros	Clarity Cons		
•	•		
Nekton Pros	Nekton Cons		
• Although it is important in terms of	• Too general – there is already fisheries		
ecosystem-based management, I think it is	management data.		
outside of realm for this purpose.			
Nutrients Pros	Nutrients Cons		
•	• Hard to make a decision		
	• Hard to detect in coastal ecosystems. This		
	may be better captured through a proxy,		
	e.g., seagrass species composition		
	(increase in nutrients = increase in faster		
	growing species)		
Plankton Pros	Plankton Cons		
•	Hard to make a decision		
Non-nutrient Pollutants Pros	Non-nutrient Pollutants Cons		
•	• Do we have data?		
HAB Pros	HAB Cons		
• Hot button issue.	•		
• A lot of visibility.			

Coral/Coral Reef			
% Algae Cover (cyanobacteria/macro	% Algae Cover (cyanobacteria/macro		
algae) Pros	algae) Cons		
• Also shows shifts in species composition	•		
Good data available			
• Proven to be very important to a number			
of aspects of coral biology, including			
recruitment			
% Cover Pros	% Cover Cons		
• Can be defined as % live coral cover, so	•		
inclusive of live tissue indicator			
• Used in many monitoring efforts			
• Good available data			
% Live Tissue Pros	% Live Tissue Cons		
•	•		
Ambient Water Quality Pros	Ambient Water Quality Cons		
•	•		
Change in fish assemblages (grouper and	Change in fish assemblages (grouper and		
snapper complex) Pros	snapper complex) Cons		
•	• Lack of long-term data for northern		
	portion of reef tract		
	• Fish assemblages may not respond to		
	coral health or the health of the dominant		
	feature		
	• This is very relevant to coral reefs, but is		
	it outside the scope of this project?		
	(Habitat vs associated organisms)		
	• What is the "right" fish assemblage?		
Clarity Pros	Clarity Cons		
•	• Corals can adapt to lower light, and there		
	have been studies that have shown corals		
	in lower light can handle higher		
	temperature better and not bleach as much		
	as reefs in clearer water		
	• Clarity may be difficult to capture due to		
	pulse evens – multiple causes for reduce		
	clarity		
Community Composition (benthic, coral,	Community Composition (benthic, coral,		
sponge, algae, gorgonians) Pros	sponge, algae, gorgonians) Cons		
•	• Difficult to define positive vs. negative		
	change relative to other indicators		
Grazer biomass & distribution Pros	Grazer biomass & distribution Cons		
•	• Difficult to quantify their cumulative		
	effect		

Table 2-8. Data Team Pros and Cons for Coral/Coral Reef

Coral/Co	Coral/Coral Reef			
Health (bleaching and disease) Pros	Health (bleaching and disease) Cons			
 Long-term coral bleaching dataset 	Bleaching data from some long-term			
• Disease is a growing threat to live coral	monitoring efforts (CREMP) doesn't take			
tissue cover and overall health – direct	place during peak bleaching months			
indicator				
Public attention				
Targeted Species (ESA listed)Pros	Targeted Species (ESA listed)Cons			
 As opposed to community composition, 	•			
targeted species gives idea of what are the				
priority species				
Sea Turtles Pros	Sea Turtles Cons			
•	•			
Coral Species Composition Pros	Coral Species Composition Cons			
 Composition and % Cover provide 	•			
important data on species shifts				
Good data available				
Recruitment Pros	Recruitment Cons			
 Good measure of decline or increase 	• Important but little data available			

Table 2-9. Data Team Pros and Cons for Coastal Wetlands

Coastal	Wetlands
General Pros	General Cons
•	 Data gap for BBAP
	• Lack of management authority.
	 Does not apply to SE Region
% Cover Pros	% Cover Cons
• % cover and changes in land use provide	•
important data on changes over time.	
Acreage Pros	Acreage Cons
•	•
Biomass (plants) Pros	Biomass (plants) Cons
• Good measure of value to greater coastal	• Difficult to quantify on a large scale.
system.	
Change in Neighboring Land Use Pros	Change in Neighboring Land Use Cons
• Important in context of ecosystem-based	•
management.	
• Good measure of increase or decrease.	
Water Quality Pros	Water Quality Cons
• DO especially important for mangroves,	• Hard to make a decision from the data.
especially in areas with restricted	
flow/flooding.	
Species Composition (plants and animals)	Species Composition (plants and animals)
Pros	Cons
• Captures the presence of exotic species	

Coastal Wetlands			
	 Incorporates a lot of factors beyond management control. May not be relevant to overall habitat quality. 		

Table 2-10. Data Team Pros and Cons for Hardbottom

Hardbottom			
General Pros	General Cons		
•	 Lack of data for back country 		
% Cover Algae Pros	% Cover Algae Cons		
• Need to define if "good" algae or bad	•		
Sponge Density Pros	Sponge Density Cons		
 Good indicators of ecosystem 	• Might be some data gaps in long-term		
disturbance/water quality – ex: algae	data collection		
blooms in FL Bay wiped out sponges			
Sponge Species Composition Pros	Sponge Species Composition Cons		
• Some species are more susceptible to	• Hard to make a management decision		
disturbance/changes in water quality			
• A change in composition could indicate			
impending disturbance before it is fully			
realized			

2.1.3 Data Team List of Top 5 Indicators for Each Habitat Index

Following discussions of indicator pros and cons, members of the Data Team voted on their top five indicators for each habitat index. Data Team members only voted for habitat indices for which they were familiar. Only one vote was allowed per indicator. Indicators below are prioritized by the number of votes received, with only the top five indicators listed.

Submerged Aquatic Vegetation

- 1. Species Composition
- 2. % Cover
- 3. Ambient Water Quality
- 4. Algae (epiphytic, free-standing)
- 5. Acreage

Water Column

- 1. Nutrients
- 2. Algae
- 3. Clarity
- 4. Ambient Water Quality
- 5. HAB

Coral/Coral Reef

1. % Live Tissue

- 2. Community Composition (benthic, coral, sponge, algae, gorgonians)
- 3. % Algae Cover (cyanobacteria/macro algae)
- 4. Health (bleaching and disease)
- 5. % Cover

Coastal Wetlands

- 1. Species Composition (plants and animals)
- 2. Change in neighboring land use
- 3. Nutrients
- 4. Acreage
- 5. % Cover

Hardbottom

- 1. Sponge Species Composition
- 2. Sponge Density
- 3. % Cover Algae

2.2 Measurement Units and Analyses for Indicators

The Data Team assembled the following list of measurements for each of their top 5 indicators, as well as a list of locations where the data had been analyzed or summarized.

Submerged Aquatic Vegetation				
Indicator	Unit of Measure	Analyzed Y/N	Summarized Y/N	Comments
Species Composition	• Species presence per area		Y (Jim Fourqurean – FIU)	
% Cover	• Percent per area	Y (Lignumvitae Key)	Y (SIMM)	Lake Worth Lagoon – Palm Beach County – outside managed area
Ambient Water Quality	 DO (% SAT) pH Temp. °C Salinity (PPT, PSU) 	Y (WQPP, DERM, CRCP, USGS - Ilsa Kuffner, CERP)	Y (USGS - Ilsa Kuffner, Pennekamp)	CREMP & SECREMP for temp collects

Table 2-11. Data Team Units of Measure and Analyses for SAV

Submerged Aquatic Vegetation				
Algae (epiphytic, free-standing)	 Percent cover (free standing) Available surface area/biomass/wet or dry weight (Epiphytic) 	Y (free standing – Jim F. FIU, CERP, DERM)	Y (free standing – Jim F. FIU, CERP, DERM)	
Acreage	• Acres		Y (SIMM, Lignumvitae Key)	

Table 2-12. Data Team Units of Measure and Analyses for Water Column

Water Column				
Indicator	Unit of Measure	Analyzed Y/N	Summarized Y/N	Comments
Nutrients	 Micromole per liter Parts per billion 	Y (WQPP)	Y (WQPP)	STORET raw data
Algae	 Chl a micrograms per liter Cell count per volume 	Y (Chl a – WQPP, CERP)	Y (Chl a – WQPP, CERP)	
Clarity	 Secchi depth (m) Concentration of algae Turbidity Color TSS Light attenuation 	Y (turbidity, light atten. TSS – WQPP, DERM)	Y (turbidity, light atten. TSS – WQPP, DERM)	
Ambient Water Quality	 DO (% SAT) pH Temp. °C Salinity (PPT, PSU) 	Y (WQPP, DERM, CRCP, USGS - Ilsa Kuffner -temperature data only, CERP)	Y (USGS - Ilsa Kuffner, Pennekamp)	CREMP & SECREMP for temperature collects
НАВ	 Cell count Presence of toxins 	Y (FWC HAB program)	Y (FWC HAB program)	Units of measure depends on species; NOAA citizen science program

Water Column				
Nutrients	 Micromole per liter Parts per billion 	Y (WQPP)	Y (WQPP)	STORET raw data

Table 2-13. Data Team Units of Measure and Analyses for Coral/Coral Reef

Coral/Coral Reef				
Indicator	Unit of Measure	Analyzed Y/N	Summarized Y/N	Comments
% Live Tissue	 Percent per colony Old mortality vs recent mortality 	Y (TNC in progress)	Y (TNC-FRRP DRM, CREMP, SECREMP- FWRI)	Unit may vary by dataset, mortality analyzed
Community Composition (benthic, coral, sponge, algae, gorgonians)	 Percent cover - gorgonians and coral Density – gorgonians and coral 	Y (CREMP, SECREMP, Margaret Miller – NOAA SE Fisheries, NCRMP)	Y (Pennekamp, CREMP, SECREMP, NCRMP)	County/municip ality reports available through DEP
% Algae Cover (cyanobacteria/m acro algae)	 Percent - scale depends on project goals 	Y (CREMP, SECREMP)	Y (CREMP, SECREMP, NCRMP)	
Health (bleaching and disease)	• Prevalence (% of population)	Y (CREMP, SECREMP)	Y (CREMP, SECREMP, FRRP)	CREMP: monitor each region once per year, miss peak bleaching except lower Keys; FRRP only during peak bleaching
% Cover	• Percent per area	Y (CREMP, SECREMP, NCRMP, FRRP)		

Coastal Wetlands						
No Coastal Wetlands experts present – Contact Kathy Gooden and Mike Ross (FIU)						
Indicator	Unit of Measure	Analyzed Y/N	Summarized Y/N	Comments		
Species Composition (plants and animals)	• Presence of species per defined area		Y (Audubon bird data)	LIDAR work – FWC, created GIS layers; Monroe County might have LIDAR; Mapping – NOS Biogeography Branch, NCDDC; FWC exotics; DERM		
Change in Neighboring Land Use	• Change in area for each land use type		Y (GIS from GeoPlan UF?, some counties, FWRI GIS)			
Nutrients	 Micromole per liter Parts per billion 	Y (WQPP)	Y (WQPP)	STORET raw data		
Acreage	• Acres			USGS - National Wetlands Inventory; LIDAR;		
% Cover	• Percent			SFWMD?, Shoreline Resilience Working Group – GIS, Beaches - DEP		

Table 2-14. Data Team Units of Measure and Analyses for Coastal Wetlands

Table 2-15. Data Team Units of Measure and Analyses for Hardbottom

Hardbottom				
Indicator	Unit of Measure	Analyzed Y/N	Summarized Y/N	Comments
Sponge Species Composition	 Prevalence? Percent Cover?	Ν	Y (FWC, Mark Butler – Old Dominion U.	
Sponge Density	• Number per m ²	Ν	Y (FWC, Mark Butler – Old Dominion U.	

		Hardbottom		
% Cover Algae	• Percent	Ν	Y (FWC, Mark Butler – Old Dominion U.	

2.3 Existing Data Sources for Priority Indicators

Mrs. Clark, SE Region staff, and others presented information about existing data sources for various habitats in the region to inform meeting participants. These presentations are available by contacting DEP. After these presentations, meeting attendees were asked to list additional data sources that had not been mentioned in the presentations or earlier in the meeting.

Habitat	Indicator(s)	Data Owner	Contact	Years Data Available	Data Format	Location of Data	Is it Spatial?
Nearshore Hardbottom	Benthic assessments, sediment cover, sediment depth, acres (Palm Beach Co. – digitized)	Any municipality that puts sand on their beach – ex: Bathtub Beach, Sailfish, Palm Beach Co./town of Palm Beach, North/Central/Sout h Boca Raton, etc.					Yes
Seagrass	% Cover, % Algae cover, species composition, algae species composition, epiphytes, temperature, salinity, water clarity, substrate type	Palm Beach County	Julie Bishop, Eric Anderson				Yes
SAV – associated with juv. fish seining – middle Keys nearshore waters	% Cover, species composition, shoot count (?) – basically Braun- Blanquet as well as ambient water quality (temp, salinity, DO, pH, conductivity)	FWC (Alejandro Acosta)	alejandro.acosta@ myfwc.com	2006-Present	Access	FWC-SFRL	Yes
Hardbottom	Sponge species composition/densit y, algae % cover	FWC (Tom Matthews, Gabby Renchen), Mark Butler (Old Dominion University)	Tom.matthews@f wc.com; gabby.renchen@fw c.com	Not exactly sure – FWC 1980s-90s, maybe early 2000s; FWC also starting up monitoring again 2016-?; Mark Butler – 1990s-Present?	Access/Excel	FWC-SFRL, Old Dominion University (Virginia)	Yes

 Table 2-16.
 Additional Data Sources for Priority Indicators

Habitat	Indicator(s)	Data Owner	Contact	Years Data Available	Data Format	Location of Data	Is it Spatial?
Coral	% Live tissue, community composition, health (bleaching/disease) , % algae cover, % cover		Dr. David Gilliam: Gilliam@nova.edu	1996 (?)-Current	Access/Excel database	Nova Southeastern University	
Coral/Reef	Qualitative benthic p/a	? multi-agency	1978-Present		Reef visual census		
Coral (specific for Pennekamp)	Species composition, health	FPS	Janice Duquesnel	~20	Reports	FPS/Pennekamp/H obe Sound Office	
Water Column *Fowey Rocks -> Dry Tortugas	Nutrients	FIU water quality monitoring program	Janice Duquesnel	>20	Unknown	FIU	Yes
Water Column (specific for Pennekamp)	Nutrients	Florida Park Service Pennekamp monitoring	Janice Duquesnel	~15	Unknown	FPS Park & District Office	Yes
Reef		Reef Env. Ed. Foundation			citizen science inverts & fish		
Gulf Council Coral Habitat areas of particular concern – out of range for SEACAR							
	Water Quality	FKWW (Florida Keys Water Watch)			citizen science water quality data; not currently regulatory level		

Additional information was provided after the meeting by Tom Jackson (NOAA NMFS; tom.jackson@noaa.gov) for) Extra Datasets and Invasives:

- 1. Dennis Giardina <u>Dennis.Giardina@myfwc.com</u>
 - FWC, FFWCC, Division of Habitat and Species Conservation, Everglades Region Biologist/Invasive Plant Management Section; ECISMA
- 2. Jennifer Pousley jpossley@faichildgarden.org
 - Fairchild Tropical Garden
- 3. EELS Environmentally Endangered Lands Program
 - Miami-Dade County's Environmentally Endangered Lands (EEL) Program's focus is the protection and conservation of endangered lands. http://www.miamidade.gov/environment/endangered-lands.asp

2.4 Data Gaps

The following data gaps were identified during discussions following voting on top indicators.

- Coral recruitment
 - o Need long-term data
 - o Little data available
- Grazer biomass and distribution
- Epiphytic algae
- Green Sea Turtle
 - Limited data on how Green Sea Turtle health correlates with associated habitat
- Scarring data
 - May not continue to be captured done in Keys but limited on good aerials
 - o Available regionally
- SAV fish composition data gap
- SAV algae (epiphytes) data gap for BBAP
- Plankton long-term datasets?
 - Missing from some areas
- Non-nutrient pollutants long-term datasets?
- Sponge density and sponge species diversity
- Data gaps in long-term data collection

3 Day 2 Meeting

The purpose of the Day 2 meeting was to collect Partner Team recommendations for priority indicators to be considered for inclusion in the SE Region Habitat index.

The following goals were accomplished during the meeting:

- 1. Partner Team will review the Regional Habitat Index from Day 1.
- 2. Partner Team will come to a collaborative agreement on regional indicators.
- 3. Data Team will contribute to the Partner Team discussion.
- 4. Partner Team will assess gaps in management needs.
- 5. Partner Team will identify products that are most useful for management needs.

3.1 Partner Team Review of Data Team List of Top 5 Indicators

The top five indicators for each habitat index determined by the Data Team on Day 1 were presented to the Partner Team for review. The Partner Team made changes and additions to the indicator list, denoted below in italics.

SAV	Water Column	Coral/Coral Reef	Coastal Wetlands	Hardbottom
 Species Composition % Cover by species Ambient Water Quality Algae (epiphytic, free-standing) Acreage Scarring Community Species Composition Density/Shoot Count Clarity 	 Nutrients Algae Clarity Ambient Water Quality HAB 	 % Live Tissue Community Composition (benthic, coral, sponge, algae, gorgonians, macroinvertebrates) % Algae Cover (cyanobacteria/macro algae) Health (bleaching and disease) % Cover <i>Grazers and Reef- Dependent Predators</i> 	 Species Composition (plants and animals) Change in Neighboring Land Use Nutrients Acreage % Cover 	 Sponge Species Composition Sponge Density % Cover Algae Acreage

*Italics denotes changes and additions made by Partner Team

3.1.1 Partner Team List of Indicator Pros and Cons for Each Habitat Index

To inform indicator prioritization from a management perspective, the Partner Team provided pros and cons for the list of indicators prioritized by the Data Team on Day 1 and any newly added indicators.

Table 3-1. Partner Team Pros and Cons for SA	١V
--	----

Submerged Aquatic Vegetation					
Species Composition Pros	Species Composition Cons				
• This is an easy measure and data are readily available.	•				
• There are proven correlations between species composition and amount of nutrients in the water.					
Add other species					
 Add fish & (grazers), macroinvertebrates 					
% Cover by Species Pros	% Cover Cons				
Critical	•				

Submerged Aquatic Vegetation				
Ambient Water Quality Pros	Ambient Water Quality Cons			
• Does this include clarity	•			
Add turbidity and clarity				
Algae (epiphytic, free-standing) Pros	Algae (epiphytic, free-standing) Cons			
• Good	• + phyto only? Not free-standing.			
Acreage Pros	Acreage Cons			
Critical	•			

Table 3-2. Partner Team Pros and Cons for Water Column

Water Column				
Nutrients Pros	Nutrients Cons			
• Helps pinpoint issues in the direct	•			
operations of a city; exs. Fecal				
coliform -> clean out catch basins;				
Nutrients -> lower fertilizer use.				
• Helps visualize general trends in the				
environment.				
Critical				
Algae Pros	Algae Cons			
• Good	•			
• Measured by Chl a?				
Clarity Pros	Clarity Cons			
• Good	•			
Ambient Water Quality Pros	Ambient Water Quality Cons			
•	•			
HAB Pros	HAB Cons			
•	•			

Table 3-3. Partner Team Pros and Cons for Coral/Coral Reef

Coral/Coral Reef			
% Live Tissue Pros	% Live Tissue Cons		
•	•		
Community Composition (benthic, coral,	Community Composition (benthic, coral,		
sponge, algae, gorgonians,	sponge, algae, gorgonians,		
macroinvertebrates) Pros	macroinvertebrates) Cons		
Adding macroinvertebrates important	•		
to management – relates to potential			
economic values			
% Algae Cover (cyanobacteria/macro	% Algae Cover (cyanobacteria/macro		
algae) Pros	algae) Cons		
• This is an important factor in	• While data are available, it may not be		
assessing coral ecosystem "health"	collected at an appropriate temporal		
	scale to capture pulse events		

Coral/Co	oral Reef
Health (bleaching and disease) Pros	Health (bleaching and disease)Cons
•	• This is important to know but difficult to influence from a management perspective
% Cover Pros	% Cover Cons
•	•
Grazers and Reef-Dependent Predators	Grazers and Reef-Dependent Predators
Pros	Cons
 Adding macroinvertebrates and fish demonstrates wildlife utilization. – Important to habitat managers. 	•
• Important indicator – relates to algae cover and trophic structure status	

Table 3-4. Partner Team Pros and Cons for Coastal Wetlands

Coastal Wetlands					
Species Composition (plants and animals)	Species Composition (plants and animals)				
Pros	Cons				
Very important	•				
Change in Neighboring Land Use Pros	Change in Neighboring Land Use Cons				
•	• This may explain change in other				
	indicators				
Nutrients Pros	Nutrients Cons				
• This is good, but what about water	•				
quantity					
Acreage Pros	Acreage Cons				
• Very important	•				
% Cover Pros	% Cover Cons				
• Very important if done by species –	•				
how different from acreage?					

Table 3-5. Partner Team Pros and Cons for Hardbottom

Hardbottom				
General Pros	General Cons			
• Important and unique	•			
Sponge Species Composition Pros	Sponge Species Composition Cons			
• Very important to look at trends in	•			
health				
Sponge Density Pros	Sponge Density Cons			
• Very important for looking at trends in	•			
health				
• Very important, especially considering				
recent die offs				

Hardbottom				
• Sponges are indicators of overall ecosystem health (they filter water, attract other key organisms, etc.)				
% Cover Algae Pros	% Cover Algae Cons			
• Like it	•			

3.1.2 Partner Team List of Top 3 Indicators for Each Habitat Index

Following discussions of indicator pros and cons, members of the Partner Team voted on their top three indicators for each habitat index. Partner Team members only voted for habitat indices for which they were familiar. Only one vote was allowed per indicator. Indicators below are prioritized by the number of votes received, with only the top three indicators listed.

Submerged Aquatic Vegetation

- 1. Acreage
- 2. Scarring
- 3. % Cover by Species*
- 4. Clarity*

*Tie

Water Column

- 1. Nutrients
- 2. Ambient Water Quality
- 3. Clarity

Coral/Coral Reef

- 1. Community Composition (benthic, coral, sponge, algae, gorgonians, macroinvertebrates)
- 2. Grazers and Reef-Dependent Predators
- 3. % Cover

Coastal Wetlands

- 1. Species Composition (plants and animals)
- 2. Nutrients
- 3. Acreage

Hardbottom

- 1. Sponge Density
- 2. % Cover Algae
- 3. Sponge Species Composition*
- 4. Acreage*

*Tie

3.2 Product Formats

The following formats were suggested Partner Team as possibly suiting their management needs.

- ESRI StoryMaps
- Florida Reefs Marine Mapping Planning
- Mapping with land use... anything that brings together lots of datasets
- Features on an online platform
- Water quality data seasonally
 - Already summarized seasonally
 - NOT looking for annual average
- Resource Investment Optimization System (RIOS) Tool used in Panhandle
- Fact sheets with:
 - Synthesized data that is easy for public to understand
 - Summary graphs
 - 1 page, both sides able to grab attention
 - Regionally and state-wide, but mostly regionally is best to present for agencies, general public, education outreach

Appendix A. Meeting Participants

First Name	Last Name	Email	Organization	Area of Expertise	Managed Area	Attendance
Eric	Buck	eric.buck@dep.state.fl .us	FDEP	Natural resource management, seagrass, mangroves	AP Manager for Biscayne Bay AP, Biscayne Bay-Cape Florida to Monroe County Line AP	Day 1, Day 2
Francisco	Pagan	francisco.pagan@dep. state.fl.us	FDEP	Coral reefs	Environmental Manager for Coral Reef Conservation Program	Day 1, Day 2
Gabrielle	Renchen	gabby.renchen@myf wc.com	FWC	Spiny lobster, hardbottom, seagrass	Marathon County, Florida Keys	Day 1, Day 2
Janice	Duquesnel	janice.duquesnel@de p.state.fl.us	FDEP	Coral and seagrass	Keys resources	Day 1, Day 2
Jennifer	Stein	jennifer.stein@tnc.org	TNC	Marine science technician, benthic ecology, reef monitoring	Disturbance Response Monitoring/Florida Reef Resilience Program, restoration in Dry Tortugas- Martin County	Day 1, Day 2
Joanna	Walczak	joanna.walczak@dep. state.fl.us	FDEP	Coral	SE Regional Administrator	Day 1, Day 2
Karen	Bohnsack	karen.bohnsack@dep. state.fl.us	FDEP	Resource management, coral reefs	AP Manager for Coupon Bight AP, Lignumvitae Key AP, Florida Keys National Marine Sanctuary Liaison	Day 1, Day 2
Katy	Cummings	katy.cummings@myf wc.com	FWC	CREMP, FWRI	upper Keys to Dry Tortugas	Day 1, Day 2
Lisa	Krimsky	lkrimsky@ufl.edu	UF/IFAS	WQ	Florida Sea Grant, Brevard County to Florida Keys	Day 1
Matthew	Johnson	matthew.johnson@no aa.gov	NSEFSC	Coral reef fisheries, reef monitoring, SEFSC	NCRMP FL region and north Caribbean	Day 1, Day 2
Shelly	Krueger	shellykrueger@ufl.ed u	UF/IFAS	WQ, sponges, hardbottom, fisheries federal waters	Florida Sea Grant agent Monroe county, Florida Keys National Marine Sanctuary Advisory Council	Day 1, Day 2
Dan	O'Malley	dan.omalley@myfwc. com	FWC	Marine habitat restoration, marine state action plan, oysters, coastal restoration	Wildlife Legacy South Region Marine Goal	Day 1
Steve	Traxler	steve_traxler@fws.go v	USFWS	Estuaries, estuarine fishes, sea turtles	PFLCC	Day 1
Stanley	Kolosovskiy	stanley.kolosovskiy@ miamibeachfl.gov	City of Miami Beach	Environmentally specialist		Day 2

First Name	Last Name	Email	Organization	Area of Expertise	Managed Area	Attendance
Laura	Geselbracht	lgeselbracht@tnc.org	TNC	coastal resilience, oyster reefs, marine mammals, sea turtles	Senior Marine Scientist -Florida	Day 2
Erin	McDevitt	erin.mcdevitt@myfwc .com	FWC	marine estuarine habitat restoration and conservation	SE FL, Jupiter to Keys	Day 2