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Background:  
Coral diseases have caused widespread deterioration of coral reefs over the past five decades in 

both shallow and deep coral reef systems. However, very little is known about where, when, and 

why these coral disease outbreaks occur. Florida’s coral reefs are currently experiencing a multi-

year disease-related mortality event that has resulted in massive die-offs in multiple coral 

species. Approximately 21 species of coral, including both Endangered Species Act-listed and 

the primary reef-building species, have displayed tissue-loss lesions that often result in whole 

colony mortality. First observed near Virginia Key in late 2014, the disease has since spread to 

the northernmost extent of the Florida reef tract (FRT) and south into the lower Florida Keys. 

Understanding the etiology, or cause, of coral diseases requires a multi-faceted approach. In the 

absence of a definitive diagnosis, a characterized etiology, and an understanding of 

environmental drivers, it is difficult to implement management actions to potentially control the 

spread of the disease(s) and associated environmental co-factors, and/or treat or manage affected 

corals. The present project investigated the epizootiology (i.e., the disease ecology) of the 

Florida tissue-loss disease at multiple spatial and temporal scales. 
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Mapping the spatial distribution of disease prevalence within the FRT is critical to understanding 

the epizootiology of this outbreak (Muller and van Woesik, 2012, 2014; Randall et al., 2014). 

The present disease outbreak already appears highly contagious among reefs, and anecdotal 

evidence suggests clustering within reef areas. Disease clusters are abnormally high numbers of 

individuals (or sites) within a defined area that exhibit similar disease signs. A clustered 

distribution of diseased sites, relative to the distribution of the entire coral population, suggests a 

contagious mode of disease transmission. Understanding the spatio-temporal dynamics of the 

disease outbreak will provide insight into the disease etiology and mode of disease transmission. 

 

Following the movement of disease from one reef to another will determine whether the nearest 

reefs are more likely to get disease through time or if other environmental or ecological 

parameters influence the disease ecology. Alternatively, a spatially random distribution of 

disease infection may suggest that an entire region is infected simultaneously and diseased sites 

are more susceptible than non-diseased sites. Finally, the directional movement of newly infected 

sites will provide information on (i) how the disease is transmitted, (ii) whether particular species 

are more vulnerable than others, (iii) whether there is a distance threshold needed for 

transmission, and (iv) the rate at which this disease spreads within a region. 

 

Staff from Florida Wildlife Research Institute’s Center for Spatial Analysis (CSA) in St 

Petersburg, FL are currently addressing the need for a single, coordinated data management plan 

for the FRT. This effort includes creating a contact list for datasets currently used by federal, 

state, non-profit, and university researchers; acquiring the datasets and metadata; evaluating 

these for commonality, completeness, and consistency; and organizing these in a logical and 

comprehensive manner. The output of the CSA project was a geodatabase of datasets related to 

the current coral disease outbreak, which will assist researchers conducting additional analyses 

of the coral disease outbreak. 

 

Goals and Objectives: 

 

The present spatial epidemiology project modeled the disease progression using the multiple data 

sources compiled by CSA in the coral disease database. This dataset will help inform how the 

disease has progressed over the past four years, and may continue to spread across the FRT. The 

current analyses focus on large (10s of km) spatial dynamics to assess the broad-scale patterns of 

the disease ecology. The outcomes of this project will be incorporated into an on-going coral 

disease response effort, which seeks to improve understanding of the scale and severity of the 

Florida coral disease outbreak, identify primary and secondary causes, and identify potential 

management actions to remediate disease impacts, restore affected resources, and ultimately 

prevent future outbreaks. 
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Task Descriptions, Methodology, and Results: 
 

Data acquisition: All data used in the following tasks were curated by staff from CSA. A total of 

26 different databases were provided by CSA staff to PIs Muller and van Woesik, which were 

contributed by at least a dozen different institutions. Data sets that were provided included those 

that documented coral diseases, coral community metrics, or water quality metrics (i.e., sea 

surface temperature, chlorophyll a concentrations, turbidity, nutrient concentrations, etc.). Each 

database provided these metrics collected at different temporal and spatial scales. PIs Muller and 

van Woesik selected key data sets into the following tasks and models to accomplish the project 

goals and objectives. In the future, additional data sets will be incorporated into the models to 

increase robustness. 
 

Databases used: CREMP, SECREMP, FRRP DRM, IRMA, SEAFAN, and the Southern 

Disease Margin databases were used to create the spatial epidemiological maps (Task 1), which 

provided the disease front location for the northward and southward movement used in the 

spatial-temporal distance model (Task 1).
1
 Additionally, these data were used to conduct the 

Ripley’s K analysis to detect spatial clustering (Task 4). Only data that documented disease signs 

specific to the outbreak of tissue-loss disease in Florida were included in the analysis. These 

disease signs included those recorded as tissue loss or showing signs similar to white plague 

disease. In addition to these data sets, we also included the MODIS (NASA’s Moderate 

Resolution Imaging Spectroradiometer) average monthly sea surface temperature layers and the 

average monthly chlorophyll a layers (a proxy for nutrients) into the data frame to explore 

potentially important covariates in the Bayesian general linear model analysis (Task 3). There are 

many additional data sets that can be included within the Bayesian model, however this project 

had a very short time window of only 4 months, from implementation to reporting. 
 

Task 1: Create spatial epidemiological maps 
 

Methods: Data were georeferenced and plotted onto basemaps within the ArcView GIS software 

package, which were used to create spatial epidemiological maps. Presence/absence of tissue-

loss disease data were linked to the georeferenced dataset, which allowed the creation of a suite 

of spatial epidemiological maps that included kriging (i.e., a method of spatial interpolation) 

throughout the FRT. Kriging was used to predict the probability of disease within the spatial 

extent of the analysis, with a range from 0 (low probability) to 1 (high probability). Additionally, 

these maps provide a visual representation of disease hotspots through space and time. Initially, 

the spatial maps were created using quarterly, three-month time intervals, but the data were too 

sparse and the standard errors too high, showing low probability predictions. To overcome these 

1
 Initialed data sources are the Coral Reef Ecosystem Monitoring Program (CREMP), Southeast Florida Coral Reef 

Evaluation and Monitoring Project (SECREMP), Florida Reef Resilience Program’s Disturbance Response Monitoring 
(FRRP DRM), Post-Irma Ecosystem Assessment (IRMA), and Southeast Florida Action Network citizen science 
program (SEAFAN).  
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issues, data were considered annually, which resulted in low spatial standard error within the 

epidemiological maps. 

 

Results: The 2014 annual map shows high variability among the disease information throughout 

the Florida Reef Tract (Figure 1). There appears to be a hotspot within the northern part of 

Broward County/southern Palm Beach County, which was driven primarily by four clustered 

disease sites. Two of these sites showed several colonies with tissue loss within species 

commonly documented with the current outbreak, Dichocoenia stokesi, Meandrina meandrites, 

and Siderastrea siderea. Whether this is the first indication of the disease outbreak or not is 

difficult to decipher at such a large spatial and temporal scale. Further survey or anecdotal 

information from this time period is essential for differentiating the location and timing of the 

disease onset. The 2014 data also indicates that there was some disease activity noted in the 

Florida Keys and in the Dry Tortugas, but these disease events were likely background levels of 

white plague disease and not related to the current epizootic event. 

 

The 2015 annual map indicates a strong presence of the disease outbreak up into Broward 

County along the southeast coast of the Florida mainland (Figure 2). There was also a hotspot of 

activity offshore of Biscayne Bay in 2015, with higher disease levels reported within this area 

along the northern part of Biscayne Bay, offshore of Key Biscayne.   
 

Along the northern boundary, a strong disease hotspot appears along the coast of Broward 

County in 2016, extending up to the northern parts of Palm Beach County (Figure 3). By 2016 

there was a hotspot within the upper Florida Keys region, most likely related to the outbreak of 

tissue-loss disease. A disease hotspot appeared in the Dry Tortugas, but was likely not related to 

the present epizootic event. 
 

In 2017, the disease front progressed south into the middle Florida Keys region, creating a 

relatively continuous hotspot of activity within that area (Figure 4). Reports collected near the 

end of 2017 indicate that the disease reached some of the western-most reef areas of the middle 

Florida Keys by the end of the year. Anecdotally, disease reached the northern-most section of 

the Florida Reef Tract during 2017, although there was limited data from that region.
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Figure 1. Epidemiological probability map of the tissue-loss disease outbreak during all of 2014. White dots indicate survey sites without disease 

present. Black dots represent survey sites with tissue loss disease present. Colors along the reef tract denote the probability of disease presence 

within the Florida Reef Tract. The disease probability map was created using Indicator Kriging in ArcGIS software. Warm colors represent high 

probability of the tissue loss-disease and cool colors represent low disease probability. 
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Figure 2. Epidemiological probability map of the tissue-loss disease outbreak during 2015. White dots indicate survey sites without disease 

present. Black dots represent survey sites with tissue loss disease present. Colors along the reef tract denote the probability of disease presence 

within the Florida Reef Tract. The disease probability map was created using Indicator Kriging in ArcGIS software. Warm colors represent high 

probability of the tissue-loss disease and cool colors represent low disease probability. 
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Figure 3. Epidemiological probability map of the tissue-loss disease outbreak during 2016. White dots indicate survey sites without disease 

present. Black dots represent survey sites with tissue loss disease present. Colors along the reef tract denote the probability of disease presence 

within the Florida Reef Tract. The disease probability map was created using Indicator Kriging in ArcGIS software. Warm colors represent high 

probability of the tissue-loss disease and cool colors represent low disease probability 
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Figure 4. Epidemiological probability map of the tissue-loss disease outbreak during 2017. White dots indicate survey sites without disease 

present. Black dots represent survey sites with tissue loss disease present. Colors along the reef tract denote the probability of disease presence 

within the Florida Reef Tract. The disease probability map was created using Indicator Kriging in ArcGIS software. Warm colors represent 

high probability of the tissue-loss disease and cool colors represent low disease probability.
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Task 2: Update contemporary spatio-temporal model 
 

Methods: An initial mathematical model was created for the southeastern Florida disease 

outbreak information, which was created by PI van Woesik and presented in Precht et al., 2016. 

This model was updated with all the recent spatial information compiled in this report, spanning 

from Martin County into the middle Florida Keys, as the disease progressed from 2014 to 2017. 

All data were analyzed in the program R (R Core Team, 2017). 
 

From all the combined data that were compiled, we first sought to find the leading edge of the 

disease along the FRT for every quarter from 2014 to 2018, and from there potentially identify 

and plot the coordinates of the leading edge of the disease (using ‘sp’ in R). We calculated the 

Euclidean distances between each quarterly-identified disease front (using the package 

‘geosphere’ in R), and characterized the relationship between the time interval between 

recordings (as the predictor variable; x-axis) and the distance (m) the disease had potentially 

travelled (as the response variable; y-axis). The relationship appeared to follow an exponential 

function, therefore we used the package ‘nls2’ in R to find the coefficients (a and z) for the 

equation: 
 

Distance the disease had travelled (m) = a. Time
z 

 
 

Results: We found a strong positive relationship between the time it took for the disease to 

spread south and the distance the disease had spread (Figure 5a). The speed at which the disease 

spread was somewhat slower that originally predicted by Precht et al. (2016). The difference 

between the two models was most likely a consequence of the more continuous nature of the 

reefs along which Precht et al. (2016) initially predicted the spread of the disease and the 

patchier nature of the reefs when the disease spread into the Florida Keys proper. 

 

We took a similar approach to determine the spread of the disease to the north; however, the 

quarterly data was not rigorous. Therefore, we determined the spatial movement of the outbreak 

using annually amalgamated data. We again found a strong exponential relationship between 

time and distance (Figure 5b). Again, the most recently modeled disease estimates were 

considerably slower than the model originally proposed by Precht et al. (2016). 
 

Interestingly, we found the same exponential equation was the best fit for both the northern and 

southern disease front data sets (Distance (m) = 1.857*Time
1.571

). These results suggest that the 

disease was moving at a similar rate both north and south from the point of origin; north, along 

the southeastern part of the mainland of Florida and south into the Florida Keys. These results 

could have important implications for interpreting the mode of disease transmission. For 

example, water flow rates may have less of an impact on transmission than was previously 

thought since the Florida Current would elicit a more direct and faster mode for transmission up 

the east coast of Florida compared with southern inshore eddy formations that move water south 

into and along the nearshore environment of the Florida Keys. 
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Figure 5. The relationship between the time it took the disease to spread, and the distance the disease 

had travelled to the a) south quarterly points and the b) north annual points of the initial outbreak. 

 

Task 3: Conduct general linear models to determine potentially important co-variates that 

influence disease presence or absence and severity 
 

Methods: A binomial general linear model analysis was conducted to determine the potential co-

variates (coral density, coral diversity, water temperature, nutrients, etc) that may have 

influenced disease presence/absence within surveyed sites. All data were analyzed in the 

program R. The goal of this analysis was to determine whether there were particular 

environmental variables (e.g., water temperature, nutrients, depth) or ecological factors (e.g., 

presence of highly susceptible species) that influenced the likelihood of the tissue-loss disease 

occurring within a surveyed site. We ran an additional Poisson general linear model to determine 

whether these co-variates influenced the number of colonies with tissue-loss disease within each 

site. We included a total of 21 different ecological and environmental covariates including depth, 

coral density, coral species diversity, average monthly sea surface temperature, average monthly 

chlorophyll a concentrations, and the abundance of 16 different coral species. There are an 

additional ~20 water quality variables in addition to water current information and detailed coral 

cover information that are available within the data bases provided by CSA, of which several can 

be included within future analyses. However, integrating the vast sets of covariate data into 

comparable time and spatial scales of the disease database were not feasible within the current 

funding time frame. 

 

Results: The most parsimonious binomial general linear model included the variables of coral 

density, coral diversity, average monthly sea surface temperature, average monthly chlorophyll a 

concentrations, and depth. The addition of the species level information reduced the quality of 

the model (i.e., increased the Akaiki’s Information Criterion). Of the variables tested, three 
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showed a significant association with the presence or absence of disease within a site (Table 1). 

Sites with disease often had higher coral diversity, reduced sea surface temperature, and greater 

depth than sites without disease. Median coral diversity was 12 species in sites with disease and 

10 species in sites without disease. Median sea surface temperature in sites with disease was 29.5 

°C, whereas sites without disease had a median sea surface temperature of 29.7 °C. Sites with 

disease had a median depth of 9.3 meters, and sites without disease had a median depth of 7.1 

meters. 
 

Table 1. Results of the Binomial general linear model that tested the association of several ecological and 

environmental parameters on the presence/absence of disease within each site. Bolded parameters indicate 

a significant relationship. 

 

Coefficients: 

 Estimate Standard Error z value p value  

(Intercept) -1.89405 2.01152 -0.942 0.346  
Density -0.13187 0.09085 -1.452 0.147  

Diversity 0.15027 0.06295 2.387 0.017  
SST -0.14977 0.06563 -2.282 0.023  

ChlA 0.26941 0.19126 1.409 0.159  
Depth 0.21237 0.04202 5.054 < 0.001  

 
 
 

 

The association between the tested covariates and the severity of disease in sites was determined 

using the Poisson general linear model, which used the number of diseased colonies as the 

predictor variable. There were six different variables that significantly influenced the number of 

corals with disease within sites: coral diversity, depth, average chlorophyll a concentrations, and 

the number of Meandrina meandrites, Colpophyllia natans and Montastraea cavernosa (Table 

2). Coral diversity, depth, and chlorophyll a concentrations showed positive associations with the 

number of diseased colonies. Out of the three species of corals that significantly influenced the 

number of diseased corals, M. meandrites and C. natans showed negative associations with the 

predictor variable, indicating there were less numbers of these colonies within sites with disease. 

However, there was a positive association detected between M. cavernosa and the predictor 

variable indicating that the more colonies of this species within a site, the greater the number of 

diseased colonies recorded. 
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Table 2. Results of the Poisson general linear model that tested the association of several ecological and 

environmental parameters on the number of diseased corals within each surveyed site. Bolded parameters 

indicate a significant relationship.  

 

Coefficients: 

 Estimate Standard Error z value p value  

(Intercept) -5.68508 1.73133 -3.284 0.001  
Density -0.05672 0.05683 -0.998 0.318  

Diversity 0.16648 0.04684 3.554 < 0.001  
Depth 0.34188 0.0384 8.903 < 0.001  

SST -0.08496 0.05688 -1.494 0.135  
ChlA 0.42851 0.13205 3.245 0.001  

MME -0.49149 0.1196 -4.11 < 0.001  

DSTO 0.07942 0.08758 0.907 0.364  
CNAT -0.38805 0.11453 -3.388 < 0.001  
DLAB 0.10556 0.27395 0.385 0.701  

MCAV 0.09627 0.02361 4.078 < 0.001   
 

 

Task 4: Determine whether the disease follows contagion model 
 

Methods: We tested whether the disease outbreak followed a predictable contagion spatial 

model, which would indicate that the outbreak was and potentially still is indeed contagious. 

Modified Ripley's K analyses for spatial clustering were applied to the disease 

presence/absence data, similar to Muller & van Woesik (2012). These analyses tested for 

significant spatial clustering, but also determined the radius of the clusters (i.e., the distance that 

corals are at risk for contagious disease transmission). All data were analyzed in the program R. 

 

Using Ripley's K analysis as a spatial point pattern process (Haase, 1995), disease clustering was 

assessed each year for the entire FRT. Spatial distributions of sites with disease were analyzed 

using the adjusted Ripley’s function, K(r), defined as the expected number of sites within a 

distance (r) from an arbitrary site. The function was normalized by dividing by the mean number 

of sites per unit area. Therefore, Ripley’s K was calculated as: 
 

ˆ A n n I r dij 
K r 

 


  

, n
2 

w  
  i1 j 1, j 1 ij   

 

where A was the total area of the region, n was the number of diseased sites, and dij was the 

distance between any two diseased sites i and j. Ir(dij) indicates whether or not there was a 

diseased site within distance r from site i. Therefore, Ir(dij) had a value of 1 if dij<r and 0 

otherwise. Because the study area was finite, wij represents the portion of the circumference of 

each circle that falls outside of the previously defined location area (Gatrell et al., 1996). 
 

Ripley’s K identified disease clusters by comparing the spatial distribution of diseased sites with 

the distribution of all surveyed sites. The Ripley’s K statistic was used to quantify non-random 
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clustering patterns of diseased sites within an area in terms of the degree and spatial scale of 

aggregation. The Ripley’s K statistic, however, was standardized to account for the spatial 

aggregation of susceptible individuals within the study area (see Zvuloni et al., 2009). A 

randomization technique was used to determine whether the n diseased sites found within the 

sampled area were significantly spatially aggregated, as compared with the aggregation found in 

the population of all surveyed sites using a null hypothesis approach. The transformation, 

referred to as Besag’s L function, was calculated as: 
    

Lr  K r 
 r 

      
With this scaling, sites that had a Poisson spatial distribution resulted in the expected value of 

L(r)=0. A null distribution for L(r) was generated from a group of n sites and repeated 1,000 

times so that L(r) was calculated for each group of n sites for any value of r. These results 

created a 95% confidence interval envelope for L(r). L(r) was then calculated using only 

diseased sites to produce a new value, LD(r), and compared with the L(r) null envelope. Any 

value that resided outside of the envelope indicated either spatial clumping (above the LD(r)) or 

over-dispersion (below the LD(r)) of diseased sites. 
 

Results: Each annual analysis showed significant clustering of diseased sites, although the radius 

of the cluster varied considerably through time (Figure 6). Results from the 2014 data show a 

small cluster window with a radius of ~21,000 m (21 km) (Figure 6a). These results suggest an 

approximate 42 km wide cluster of disease activity. In 2015 and 2016, however, significant 

clustering was detected throughout the majority of the spatial range of these two years of 

analyses. The Besag’s L value exceeded the null distribution at a radius of approximately 1,000 

m (1 km) in distance. The L values continued to be significant at a radius above this value for the 

rest of the spatial scales explored, although peak clustering occurred at ~30,000 m (30 km) in 

2015 and ~40,000 m (40 km) in 2016 (Figures 6b, 6c). Within the 2017 and 2018 analyses the 

disease clustering again was more focused and less widespread. In 2017 the significant cluster 

radius ranged from ~1,000 to 20,000 m (1 – 20 km) and ~ 10,000 to 40,000 m (10 – 40 km) in 

2018 (Figures 6d, 6e). These results reflect the widespread nature of the disease outbreak during 

the 2015 and 2016 time frame, and the more focused disease cluster within the 2017 and 2018 

time frame, potentially a result of the disease having already passed through the northern reef 

limits and the Upper Keys, and presently impacting mainly the middle Florida Keys region. 

 

These results also lead us to suggest an additional and testable hypothesis: that having a gap in 

the reef scape exceeding 80 km, the total diameter of the major clustering observed over the last 

four years, may reduce the likelihood of spread in the disease outbreak. Whether or not the 

outbreak infects the Bahamas or Cuba, the two closest reef scapes farther than 80 km in distance, 

may be the first test of this hypothesis. Special attention should be placed on surveying the 

Bimini islands of the Bahamas for tissue loss, which is approximately 80 km east of Miami.
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Figure 6. Ripley’s K analysis of sites surveyed 

throughout the Florida reef tract during a) 2014, 

b) 2015, c) 2016, d) 2017, and e) 2018. The 

solid black line represents the spatial pattern of 

sites with tissue loss disease present (LD(r)). 

The gray area represents the 95% confidence 

intervals of the null distribution (derived 

through iterative bootstrapping, 1000 times) of 

all of the surveyed sites (L(r)). 
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Conclusions 
 

The results of these modeling efforts support the conclusion that the outbreak is following spatial 

and temporal patterns consistent with a contagious disease. The interpolation maps show the 

disease outbreak became apparent in 2015, with an origination point somewhere along the 

southeast coast of Florida, within Broward County. The disease appeared to spread north and 

south over the next several years. Additionally, the Ripley’s K analysis suggested significant 

spatial clustering each year, with varying size clusters through time. The disease was difficult to 

differentiate in 2014 with slight clustering at 21 km, became more prevalent and widespread in 

2015 and 2016, and then again became more concentrated in 2017 and 2018. By this time the 

disease had already impacted the northern extent of the FRT, and was mainly affecting reefs 

within the middle Florida Keys. The Ripley’s K analysis also showed peak clustering at a 40-km 

radius, suggesting that the disease may be limited to an 80-km diameter of reef; follow up studies 

will determine whether this is a regional artifact. Interestingly, the disease spread was slower 

than previously predicted and appeared to follow the same spatio-temporal exponential function 

moving both north along the southeast coast of Florida and south into the Florida Keys. These 

results suggest that water velocity and flow may have less of an effect than previously thought, 

although waterborne transmission is still likely. Follow up studies exploring small spatial scales 

with high-frequency disease data information, which can also be combined with water flow rates 

will help tease apart the broad-scale conclusions from the present analysis. 

 

The general linear models, which tested the influence of 21 different covariates, showed that 

coral species diversity and depth were positively associated with disease presence, suggesting 

that deeper sites and sites with more coral diversity were at a greater risk of having disease. Sea 

surface temperature showed a negative association with disease presence, although the effect size 

of this variable was small, perhaps indicating the difference is ecologically irrelevant. Finally, 

severity of disease within sites was positively associated with coral diversity, depth, Chlorophyll 

a concentrations, and the number of M. cavernosa within the site. Further models should explore 

the additional water quality parameters to determine whether nutrients measured directly also 

show the same association as Chlorophyll a concentrations. The negative associate of M. 

meandrites and C. natans with disease severity may suggest that these corals were highly 

susceptible to the disease and losses of these species prior to the survey may have occurred. 
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