FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

**Division of Environmental Assessment and Restoration, Bureau of Watershed Restoration** 

NORTHEAST DISTRICT • LOWER ST. JOHNS BASIN

# Final TMDL Report Fecal Coliform TMDL for Mill Creek (WBID 2460)

**Kyeongsik Rhew** 



September 2009

### Acknowledgments

This Total Maximum Daily Load (TMDL) analysis could not have been accomplished without significant contributions from staff in the Florida Department of Environmental Protection's Northeast District Office, Watershed Assessment Section, and Watershed Evaluation and TMDL Section.

Editorial assistance provided by Jan Mandrup-Poulsen and Linda Lord.

#### For additional information on the watershed management approach and impaired waters in the Lower St Johns River, contact:

Amy Tracy Florida Department of Environmental Protection Bureau of Watershed Restoration Watershed Planning and Coordination Section 2600 Blair Stone Road, Mail Station 3565 Tallahassee, FL 32399-2400 Email: <u>amy.tracy@dep.state.fl.us</u> Phone: (850) 245–8506 Fax: (850) 245–8434

#### Access to all data used in the development of this report can be obtained by contacting:

Kyeongsik Rhew Florida Department of Environmental Protection Bureau of Watershed Restoration Watershed Evaluation and TMDL Section 2600 Blair Stone Road, Mail Station 3555 Tallahassee, FL 32399-2400 Email: <u>kyeongsik.rhew@dep.state.fl.us</u> Phone: (850) 245–8461 Fax: (850) 245–8444

### Contents

| Chapte | er 1: 1 | INTRODUCTION                                                      | .1  |
|--------|---------|-------------------------------------------------------------------|-----|
| 1.1    | Purpo   | ose of Report                                                     | _1  |
|        |         | fication of Waterbody                                             | _1  |
|        |         | ground                                                            |     |
|        |         | DESCRIPTION OF WATER QUALITY PROBLEM                              |     |
| 2.1    | Statu   | tory Requirements and Rulemaking History                          | 4   |
|        |         | nation on Verified Impairment                                     |     |
| Chapte | er 3. I | DESCRIPTION OF APPLICABLE WATER QUALITY<br>S AND TARGETS          |     |
| 3.1    | Class   | ification of the Waterbody and Criterion Applicable to the TMDL _ | _7  |
| 3.2    | Appli   | cable Water Quality Standards and Numeric Water Quality Target _  | _7  |
| Chapte | er 4: / | ASSESSMENT OF SOURCES                                             | . 8 |
| 4.1    | Турез   | s of Sources                                                      | _ 8 |
| 4.2    | Poter   | itial Sources of Fecal Coliform in the Mill Creek Watershed       | _ 8 |
|        | 4.2.1   | Point Sources                                                     | _ 8 |
|        |         | Wastewater Point Sources                                          | _ 8 |
|        |         | Municipal Separate Storm Sewer System Permittees                  | _ 8 |
|        | 4.2.2   | Land Uses and Nonpoint Sources                                    | _ 8 |
|        |         | Land Uses                                                         | _ 8 |
|        |         | Agriculture                                                       | 11  |
|        |         | Pets                                                              | 11  |
|        |         |                                                                   |     |
|        |         | Sanitary Sewer Overflows                                          |     |
|        |         | Wildlife                                                          |     |
|        |         | Sediments                                                         | 14  |
| Chapte | er 5: I | DETERMINATION OF ASSIMILATIVE CAPACITY                            | 17  |
| 5.1    |         | · · · · · · · · · · · · · · · · · · ·                             | 17  |
|        |         |                                                                   | 17  |
|        | 5.1.2   | TMDL Development Process                                          | 17  |
|        | 5.1.3   | Critical Conditions                                               | 21  |

| Chapter 6: DETERMINATION OF THE TMDL                                                             | 23   |
|--------------------------------------------------------------------------------------------------|------|
| 6.1 Expression and Allocation of the TMDL                                                        | _23  |
| 6.2 Load Allocation                                                                              | _24  |
| 6.3 Wasteload Allocation                                                                         | _24  |
| 6.3.1 NPDES Wastewater Discharges                                                                | _ 24 |
| 6.3.2 NPDES Stormwater Discharges                                                                | _ 24 |
| 6.4 Margin of Safety                                                                             | _24  |
| Chapter 7: TMDL IMPLEMENTATION                                                                   | 25   |
| TMDL Implementation                                                                              | _25  |
| References                                                                                       | 27   |
| Appendices                                                                                       | 29   |
| Appendix A: Background Information on Federal and State Stormwater<br>Programs                   | _29  |
| Appendix B: Response to Comments from St.Johns County on the Fecal Coliform TMDL for Mill Creek: | _ 30 |

#### **List of Tables**

| Table 2.1. | Summary of Fecal Coliform Monitoring Data for Mill Creek<br>(WBID 2460) During the Verified Period (January 1, 2001,<br>through June 30, 2008) | 5  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2.2. | Summary of Fecal Coliform Data by Month for the Verified Period (January 1, 2001, through June 30, 2008)                                       | 5  |
| Table 2.3. | Summary of Fecal Coliform Data by Season for the Verified Period (January 1, 2001, through June 30, 2008)                                      | 6  |
| Table 2.4. | Summary of Fecal Coliform Data by Year for the Verified<br>Period (January 1, 2001, through June 30, 2008)                                     | 6  |
| Table 4.1. | Classification of Land Use Categories in the Mill Creek<br>Watershed (WBID 2460) in 2004                                                       | 9  |
| Table 4.2. | Estimated Agricultural Loading in the Mill Creek Watershed (WBID 2460)                                                                         | 11 |
| Table 4.3. | Concentrations (Geometric Mean Colonies/100mL) of Fecal<br>Coliform from Urban Source Areas (Steuer et al., 1997;<br>Bannerman et al., 1993)   | 12 |
| Table 4.4. | Dog Population Density, Wasteload, and Fecal Coliform Density (Weiskel et al., 1996)                                                           | 12 |
| Table 4.5. | Estimated Septic Tank Numbers and Septic Tank Failure<br>Rates for St. Johns County, 2002–07                                                   | 16 |
| Table 5.1. | Calculation of Fecal Coliform Reductions for the TMDL for<br>Mill Creek (WBID 2460)                                                            | 20 |
| Table 6.1. | TMDL Components for Fecal Coliform in Mill Creek (WBID 2460)                                                                                   | 24 |

۷

### List of Figures

| Figure 1.1. | Location of Mill Creek (WBID 2460) in St. Johns County<br>and Major Hydrologic Features in the Area                             | 2  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4.1. | Principal Land Uses in the Mill Creek Watershed (WBID 2460) in 2004                                                             | 10 |
| Figure 4.2. | Distribution of Onsite Sewage Disposal Systems (Septic<br>Tanks) in the Mill Creek Watershed (WBID 2460)                        | 15 |
| Figure 5.1. | Locations of Water Quality Stations in Mill Creek (WBID 2460)                                                                   | 18 |
| Figure 5.2. | Trends of Fecal Coliform Concentrations in Mill Creek (WBID 2460) during the Verified Period                                    | 19 |
| Figure 5.3. | Seasonal Trend of Fecal Coliform Concentration Percent<br>Exceedance in Mill Creek (WBID 2460) during the Verified<br>Period    | 19 |
| Figure 5.4. | Spatial Trend of Fecal Coliform Concentration and Percent<br>Exceedance in Mill Creek (WBID 2460) during the Verified<br>Period | 20 |
| Figure 5.5. | Fecal Coliform Data by Hydrologic Condition Based on Rainfall                                                                   | 22 |

#### Websites

# Florida Department of Environmental Protection, Bureau of Watershed Restoration

http://www.dep.state.fl.us/water/tmdl/index.htm Identification of Impaired Surface Waters Rule http://www.dep.state.fl.us/legal/Rules/shared/62-303/62-303.pdf STORET Program http://www.dep.state.fl.us/water/storet/index.htm 2008 Integrated Report http://www.dep.state.fl.us/water/docs/2008 Integrated Report.pdf Criteria for Surface Water Quality Classifications http://www.dep.state.fl.us/water/wqssp/classes.htm Basin Status Report for the Lower St. Johns Basin http://www.dep.state.fl.us/water/basin411/sj Iower/status.htm Water Quality Assessment Report for the Lower St. Johns Basin http://www.dep.state.fl.us/water/basin411/sj Iower/assessment.htm

#### **U.S. Environmental Protection Agency**

Region 4: Total Maximum Daily Loads in Florida <u>http://www.epa.gov/region4/water/tmdl/florida/</u> National STORET Program <u>http://www.epa.gov/storet/</u>

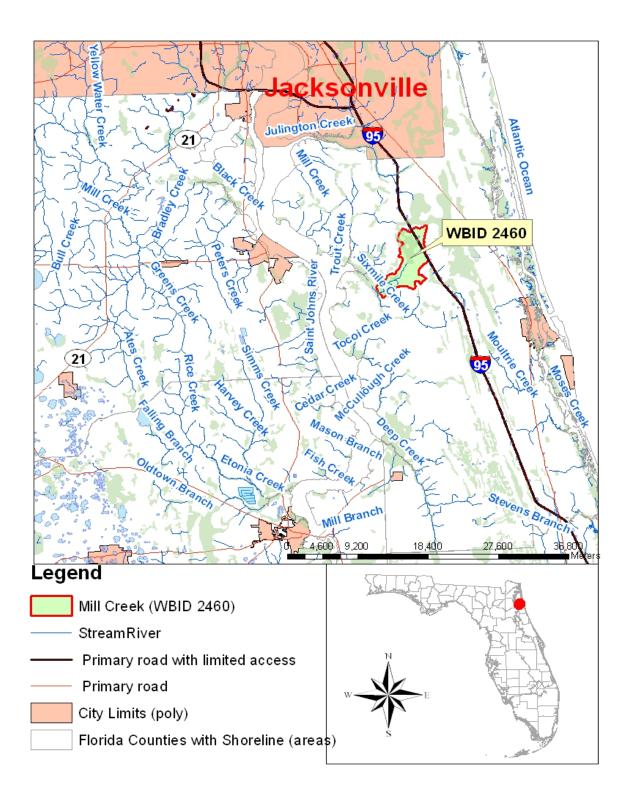
### Chapter 1: INTRODUCTION

#### 1.1 Purpose of Report

This report presents the Total Maximum Daily Load (TMDL) for fecal coliform bacteria for Mill Creek in the Lower St. Johns Basin. The creek was verified as impaired for fecal coliform and therefore was included on the Verified List of impaired waters for the Lower St. Johns Basin that was adopted by Secretarial Order on May 19, 2009. The TMDL establishes the allowable fecal coliform loadings to Mill Creek that would restore the waterbody so that it meets its applicable water quality criterion for fecal coliform.

#### **1.2 Identification of Waterbody**

Mill Creek is located in northern St. Johns County, just south of Jacksonville (**Figure 1.1**). The creek flows primarily southwest into Sixmile Creek and drains an area of about 11.6 square miles. It is approximately 4.1 miles long and is a second-order stream. Interstate 95 crosses the northeast portion of the creek, and the majority of the commercial and residential development in this area borders the creek. Wetlands and upland forest dominate the northern part of the watershed. This part of St. Johns County is experiencing increased development pressure. Additional information about the creek's hydrology and geology are available in the Basin Status Report for the Lower St. Johns (Florida Department of Environmental Protection [Department], 2002).


For assessment purposes, the Department has divided the Lower St. Johns Basin into water assessment polygons with a unique **w**ater**b**ody **id**entification (WBID) number for each watershed or stream reach. Mill Creek is WBID 2460.

#### 1.3 Background

This report was developed as part of the Department's watershed management approach for restoring and protecting state waters and addressing TMDL Program requirements. The watershed approach, which is implemented using a cyclical management process that rotates through the state's 52 river basins over a 5-year cycle, provides a framework for implementing the TMDL Program–related requirements of the 1972 federal Clean Water Act and the 1999 Florida Watershed Restoration Act (FWRA) (Chapter 99-223, Laws of Florida).

A TMDL represents the maximum amount of a given pollutant that a waterbody can assimilate and still meet water quality standards, including its applicable water quality criteria and its designated uses. TMDLs are developed for waterbodies that are verified as not meeting their water quality standards. They provide important water quality restoration goals that will guide restoration activities.

#### Figure 1.1. Location of Mill Creek (WBID 2460) in St. Johns County and Major Hydrologic Features in the Area



This TMDL Report will be followed by the development and implementation of a restoration plan, designed to reduce the amount of fecal coliform that caused the verified impairment of Mill Creek. These activities will depend heavily on the active participation of the St. Johns River Water Management District (SJRWMD), local governments, businesses, and other stakeholders. The Department will work with these organizations and individuals to undertake or continue reductions in the discharge of pollutants and achieve the established TMDLs for impaired waterbodies.

### Chapter 2: DESCRIPTION OF WATER QUALITY PROBLEM

#### 2.1 Statutory Requirements and Rulemaking History

Section 303(d) of the federal Clean Water Act requires states to submit to the U.S. Environmental Protection Agency (EPA) lists of surface waters that do not meet applicable water quality standards (impaired waters) and establish a TMDL for each pollutant causing the impairment of listed waters on a schedule. The Department has developed such lists, commonly referred to as 303(d) lists, since 1992. The list of impaired waters in each basin, referred to as the Verified List, is also required by the FWRA (Subsection 403.067[4], Florida Statutes [F.S.]); the state's 303(d) list is amended annually to include basin updates.

Florida's 1998 303(d) list included 55 waterbodies in the Lower St. Johns Basin. However, the FWRA (Section 403.067, F.S.) stated that all previous Florida 303(d) lists were for planning purposes only and directed the Department to develop, and adopt by rule, a new science-based methodology to identify impaired waters. After a long rulemaking process, the Environmental Regulation Commission adopted the new methodology as Rule 62-303, Florida Administrative Code (F.A.C.) (Identification of Impaired Surface Waters Rule, or IWR), in April 2001; the rule was modified in 2006 and 2007.

#### 2.2 Information on Verified Impairment

The Department used the IWR to assess water quality impairments in the Mill Creek watershed and has verified that this waterbody segment is impaired for fecal coliform bacteria. The verification of impairment was based on the observation that 8 out of 43 fecal coliform samples collected during the verified period (January 1, 2001, through June 30, 2008) exceeded the applicable fecal water quality criterion (Rule 62-302, F.A.C.).

**Table 2.1** summarizes the fecal coliform monitoring results for the verified period for Mill Creek, WBID 2460. **Tables 2.2** through **2.4** also provide summary results for fecal coliform data for the verified period by month, season, and year, respectively.

#### **Table 2.1. Summary of Fecal Coliform Monitoring Data for Mill Creek** (WBID 2460) During the Verified Period (January 1, 2001, through June 30, 2008)

- = Empty cell

<sup>1</sup> Most probable number per 100 milliliters

| Waterbody (WBID)  | Parameter                                                | Fecal<br>Coliform |
|-------------------|----------------------------------------------------------|-------------------|
| Mill Creek (2460) | Total number of samples                                  | 43                |
| Mill Creek (2460) | IWR-required number of exceedances for the Verified List | 8                 |
| Mill Creek (2460) | Number of observed exceedances                           | 8                 |
| Mill Creek (2460) | Number of observed nonexceedances                        | 35                |
| Mill Creek (2460) | Number of seasons during which samples were collected    | 4                 |
| Mill Creek (2460) | Highest observation (MPN/100mL) <sup>1</sup>             | 8,000             |
| Mill Creek (2460) | Lowest observation (MPN/100mL) <sup>1</sup>              | 20                |
| Mill Creek (2460) | Median observation (MPN/100mL) <sup>1</sup>              | 170               |
| Mill Creek (2460) | Mean observation (MPN/100mL) <sup>1</sup>                | 642               |
| -                 | FINAL ASSESSMENT:                                        | Impaired          |

#### Table 2.2. Summary of Fecal Coliform Data by Month for the Verified Period (January 1, 2001, through June 30, 2008)

- = Empty cell/no data <sup>1</sup>Coliform counts are #/100mL.

<sup>2</sup> Exceedances represent values above 400 counts/100mL.

|           | Number<br>of |                      |                      |                     |                   | Number of                | %           |
|-----------|--------------|----------------------|----------------------|---------------------|-------------------|--------------------------|-------------|
| Month     | Samples      | Minimum <sup>1</sup> | Maximum <sup>1</sup> | Median <sup>1</sup> | Mean <sup>1</sup> | Exceedances <sup>2</sup> | Exceedances |
| January   | -            | -                    | -                    | -                   | -                 | -                        | -           |
| February  | -            | -                    | -                    | -                   | -                 | -                        | -           |
| March     | 2            | 64                   | 140                  | 102                 | 102               | 0                        | 0%          |
| April     | 4            | 40                   | 200                  | 77                  | 99                | 0                        | 0%          |
| May       | 2            | 350                  | 400                  | 375                 | 375               | 0                        | 0%          |
| June      | 3            | 80                   | 1,170                | 232                 | 494               | 1                        | 33%         |
| July      | 4            | 50                   | 232                  | 125                 | 133               | 0                        | 0%          |
| August    | 4            | 20                   | 380                  | 230                 | 215               | 0                        | 0%          |
| September | 4            | 127                  | 540                  | 355                 | 344               | 2                        | 50%         |
| October   | 8            | 40                   | 8,000                | 232                 | 2,082             | 3                        | 38%         |
| November  | 8            | 30                   | 2,200                | 225                 | 611               | 2                        | 25%         |
| December  | 4            | 59                   | 250                  | 78                  | 116               | 0                        | 0%          |

#### Table 2.3. Summary of Fecal Coliform Data by Season for the Verified **Period (January 1, 2001, through June 30, 2008)**

<sup>1</sup> Coliform counts are #/100mL. <sup>2</sup> Exceedances represent values above 400 counts/100mL.

| Season | Number of<br>Samples | Minimum <sup>1</sup> | Maximum <sup>1</sup> | Median <sup>1</sup> | Mean <sup>1</sup> | Number of Exceedances <sup>2</sup> | %<br>Exceedances |
|--------|----------------------|----------------------|----------------------|---------------------|-------------------|------------------------------------|------------------|
| Winter | 2                    | 64                   | 140                  | 102                 | 102               | 0                                  | 0                |
| Spring | 9                    | 40                   | 1,170                | 200                 | 292               | 1                                  | 11               |
| Summer | 12                   | 20                   | 540                  | 185                 | 231               | 2                                  | 17               |
| Fall   | 20                   | 30                   | 8,000                | 182                 | 1,100             | 5                                  | 25               |

#### Table 2.4. Summary of Fecal Coliform Data by Year for the Verified Period (January 1, 2001, through June 30, 2008)

<sup>1</sup> Coliform counts are #/100mL. <sup>2</sup> Exceedances represent values above 400 counts/100mL.

|      | Number of |                      |                      |                     |                   | Number of                | %           |
|------|-----------|----------------------|----------------------|---------------------|-------------------|--------------------------|-------------|
| Year | Samples   | Minimum <sup>1</sup> | Maximum <sup>1</sup> | Median <sup>1</sup> | Mean <sup>1</sup> | Exceedances <sup>2</sup> | Exceedances |
| 2002 | 20        | 20                   | 2,200                | 84                  | 290               | 2                        | 10          |
| 2004 | 2         | 127                  | 540                  | 334                 | 334               | 1                        | 50          |
| 2005 | 1         | 260                  | 260                  | 260                 | 260               | 0                        | 0           |
| 2007 | 15        | 30                   | 8,000                | 260                 | 1,322             | 5                        | 33          |
| 2008 | 5         | 40                   | 400                  | 200                 | 211               | 0                        | 0           |

### Chapter 3. DESCRIPTION OF APPLICABLE WATER QUALITY STANDARDS AND TARGETS

# **3.1 Classification of the Waterbody and Criterion Applicable to the TMDL**

Florida's surface waters are protected for five designated use classifications, as follows:

| Class I   | Potable water supplies                                                                                   |
|-----------|----------------------------------------------------------------------------------------------------------|
| Class II  | Shellfish propagation or harvesting                                                                      |
| Class III | Recreation, propagation, and maintenance of a healthy, well-<br>balanced population of fish and wildlife |
| Class IV  | Agricultural water supplies                                                                              |
| Class V   | Navigation, utility, and industrial use (there are no state waters currently in this class)              |

Mill Creek is a Class III waterbody, with a designated use of recreation, propagation, and the maintenance of a healthy, well-balanced population of fish and wildlife. The criterion applicable to this TMDL is the Class III criterion for fecal coliform.

#### 3.2 Applicable Water Quality Standards and Numeric Water Quality Target

Numeric criteria for bacterial quality are expressed in terms of fecal coliform bacteria concentration. The water quality criterion for the protection of Class III waters, as established by Rule 62-302, F.A.C., states the following:

#### Fecal Coliform Bacteria:

The most probable number (MPN) or membrane filter (MF) counts per 100 mL of fecal coliform bacteria shall not exceed a monthly average of 200, nor exceed 400 in 10 percent of the samples, nor exceed 800 on any one day.

The criterion states that monthly averages shall be expressed as geometric means based on a minimum of 10 samples taken over a 30-day period. During the development of load duration curves for the impaired segment (as described in subsequent chapters), there were insufficient data (fewer than 10 samples in a given month) available to evaluate the geometric mean criterion for fecal coliform bacteria. Therefore, the criterion selected for the TMDL was not to exceed 400 MPN/100mL in any sampling event for fecal coliform. The 10 percent exceedance allowed by the water quality criterion for fecal coliform bacteria was not used directly in estimating the target load, but was included in the TMDL margin of safety (as described in subsequent chapters).

### Chapter 4: ASSESSMENT OF SOURCES

#### 4.1 Types of Sources

An important part of the TMDL analysis is the identification of pollutant source categories, source subcategories, or individual sources of pollutants in the impaired waterbody and the amount of pollutant loadings contributed by each of these sources. Sources are broadly classified as either "point sources" or "nonpoint sources." Historically, the term "point sources" has meant discharges to surface waters that typically have a continuous flow via a discernable, confined, and discrete conveyance, such as a pipe. Domestic and industrial wastewater treatment facilities (WWTFs) are examples of traditional point sources. In contrast, the term "nonpoint sources" was used to describe intermittent, rainfall-driven, diffuse sources of pollution associated with everyday human activities, including runoff from urban land uses, agriculture, silviculture, and mining; discharges from failing septic systems; and atmospheric deposition.

However, the 1987 amendments to the Clean Water Act redefined certain nonpoint sources of pollution as point sources subject to regulation under the EPA's National Pollutant Discharge Elimination System (NPDES) Program. These nonpoint sources included certain urban stormwater discharges, such as those from local government master drainage systems, construction sites over five acres, and a wide variety of industries (see **Appendix A** for background information on the federal and state stormwater programs).

To be consistent with Clean Water Act definitions, the term "point source" will be used to describe traditional point sources (such as domestic and industrial wastewater discharges) and stormwater systems requiring an NPDES stormwater permit when allocating pollutant load reductions required by a TMDL (see **Section 6.1**). However, the methodologies used to estimate nonpoint source loads do not distinguish between NPDES stormwater discharges and non-NPDES stormwater discharges, and as such, this source assessment section does not make any distinction between the two types of stormwater.

#### 4.2 Potential Sources of Fecal Coliform in the Mill Creek Watershed

#### 4.2.1 Point Sources

#### **Wastewater Point Sources**

No NPDES-permitted wastewater facilities were identified in the Mill Creek watershed.

#### **Municipal Separate Storm Sewer System Permittees**

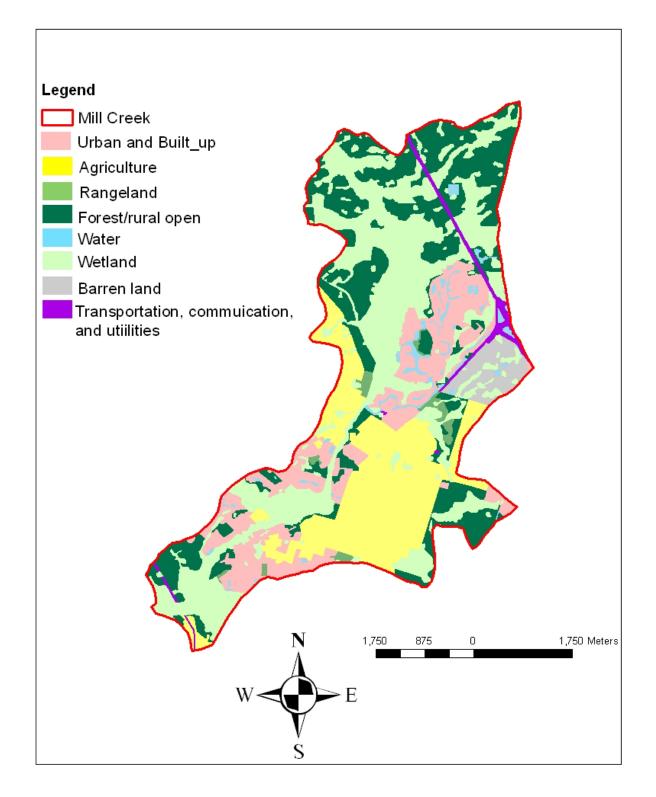
In the Mill Creek watershed, St. Johns County has a Phase II municipal separate storm sewer system (MS4) permit (FLR04E025).

#### 4.2.2 Land Uses and Nonpoint Sources

#### Land Uses

The spatial distribution and acreage of different land use categories were identified using the SJRWMD's year 2004 land use coverage (scale 1:51,000) contained in the Department's

geographic information system (GIS) library. Land use categories in the watershed were aggregated using the simplified Level 1 codes and tabulated in **Table 4.1**. **Figure 4.1** shows the acreage of the principal land uses in the watershed.


As shown in **Table 4.1**, the total area of the Mill Creek watershed is about 7,420 acres. The dominant land use category is wetland, which accounts for about 37 percent of the total watershed area. Urban land uses (urban and built-up; low-, medium-, and high-density residential; and transportation, communication, and utilities) occupy 13.2 percent of the total watershed area. Of the 981 acres of urban lands, residential land use occupies about 507 acres, or about 6.9 percent of the total area. Natural land uses, including water/wetlands, upland forest, and barren land, occupy about 4,664 acres and account for about 62.8 percent of the total watershed area.

Because no conventional point sources were identified in the Mill Creek watershed, the primary loadings of fecal coliform to the creek are generated by nonpoint sources or MS4-permitted areas in the watershed. Nonpoint sources of coliform bacteria generally, but not always, come from the coliform bacteria that accumulate on land surfaces and wash off as a result of storm events, the contribution from ground water from sources such as failed septic tanks, and/or sewer line leakage. In addition, feces from pets in residential areas can be another important source of fecal coliform through the surface runoff.

| = Empty cell |                                              |         |           |
|--------------|----------------------------------------------|---------|-----------|
| Level 1 Code | Land Use                                     | Acreage | % Acreage |
| 1000         | Urban and Built-up                           | 348     | 4.7%      |
| -            | Low-density Residential                      | 108     | 1.5%      |
| -            | Medium-density Residential                   | 296     | 4.0%      |
| -            | High-density Residential                     | 103     | 1.4%      |
| 2000         | Agriculture                                  | 1,478   | 19.9%     |
| 3000         | Rangeland                                    | 297     | 4.0%      |
| 4000         | Upland forest                                | 1,557   | 21.0%     |
| 5000         | Water                                        | 155     | 2.1%      |
| 6000         | Wetland                                      | 2,748   | 37.0%     |
| 7000         | Barren Land                                  | 204     | 2.7%      |
| 8000         | Transportation, Communication, and Utilities | 126     | 1.7%      |
| -            | TOTAL:                                       | 7,420   | 100.0%    |

# Table 4.1. Classification of Land Use Categories in the Mill CreekWatershed (WBID 2460) in 2004

# Figure 4.1. Principal Land Uses in the Mill Creek Watershed (WBID 2460) in 2004



#### Agriculture

In the Level 3 land use category, 8 agricultural codes were identified in the Mill Creek watershed. "Sod farm," the largest agricultural category, represented approximately 8.17 percent of the watershed area, or 606 acres. Improved pasture, the second largest, represented approximately 5.94 percent of the watershed area, or 441 acres. Unimproved and woodland pastures represented approximately 0.99 percent of the watershed area. Field and row crops totaled 3.34 percent, while ornamentals represented 0.36 percent. Finally, horse farms represented approximately 1.11 percent of the watershed area, or 82 acres. Assuming that the improved pasture is primarily used to raise cattle, there is 1 beef cattle per 3 acres, and beef cattle produce  $1 \times 10^{11}$  fecal coliform counts/cow/day; this could represent potential fecal coliform loadings of  $1.47 \times 10^{13}$  counts/day (**Table 4.2**).

# Table 4.2. Estimated Agricultural Loading in the Mill Creek Watershed(WBID 2460)

| Coliform | Improved Pasture<br>Acreage | Beef Cattle per<br>Three Acres | Estimated<br>Number of<br>Cattle | Estimated<br>Counts/Cow/Day | Estimated<br>Counts/day |
|----------|-----------------------------|--------------------------------|----------------------------------|-----------------------------|-------------------------|
| Fecal    | 441                         | 1                              | 147                              | 1 X 10 <sup>11</sup>        | 1.47 x 10 <sup>13</sup> |

#### Pets

Pets (especially dogs) could be a significant source of coliform pollution through surface runoff in the Mill Creek watershed. Studies report that up to 95 percent of the fecal coliform found in urban stormwater can have nonhuman origins (Alderiso et al., 1996; Trial et al., 1993).

The most important nonhuman fecal coliform contributors appear to be dogs and cats. In a highly urbanized Baltimore catchment, Lim and Olivieri (1982) found that dog feces were the single greatest source for fecal coliform and fecal strep bacteria. Trial et al. (1993) also reported that cats and dogs were the primary source of fecal coliform in urban subwatersheds. Using bacteria source tracking techniques, it was found in Stevenson Creek in Clearwater, Florida, that the amount of fecal coliform bacteria contributed by dogs was as important as those from septic tanks (Watson, 2002).

According to the American Pet Products Manufacturers Association (APPMA), about 4 out of 10 U.S. households include at least one dog. A single gram of dog feces contains about 23 million fecal coliform bacteria (van der Wel, 1995). Unfortunately, statistics show that about 40 percent of American dog owners do not pick up their dogs' feces. **Table 4.3** shows the fecal coliform concentrations of the surface runoff measured in two urban areas (Bannerman et al., 1993; Steuer et al., 1997). While the bacteria levels differed widely in the two studies, both indicated that residential lawns, driveways, and streets were the major source areas for bacteria.

The number of dogs in the Mill Creek watershed is not known. Therefore, the statistics produced by APPMA were used in this analysis to estimate the possible fecal coliform loads contributed by dogs.

The human population in the Mill Creek watershed, calculated based on the Tiger Track 2000 data (Department's GIS library), was 564. According to the U.S. Census Bureau, there was an average of 2.44 people per household in St. Johns County in 2000. This gives about 231

households in the entire watershed. Assuming that 40 percent of the households in this area have 1 dog, the total number of dogs in the watershed is about 92.

# Table 4.3. Concentrations (Geometric Mean Colonies/100mL) of FecalColiform from Urban Source Areas (Steuer et al., 1997;Bannerman et al., 1993)

| Geographic Location      | Marquette, Michigan | Madison, Wisconsin |
|--------------------------|---------------------|--------------------|
| Number of storms sampled | 12                  | 9                  |
| Commercial parking lot   | 4,200               | 1,758              |
| High-traffic street      | 1,900               | 9,627              |
| Medium-traffic street    | 2,400               | 56,554             |
| Low-traffic street       | 280                 | 92,061             |
| Commercial rooftop       | 30                  | 1,117              |
| Residential rooftop      | 2,200               | 294                |
| Residential driveway     | 1,900               | 34,294             |
| Residential lawns        | 4,700               | 42,093             |
| Basin outlet             | 10,200              | 175,106            |

According to the waste production rate for dogs and the fecal coliform counts per gram of dog waste listed in **Table 4.4**, and assuming that 40 percent of dog owners do not pick up dog feces, the total waste produced by dogs and left on the land surface in residential areas is 16,560 grams/day. The total produced by dogs is  $3.64 \times 10^{10}$  counts/day of fecal coliform. It should be noted that this load only represents the fecal coliform load created in the watershed and is not intended to be used to represent a part of the existing load that reaches the receiving waterbody. The fecal coliform load that eventually reaches the receiving waterbody could be significantly less than this value due to attenuation in overland transport.

### Table 4.4. Dog Population Density, Wasteload, and Fecal ColiformDensity (Weiskel et al., 1996)

\* Number from APPMA.

| Туре | Population density<br>(#/household) | Wasteload<br>(grams/day) | Fecal coliform density<br>(fecal coliform/gram) |  |  |
|------|-------------------------------------|--------------------------|-------------------------------------------------|--|--|
| Dog  | 0.4*                                | 450                      | 2,200,000                                       |  |  |

#### Septic Tanks

Septic tanks are another potentially important source of coliform pollution in urban watersheds. When properly installed, most of the coliform from septic tanks should be removed within 50 meters of the drainage field (Minnesota Pollution Control Agency, 1999). However, in areas with a relatively high ground water table, the drain field can be flooded during the rainy season, and coliform bacteria can pollute the surface water through stormwater runoff.

Septic tanks may also cause coliform pollution when they are built too close to irrigation wells. Any well that is installed in the surficial aquifer system will cause a drawdown. If the septic tank system is built too close to the well (e.g., less than 75 feet), the septic tank discharge will be within the cone of influence of the well. As a result, septic tank effluent may enter the well, and once the polluted water is used to irrigate lawns, coliform bacteria may reach the land surface and wash into surface waters during the rainy season.

A rough estimate of fecal coliform loads from failed septic tanks in the Mill Creek watershed can be made using **Equation 4.1**:

#### L = 37.85\* N \* Q \* C \* F

(Equation 4.1)

Where:

- L is the fecal coliform daily load (counts/day);
- *N* is the total number of septic tanks in the area (septic tanks);
- Q is the discharge rate for each septic tank;
- C is the fecal coliform concentration for the septic tank discharge; and
- *F* is the septic tank failure rate.

Based on 2008 Florida Department of Health (FDOH) onsite sewage GIS coverage (available: <u>http://www.doh.state.fl.us/environment/programs/EhGis/EhGisDownload.htm</u>), about 116 housing units (*N*) were identified as being on septic tanks in the Mill Creek watershed (**Figure 4.2**). The discharge rate from each septic tank (*Q*) was calculated by multiplying the average household size by the per capita wastewater production rate per day. Based on the information published by the Census Bureau, the average household size for St. Johns County is about 2.44 people/household. The same population densities were assumed for the Mill Creek watershed. A commonly cited value for per capita wastewater production rate is 70 gallons/day/person (EPA, 2001). The commonly cited concentration (*C*) for septic tank discharge is  $1 \times 10^6$  counts/100mL for fecal coliform (EPA, 2001).

No measured septic tank failure rate data were available for the watershed when this TMDL was developed. Therefore, the failure rate was derived from the number of septic tank and septic tank repair permits for the county published by FDOH (available: <u>http://www.doh.state.fl.us/</u><u>environment/OSTDS/statistics/ostdsstatistics.htm</u>)</u>. The number of septic tanks in the county was calculated assuming that none of the installed septic tanks will be removed after being installed (**Table 4.5**). The reported number of septic tank repair permits was also obtained from the FDOH Website. Based on this information, the discovery rates of failed septic tanks for each year between 2002 and 2007 were calculated and listed in **Table 4.5**.

Based on **Table 4.5**, the average annual septic tank failure discovery rate is about 0.57 percent for St. Johns County. Assuming that failed septic tanks are not discovered for about 5 years, the estimated annual septic tank failure rate is about 5 times the discovery rate, which is equal to 2.9 percent. Based on **Equation 4.1**, the estimated fecal coliform loading from failed septic tanks in the Mill Creek watershed is about  $2.2 \times 10^{10}$  counts/day.

#### **Sanitary Sewer Overflows**

Sanitary sewer overflows (SSOs) can also be a potential source of fecal bacteria pollution. Human sewage can be introduced into surface waters even when storm and sanitary sewers are separated. Leaks and overflows are common in many older sanitary sewers where capacity is exceeded, high rates of infiltration and inflow occur (i.e., outside water gets into pipes, reducing capacity), frequent blockages occur, or sewers are simply falling apart due to poor joints or pipe materials. Power failures at pumping stations are also a common cause of SSOs. The greatest risk of an SSO occurs during storm events; however, few comprehensive data are available to quantify SSO frequency and bacteria loads in most watersheds.

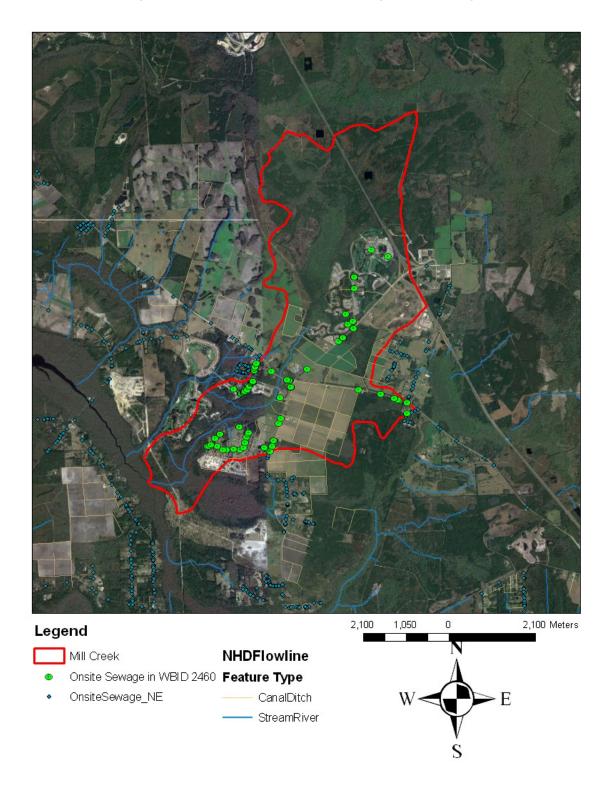
When this TMDL was developed, no information on sewer line coverage was available to the Department, and so it was difficult to determine with certainty whether the entire area was sewered. Typically, the high- and medium-density residential areas are sewered to avoid toohigh septic tank density. Fecal coliform loading from sewer line leakage can be calculated based on the number of people in the watershed, typical per household generation rates, and typical fecal coliform concentrations in domestic sewage, assuming a leakage rate of 0.5 percent (Culver et al., 2002). Based on this assumption, a rough estimate of fecal coliform loads from leaks and SSOs in the Mill Creek watershed can be made using **Equation 4.2**.

(Equation 4.2)

Where:

- L is the fecal coliform daily load (counts/day);
- *N* is the number of households using sanitary sewer in the watershed;
- Q is the discharge rate for each household;
- C is the fecal coliform concentration for domestic wastewater discharge; and
- *F* is the sewer line leakage rate.

The number of households (*N*) that are tied to sewer lines is 115 (total households minus the households using septic tanks) in the Mill Creek watershed. The discharge rate through sewers from each household (*Q*) was calculated by multiplying the average household size (2.44) by the per capita wastewater production rate per day (70 gallons). The commonly cited concentration (*C*) for domestic wastewater is  $1 \times 10^6$  counts/100mL for fecal coliform (EPA, 2001). The contribution of fecal coliform through sewer line leakage was assumed to be 0.5 percent of the total sewage loading created from the population not on septic tanks (Culver et al., 2002). Based on **Equation 4.2**, the estimated fecal coliform loading from sewer line leakage in the watershed is about  $3.72 \times 10^9$  counts/day.


#### Wildlife

Wildlife is another possible source of fecal and total coliform bacteria in the Mill Creek watershed. As shown in **Figure 4.1**, there are wetland areas along Mill Creek, and these are likely habitats for small wildlife such as rabbits and raccoons. Animals in upland forest areas could also be important contributors to bacterial pollution.

#### **Sediments**

In addition, some studies show that fecal coliform can reproduce in sediments and can be resuspended in surface water when conditions are right. The current methodology cannot quantify the exact amount of fecal coliform coming from each source. Therefore, the Department is unable to provide estimates of fecal coliform loading from sediments.

# Figure 4.2. Distribution of Onsite Sewage Disposal Systems (Septic Tanks) in the Mill Creek Watershed (WBID 2460)



Florida Department of Environmental Protection

#### **Table 4.5. Estimated Septic Tank Numbers and Septic Tank Failure** Rates for St. Johns County, 2002-07

- = Empty cell <sup>1</sup> Failure rate is 5 times the failure discovery rate.

| -                                          | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   | Average |
|--------------------------------------------|--------|--------|--------|--------|--------|--------|---------|
| New installation (septic tanks)            | 399    | 405    | 427    | 526    | 292    | 164    | 369     |
| Accumulated installation<br>(septic tanks) | 26,547 | 26,946 | 27,351 | 27,778 | 28,304 | 28,596 | 27,587  |
| Repair permit (septic tanks)               | 170    | 195    | 203    | 170    | 91     | 114    | 157     |
| Failure discovery rate (%)                 | 0.64%  | 0.72%  | 0.74%  | 0.61%  | 0.32%  | 0.40%  | 0.57%   |
| Failure rate (%) <sup>1</sup>              | 3.2%   | 3.6%   | 3.7%   | 3.1%   | 1.6%   | 2.0%   | 2.9%    |

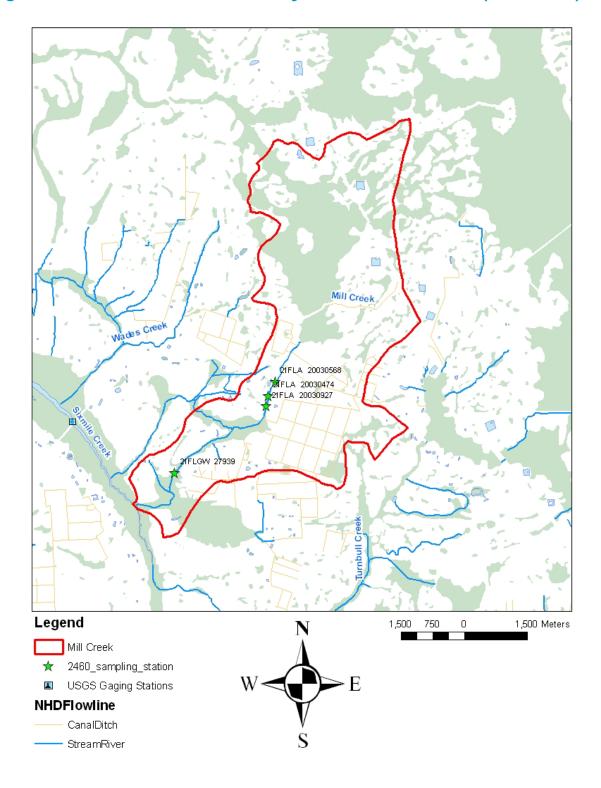
### Chapter 5: DETERMINATION OF ASSIMILATIVE CAPACITY

#### 5.1 Determination of Loading Capacity

No long-term stream flow information was available on Mill Creek; therefore, the load duration curve method could not be applied in this circumstance. To determine the required reduction for the TMDL, the required percent reduction that would be required for each of the exceedances was determined using all available data, and the percent reduction required to meet the state fecal coliform standard of 400 counts/100mL was determined. The median value of all of these reductions determined the overall required reduction, and therefore the TMDL.

#### 5.1.1 Data Used in the Determination of the TMDL

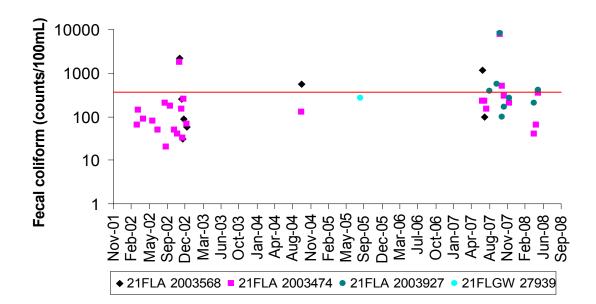
All data used for this TMDL report were provided by the Department. **Figure 5.1** shows the locations of the water quality sites where fecal coliform data were collected. This analysis used fecal coliform data collected from 2002 to 2008. During the sampling period, a total of 43 fecal coliform samples was collected from 4 sampling stations in WBID 2460.


**Figure 5.2** shows the fecal coliform concentrations observed in Mill Creek. The concentration ranged from 20 to 8,000 MPN/100mL and averaged 642 MPN/100mL during the verified period from 2001 to 2008 (**Figure 5.2**). Seasonally, the highest fecal coliform concentration was observed during the fourth quarter (October, November, and December) (**Figure 5.3**). The lowest concentration was observed during the first quarter (January, February, and March), and there were no exceedances observed, probably due to small sampling size (n=2). Spatially, the highest fecal coliform concentration was observed at the downstream station (**Figure 5.4**), but the exceedance rate was highest at the upstream station. Station 21FLGW 27939 was not included in the graph because there was only one sample available. The exceedance rates were 38 percent at the upstream station (21FLA 20030568), 25 percent at the downstream station (21FLA 20030474), and 12 percent at the station between these two (21FLA 20030474).

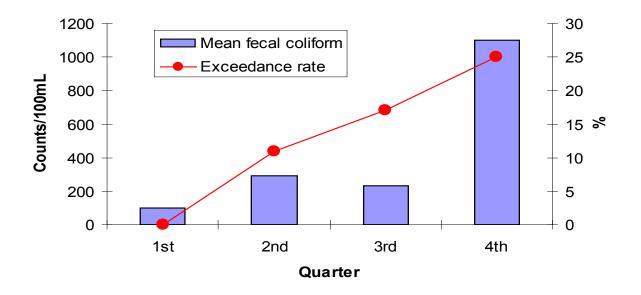
#### 5.1.2 TMDL Development Process

Due to the lack of supporting information, mainly flow data, a simple reduction calculation was performed to determine the needed reduction. Exceedances of the state criterion were compared with the criterion. For each individual exceedance, an individual required reduction was calculated using the following:

# $Load reduction = \frac{Existing loading - Allowable loading}{Existing loading} \times 100\%$

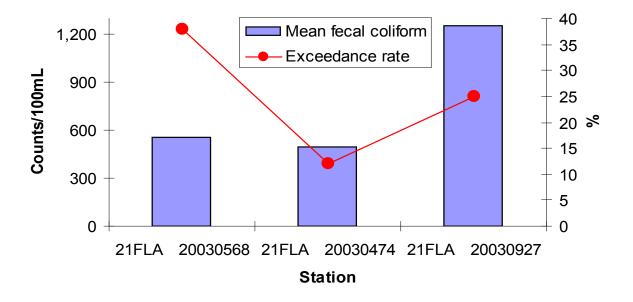

After the individual results were calculated, the median of the individual values was calculated. **Table 5.1** shows the individual reduction calculations for fecal coliform. The median reduction was 71.6 percent.




#### Figure 5.1. Locations of Water Quality Stations in Mill Creek (WBID 2460)

### Figure 5.2. Trends of Fecal Coliform Concentrations in Mill Creek (WBID 2460) during the Verified Period

Note: The red line indicates the target concentration (400 counts/100mL).




#### Figure 5.3. Seasonal Trend of Fecal Coliform Concentration Percent Exceedance in Mill Creek (WBID 2460) during the Verified Period



Florida Department of Environmental Protection

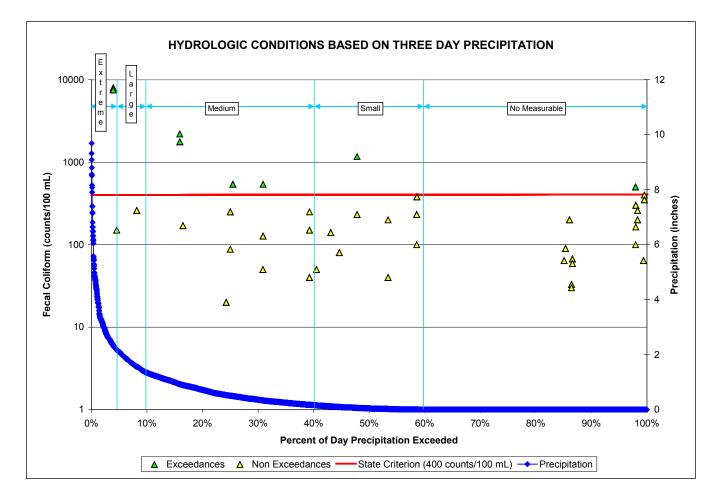
#### Figure 5.4. Spatial Trend of Fecal Coliform Concentration and Percent Exceedance in Mill Creek (WBID 2460) during the Verified Period



### Table 5.1. Calculation of Fecal Coliform Reductions for the TMDL for Mill Creek (WBID 2460)

<sup>2</sup> Exceedances represent values above 400 counts/100mL.

| Date       | Station        | Fecal Coliform<br>Exceedances <sup>1, 2</sup> | Fecal Coliform<br>Target <sup>2</sup> | % Reduction |
|------------|----------------|-----------------------------------------------|---------------------------------------|-------------|
| 11/12/2002 | 21FLA 20030568 | 2,200                                         | 400                                   | 81.82%      |
| 11/12/2002 | 21FLA 20030474 | 1,767                                         | 400                                   | 77.36%      |
| 9/21/2004  | 21FLA 20030568 | 540                                           | 400                                   | 25.93%      |
| 6/26/2007  | 21FLA 20030568 | 1,170                                         | 400                                   | 65.81%      |
| 9/18/2007  | 21FLA 20030927 | 540                                           | 400                                   | 25.93%      |
| 10/2/2007  | 21FLA 20030927 | 8,000                                         | 400                                   | 95.00%      |
| 10/2/2007  | 21FLA 20030474 | 7,500                                         | 400                                   | 94.67%      |
| 10/15/2007 | 21FLA 20030474 | 500                                           | 400                                   | 20.00%      |
| -          | -              | -                                             | Median %<br>Reduction:                | 71.6%       |


<sup>&</sup>lt;sup>1</sup>Coliform counts are #/100mL.

#### 5.1.3 Critical Conditions

The critical conditions for coliform loadings in a given watershed depend on many factors, including the presence of point sources and the land use pattern in the watershed. Typically, the critical condition for nonpoint sources is an extended dry period followed by a rainfall runoff event. During the wet weather period, rainfall washes off coliform bacteria that have built up on the land surface under dry conditions, resulting in the wet weather exceedances. However, significant nonpoint source contributions can also appear under dry conditions without any major surface runoff event. This usually happens when nonpoint sources contaminate the surficial aquifer, and fecal coliform bacteria are brought into the receiving waters through baseflow. In addition, wildlife with direct access to the receiving water can contribute to the exceedance during dry weather. The critical condition for point source loading typically occurs during periods of low stream flow, when dilution is minimized.

As no current flow data were available, hydrologic conditions were analyzed using rainfall. A loading curve–type chart that would normally be applied to flow events was created using precipitation data from Jacksonville International Airport from 1990 to 2008 instead. The chart was divided in the same manner as if flow were being analyzed, where extreme precipitation events represent the upper percentiles ( $0-5^{th}$  percentile), followed by large precipitation events ( $5^{th}-10^{th}$  percentile), medium precipitation events ( $10^{th}-40^{th}$  percentile), small precipitation events ( $40^{th}-60^{th}$  percentile), and no recordable precipitation events ( $60^{th}-100^{th}$  percentile). Three-day (the day of and two days prior to sampling) precipitation accumulations were used in the analysis (**Figure 5.3**).

Data show that fecal coliform exceedances occurred over all hydrologic conditions except for large precipitation events, probably due to small sample size (n=1). Therefore, when both extreme and large precipitation events were combined as one event, the lowest percentage of exceedances (5.3 percent) occurred during a no-measurable-precipitation event. The highest percentage of exceedances (50 percent) occurred after the combined extreme and large precipitation events, followed by a medium precipitation event (40 percent). If a high percentage of exceedances occurs after large and extreme precipitation events, this may indicate that exceedances are nonpoint source driven, perhaps from stormwater conveyance systems or various land uses. However, it is difficult to draw conclusions with so few samples representing extreme and large precipitation events. **Figure 5.5** shows fecal coliform data by hydrologic condition.



### Figure 5.5. Fecal Coliform Data by Hydrologic Condition Based on Rainfall

### Chapter 6: DETERMINATION OF THE TMDL

#### 6.1 Expression and Allocation of the TMDL

The objective of a TMDL is to provide a basis for allocating acceptable loads among all of the known pollutant sources in a watershed so that appropriate control measures can be implemented and water quality standards achieved. A TMDL is expressed as the sum of all point source loads (wasteload allocations, or WLAs), nonpoint source loads (load allocations, or LAs), and an appropriate margin of safety (MOS), which takes into account any uncertainty concerning the relationship between effluent limitations and water quality:

#### $\mathsf{TMDL} = \sum \mathsf{WLAs} + \sum \mathsf{LAs} + \mathsf{MOS}$

As discussed earlier, the WLA is broken out into separate subcategories for wastewater discharges and stormwater discharges regulated under the NPDES Program:

#### $\textbf{TMDL} \cong \sum \textbf{WLAs}_{wastewater} + \sum \textbf{WLAs}_{NPDES \ Stormwater} + \sum \textbf{LAs} + \textbf{MOS}$

It should be noted that the various components of the revised TMDL equation may not sum up to the value of the TMDL because (a) the WLA for NPDES stormwater is typically based on the percent reduction needed for nonpoint sources and is also accounted for within the LA, and (b) TMDL components can be expressed in different terms (for example, the WLA for stormwater is typically expressed as a percent reduction, and the WLA for wastewater is typically expressed as mass per day).

WLAs for stormwater discharges are typically expressed as "percent reduction" because it is very difficult to quantify the loads from MS4s (given the numerous discharge points) and to distinguish loads from MS4s from other nonpoint sources (given the nature of stormwater transport). The permitting of stormwater discharges also differs from the permitting of most wastewater point sources. Because stormwater discharges cannot be centrally collected, monitored, and treated, they are not subject to the same types of effluent limitations as wastewater facilities, and instead are required to meet a performance standard of providing treatment to the "maximum extent practical" through the implementation of best management practices (BMPs).

This approach is consistent with federal regulations (40 CFR § 130.2[I]), which state that TMDLs can be expressed in terms of mass per time (e.g., pounds per day), toxicity, or other appropriate measure. The TMDL for Mill Creek is expressed in terms of MPN/day and percent reduction, and represents the maximum daily fecal coliform load the creek can assimilate without exceeding the fecal coliform criterion (**Table 6.1**).

### Table 6.1. TMDL Components for Fecal Coliform in Mill Creek (WBID2460)

NA = Not applicable

|                |                        | WLA for                      | WLA for<br>NPDES            |                     |          |
|----------------|------------------------|------------------------------|-----------------------------|---------------------|----------|
| Parameter      | TMDL<br>(counts/100mL) | Wastewater<br>(colonies/day) | Stormwater<br>(% reduction) | LA<br>(% reduction) | MOS      |
| Fecal Coliform | 400                    | NA                           | 72%                         | 72%                 | Implicit |

#### 6.2 Load Allocation

Based on the percent reduction approach, the load allocation is a 72 percent reduction in fecal coliform from nonpoint sources. It should be noted that the LA includes loading from stormwater discharges regulated by the Department and the water management districts that are not part of the NPDES Stormwater Program (see **Appendix A**).

#### 6.3 Wasteload Allocation

#### 6.3.1 NPDES Wastewater Discharges

No NPDES-permitted wastewater facilities with fecal coliform limits were identified in the Mill Creek watershed. The state already requires all NPDES point source dischargers to meet bacteria criteria at the end of the pipe. It is the Department's current practice not to allow mixing zones for bacteria. Any point sources that may discharge in the watershed in the future will also be required to meet end-of-pipe standards for coliform bacteria.

#### 6.3.2 NPDES Stormwater Discharges

The WLA for stormwater discharges with an MS4 permit is a 72 percent reduction in current fecal coliform for Mill Creek (WBID 2460). It should be noted that any MS4 permittee is only responsible for reducing the anthropogenic loads associated with stormwater outfalls that it owns or otherwise has responsible control over, and it is not responsible for reducing other nonpoint source loads in its jurisdiction.

#### 6.4 Margin of Safety

Consistent with the recommendations of the Allocation Technical Advisory Committee (Department, 2001), an implicit MOS was used in the development of this TMDL. An MOS was included in the TMDL by not allowing any exceedances of the state criterion, even though intermittent natural exceedances of the criterion would be expected and would be taken into account when determining impairment. Additionally, the TMDL calculated for fecal coliform was based on meeting the water quality criterion of 400 counts/100mL without any exceedances, while the actual criterion allows for 10 percent exceedances over the fecal coliform criterion.

### Chapter 7: TMDL IMPLEMENTATION

#### **TMDL** Implementation

Following the adoption of this TMDL by rule, the Department will determine the best course of action regarding its implementation. Depending upon the pollutant(s) causing the waterbody impairment and the significance of the waterbody, the Department will select the best course of action leading to the development of a plan to restore the waterbody. Often this will be accomplished cooperatively with stakeholders by creating a Basin Management Action Plan, referred to as the BMAP. Basin Management Action Plans are the primary mechanism through which TMDLs are implemented in Florida [see Subsection 403.067(7) F.S.]. A single BMAP may provide the conceptual plan for the restoration of one or many impaired waterbodies.

If the Department determines a BMAP is needed to support the implementation of this TMDL, a BMAP will be developed through a transparent stakeholder-driven process intended to result in a plan that is cost-effective, technically feasible, and meets the restoration needs of the applicable waterbodies. Once adopted by order of the Department Secretary, BMAPs are enforceable through wastewater and municipal stormwater permits for point sources and through BMP implementation for nonpoint sources. Among other components, BMAPs typically include:

- Water quality goals (based directly on the TMDL);
- Refined source identification;
- Load reduction requirements for stakeholders (quantitative detailed allocations, if technically feasible);
- A description of the load reduction activities to be undertaken, including structural projects, nonstructural BMPs, and public education and outreach;
- A description of further research, data collection, or source identification needed in order to achieve the TMDL;
- Timetables for implementation;
- Implementation funding mechanisms;
- An evaluation of future increases in pollutant loading due to population growth;
- Implementation milestones, project tracking, water quality monitoring, and adaptive management procedures; and
- Stakeholder statements of commitment (typically a local government resolution).

BMAPs are updated through annual meetings and may be officially revised every five years. Completed BMAPs in the state have improved communication and cooperation among local stakeholders and state agencies, improved internal communication within local governments, applied high-quality science and local information in managing water resources, clarified obligations of wastewater point source, MS4 and non-MS4 stakeholders in TMDL implementation, enhanced transparency in DEP decision-making, and built strong relationships between DEP and local stakeholders that have benefited other program areas. However, in some basins, and for some parameters, particularly those with fecal coliform impairments, the development of a BMAP using the process described above will not be the most efficient way to restore a waterbody, such that it meets its' designated uses. Why? Because fecal coliform impairments result from the cumulative effects of a multitude of potential sources, both natural and anthropogenic. Addressing these problems requires good old fashioned detective work that is best done by those in the area. There are a multitude of assessment tools that are available to assist local governments and interested stakeholders in this detective work. The tools range from the simple – such as Walk the WBIDs and GIS mapping - to the complex such as Bacteria Source Tracking. Department staff will provide technical assistance, guidance, and oversight of local efforts to identify and minimize fecal coliform sources of pollution. Based on work in the Lower St Johns River tributaries and the Hillsborough River basin, the Department and local stakeholders have developed a logical process and tools to serve as a foundation for this detective work. In the near future, the Department will be releasing these tools to assist local stakeholders with the development of local implementation plans to address fecal coliform impairments. In such cases, the Department will rely on these local initiatives as a more cost-effective and simplified approach to identify the actions needed to put in place a roadmap for restoration activities, while still meeting the requirements of Chapter 403.067(7), F.S.

### References

- Alderiso, K., D. Wait and M. Sobsey. 1996. Detection and characterization of make-specific RNA coliphages in a New York City reservoir to distinguish between human and nonhuman sources of contamination. In: Proceedings of a Symposium on New York City Water Supply Studies, J.J. McDonnell et al. (eds.). TPS-96-2. Herndon, VA: American Water Resources Association.
- Association of Metropolitan Sewerage Agencies. 1994. *Separate sanitary sewer overflows: What do we currently know?* Washington, DC.
- Bannerman, R., D. Owens, R. Dodds, and N. Hornewer. 1993. Sources of pollutants in Wisconsin Stormwater. *Water Science and Technology 28(3-5): 241-259.*
- Culver, T.B, Y. Jia, R. TiKoo, J. Simsic, and R. Garwood. 2002. *Development of the Total Maximum Daily Load (TMDL) for fecal coliform bacteria in Moore's Creek, Albemarle County, Virginia.* Virginia Department of Environmental Quality.

Florida Administrative Code. Rule 62-302, Surface water quality standards.

——. Rule 62-303, Identification of impaired surface waters.

Florida Department of Environmental Protection. February 2001. A report to the Governor and the Legislature on the allocation of Total Maximum Daily Loads in Florida. Tallahassee, FL: Bureau of Watershed Management.

——. June 2002. Basin status report: Lower St. Johns. Tallahassee, FL: Bureau of Watershed Management.

——. 2004. *Water quality assessment report: Lower St. Johns.* Tallahassee, FL: Bureau of Watershed Management.

Florida Department of Health Website. 2008. Available: <u>http://www.doh.state.fl.us/</u> <u>environment/programs/EhGis/EhGisDownload.htm</u> and <u>http://www.doh.state.fl.us/</u> <u>environment/OSTDS/statistics/ostdsstatistics.htm</u>.

Florida Watershed Restoration Act. Chapter 99-223, Laws of Florida.

- Minnesota Pollution Control Agency. 1999. *Effect of septic systems on ground water quality.* Ground Water and Assessment Program. Baxter, MN.
- Lim, S., and V. Olivieri. 1982. *Sources of microorganisms in urban runoff.* Johns Hopkins School of Public Health and Hygiene. Baltimore, MD: Jones Falls Urban Runoff Project.
- Steuer, J., W. Selbig, N. Hornewer, and J. Prey. 1997. Sources of contamination in an urban basin in Marquette, Michigan and an analysis of concentrations, loads, and data quality.
   U.S. Geological Survey Water Resources Investigation Report 97-4242. Middleton, MI.

- Trial, W. et al. 1993. Bacterial source tracking: Studies in an urban Seattle watershed. *Puget Sound Notes 30: 1-3.*
- U.S. Environmental Protection Agency. January 2001. *Protocol for developing pathogen TMDLs*. Washington, DC: Office of Water. EPA 841-R-00-002.
- U.S. Geological Survey, Florida Integrated Science Center Water Resources Website. 2008. Available: <u>http://fl.water.usgs.gov</u>.
- Van der Wel, B. 1995. Dog pollution. *The Magazine of the Hydrological Society of South Australia 2(1) 1.*
- Watson, T. June 6, 2002. Dog waste poses threat to water. USA Today.
- Weiskel, P.K., B.L Howes, and G.R. Heufflder. 1996. Coliform contamination of a coastal embayment: Sources and transport pathway. *Environmental Science and technology 1872-1881.*

### **Appendices**

#### Appendix A: Background Information on Federal and State Stormwater Programs

In 1982, Florida became the first state in the country to implement statewide regulations to address the issue of nonpoint source pollution by requiring new development and redevelopment to treat stormwater before it is discharged. The Stormwater Rule, as authorized in Chapter 403, F.S., was established as a technology-based program that relies on the implementation of BMPs that are designed to achieve a specific level of treatment (i.e., performance standards) as set forth in Rule 62-40, F.A.C. In 1994, the Department's stormwater treatment requirements were integrated with the stormwater flood control requirements of the water management districts, along with wetland protection requirements, into the Environmental Resource Permit regulations.

Rule 62-40, F.A.C., also requires the state's water management districts to establish stormwater pollutant load reduction goals (PLRGs) and adopt them as part of a Surface Water Improvement and Management (SWIM) plan, other watershed plan, or rule. Stormwater PLRGs are a major component of the load allocation part of a TMDL. To date, stormwater PLRGs have been established for Tampa Bay, Lake Thonotosassa, the Winter Haven Chain of Lakes, the Everglades, Lake Okeechobee, and Lake Apopka.

In 1987, the U.S. Congress established Section 402(p) as part of the federal Clean Water Act Reauthorization. This section of the law amended the scope of the federal NPDES permitting program to designate certain stormwater discharges as "point sources" of pollution. The EPA promulgated regulations and began implementing the Phase I NPDES Stormwater Program in 1990. These stormwater discharges include certain discharges that are associated with industrial activities designated by specific standard industrial classification (SIC) codes, construction sites disturbing 5 or more acres of land, and the master drainage systems of local governments with a population above 100,000, which are better known as MS4s. However, because the master drainage systems of most local governments in Florida are interconnected, the EPA implemented Phase I of the MS4 permitting program on a countywide basis, which brought in all cities (incorporated areas), Chapter 298 urban water control districts, and the FDOT throughout the 15 counties meeting the population criteria. The Department received authorization to implement the NPDES Stormwater Program in 2000.

An important difference between the federal NPDES and the state's stormwater/environmental resource permitting programs is that the NPDES Program covers both new and existing discharges, while the state's program focus on new discharges only. Additionally, Phase II of the NPDES Program, implemented in 2003, expands the need for these permits to construction sites between 1 and 5 acres, and to local governments with as few as 1,000 people. While these urban stormwater discharges are now technically referred to as "point sources" for the purpose of regulation, they are still diffuse sources of pollution that cannot be easily collected and treated by a central treatment facility, as are other point sources of pollution such as domestic and industrial wastewater discharges. It should be noted that all MS4 permits issued in Florida include a reopener clause that allows permit revisions to implement TMDLs when the implementation plan is formally adopted.

# Appendix B: Response to Comments from St.Johns County on the Fecal Coliform TMDL for Mill Creek:

St. Johns County comment:

#### FECAL COLIFORM TMDL FOR MILL CREEK, WBID 2460

The TMDL discusses the potential sources of fecal coliform. Another recognized source of fecal coliform in Florida is the re-production of fecal coliform in the environment. In these cases, fecal coliform released from its host organism finds conducive environmental conditions (cool temperatures, food source, and shelter form predation) to reproduce outside a host organism. We request that this potential source be added to the discussion in Section 4 of the draft TMDL.

#### **DEP response:**

We added your comment in Chapter 4 which follows;

#### **Reproduction of Fecal Coliform in the Environment**

Some studies show that fecal coliform can reproduce in the sediments and be re-suspended to surface water when conditions are right. Current methodology cannot quantify fecal coliform coming from each source. Therefore, we were unable to estimate fecal coliform loading from the sediments in this chapter.

#### St. Johns County comment:

It is not clear how the percent reductions were calculated in Table 5.1. The column labeled "fecal coliform exceedances" appears to represent daily values. In this case the water quality for the daily maximum limit of 800 counts per 100 ml is more appropriate. If the criterion for no more than 400 counts per 100 ml in ten percent of the samples is applicable, then the values in the "fecal coliform exceedances" should be represented by a statistical value rather than a daily result?

#### **DEP response:**

The state's water quality criterion for fecal coliforms has three components. As described in Chapter 2 of the draft report, we determined that the language allowing a 10% exceedance rate over 400 counts/100 mL is more consistent with the assessments being made using the Impaired Water Rule methodology (Chapter 62-303, Florida Administrative Code). If we used 800 counts per 100ml for TMDL calculation instead of 400 counts per 100 ml, then TMDL would be a 64 percent reduction instead of a 72 percent reduction. When we evaluate fecal coliform impairment we use the criterion "no more than 400 counts per 100 ml in ten percent of the samples", but when we calculate TMDL, we use any exceedances without consideration of 10 percent which gives a margin of safety. The reductions are based using the median of all the exceedances, which allows for a long-term smoothing of the data. However, based on recent litigation in the federal courts, in addition to the expression in any other meaningful ways (e.g.,

less than 10% greater than 400counts /100 mL for all the data), all TMDLs must be expressed as be being "daily."



Florida Department of Environmental Protection Division of Environmental Assessment and Restoration Bureau of Watershed Restoration 2600 Blair Stone Road Tallahassee, Florida 32399-2400