

Natural Attenuation Monitoring to Active Remediation

Owete S. Owete, **Ph.D.**, **P.E.**

Wakeup Quiz

□ True or False ?

To assess dissolved phase petroleum contamination,

Organic Vapor Analyzer (OVA)

soil sample screening of the water table fluctuation zone can be useful for determining where to install groundwater monitoring

What Will Be Covered

Strategic remediation activities at sites transitioned from Natural Attenuation Monitoring (NAM)

- □ Review the existing data.
- □ Characterize the contamination plume.
- □ Select and implement appropriate remedial actions.

Review Existing Data

- □ Funding Caps and Site Closure Options.
- □ Soil/Groundwater Analytical Tables and Figures.
- □ Existing and Abandoned Monitoring Wells.
- □ Map Legends and Scales.

TABLE 4A: GRO	UNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals	
ty ID#: 18/9300475	Facility Name: Circle K# 2721283	

									See notes at	end of table	
GCTLs		1**	40**	30**	20**	NA	20	0.02**	3**	15**	
NADCs		100	400	300	200	NA	200	2	300	150	
Sample		Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	MTBE	EDB	1,2-Di- chloro- ethane	Total Lead	
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
A 444 4	10/12/2012	0.21 U	0.20 U	0.29 U	0.50 U	0.371	1.7	0.0096 U	0.22 U	1.1 U	
MW-1	9/11/2013	Abandoned									
MW-2	10/12/2012	0.21 U	0.20 U	0.29 U	0.50 U	0.371	0.21 U				
	9/11/2013					Abandoned					
MW-3	10/12/2012	0.21 U	0.20 U	0.29 U	0.50 U	0.371	0.99				
	9/11/2013			-		Abandoned		-	-	-	
MW-4	10/12/2012	0.21 U	0.20 U	0.29 U	0.50 U	0.371	0.91				
	9/11/2013	Abandoned									
MW-5	10/12/2012	0.21 U	0.20 U	0.29 U	0.50 U	0.371	1.3				
	9/11/2013					Abandoned					
MW-6	6/11/2013	0.21 U	0.20 U	0.29 U	0.50 U	0.371	10.5				
	9/11/2013	Abandoned									
	10/29/2019	0.371	0.24 U	0.29 U	1.3 U	0.371	0.46 U	0.0040 U	0.40 U	4.31	
MW-7	6/8/2020	0.26 U	0.24 U	0.51	1.3 U	0.51	0.46 U				
	12/17/2020	4.6	1.4	85	110	201	2.8				
	3/15/2021	21	1.4	4.2	47	73.6	4.6				
	8/2/2021	0.381	0.28 U	0.391	8.6	9.37	0.34 U				
	3/8/2022	1.0	0.18 U	0.771	1.31		0.13 U				
	9/8/2022	4.2	1.9	1.0	1.81	8.9	0.13 U				
	3/2/2023	2.9	0.21 U	0.28 U	1.1 U	2.9	0.21 U				
MM 9	10/29/2019	0.26 U	0.24 U	0.29 U	1.3 U	1.3 U	0.46 U				
	6/8/2020	0.26 U	0.451	0.29 U	1.3 U	0.45	0.46 U				
	12/17/2020	0.27 U	0.28 U	0.32 U	1.3 U	1.3 U	0.34 U				
0.444	3/15/2021	0.27 U	0.28 U	0.32 U	1.3 U	1.3 U	0.34 U				

Potential Follow-Up Activities

- Determine remaining cleanup funds and discuss site closure options.
- Check for contamination and remediation activities at adjacent sites.
- Conduct on-site OVA soil screening.
- Conduct confirmatory soil sampling.
- Abandon or repair damaged wells.
- □ Install new and replacement wells.
- □ Conduct groundwater sampling.

Characterize Soil and Groundwater Contamination

Ascertain the contaminant plume distribution in soil and groundwater, typically a residual contamination.

- □ Area-wide contamination, low-level concentrations.
- □ Localized contamination within a small area.
- □ Localized contamination around a well annulus.

Take note of the following:

- Depth to Water Table (DTW).
- □ Submerged well screens.
- Perched aquifers.

Determine Contamination Extent

Example 1 Plume Prior to Switch from NAM

Determine Contamination Extent

Example 1 Plume Follow-up Investigation

Determine Contamination Extent

Example 1 Plume Before Investigation

Example 1 Plume After Investigation

Air Sparge/Soil Vapor Extraction

- □ Localized Groundwater Contamination
- □ Factors: Lithology and DTW

Petrofix Injection

- Localized Groundwater Contamination
- □ Factors: Lithology and Potential Offsite Contamination

Soil Excavation

- Localized Soil Contamination
- Factors: Funding and Location of Contaminated Soil

Monitoring Well Over-Drill / Replacement

- Localized Contamination around Well Annulus
- Factors: Perched Condition and Nature of Residual Contamination

Contaminant Plume

Well Replacement

Conclusion

Active remediation of sites transitioned from NAM can be effectively achieved with a strategic approach to the plume delineation and consideration of site conditions.

Contact Info

Owete S. Owete, Ph.D., P.E. Petroleum Restoration Program – Team 6 <u>Owete.Owete@wsp.com</u>

Discussion / Questions?